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1. Introduction

The algebraic geometer Frank Morley (1860-1937) came from England to the
United States in 1887. He was the editor of the American Journal of Mathemat-
ics from 1900 to 1921 and served as President of the American Mathematical
Society from to 1919 to 1920. In 1899, while studying properties of general con-
figurations of n lines in the Euclidean plane by means of complex numbers,
Morley discovered a nice little theorem on the trisectors of a triangle. He men-
tioned it to friends, who spread it over the world in the form of mathematical
gossip (Coxeter [1], p. 23). The simple version of Morley’s trisector theorem, as
it later became known, reads as follows (see figure 1): in any triangle, the three
points of intersection of the adjacent angle trisectors form an equilateral triangle.
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Figure 1: Morley’s trisector theorem.

Morley never bothered to publish an elementary proof. In the book Inversive
Geometry from 1933, which he wrote with his son Frank Vigor Morley, the au-
thors, after stating this version of the theorem as a corollary of some rather
intricate results on cardioids (certain heart-shaped curves, see figure 5) simply
ask: Exercise 10: Verify this by trigonometry. ([2], p. 244). Indeed, it is straightfor-
ward to verify that, in the notation of figure 1, OP = 8 r sin α sin β sin γ, where r
equals the circumradius of triangle ABC (see [3], p. 740). This, by symmetry,
proves that OP = PQ = QO, as desired.
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Since the beginning of the twentieth century, many other proofs of Morley’s
theorem have been published. An article in the November 1978 issue of The
American Mathematical Monthly by Cletus Oakley and Justine C. Baker (with
supplements by Charles W. Trigg), see [3], lists no less than 150 references.
Some only give a proof of the simple version of the theorem. But many proofs
not only consider inner trisectors, but also their outer counterparts. In fact, if all
trisectors are extended to full lines, there are precisely eighteen trisectors: six
for each vertex of ABC, the outer ones making angles of ±π/3 with the inner
trisectors through the same vertex. Note that the directed angle from one line
to another is determined module π, so trisectors are determined modulo π/3.
From these eighteen trisectors many more equilateral Morley triangles can be
constructed, as will be indicated in the next section. Since 1978, numerous
other articles and notes on Morley’s theorem have appeared in print.
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Figure 2: The full Morley trisector configuration.

2. A preview of Morley’s analysis

At this point, the reader might like to get a preview of Morley’s analysis. Let
a triangle ABC be given. Extend its sides to full lines. All eighteen trisectors
of the triangle ABC from figure 1, extended to full lines, are shown in figure 2,
colored in red, blue and green. To be more precise, the two inner trisectors
through the endpoints of side AB and adjacent to AB are red, for BC this is
blue and for CA this is green; each other trisector has the same color as the
inner trisector through the same vertex of triangle ABC with which it makes
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an angle ±π/3. Thus, six trisectors are red, six are blue and six are green.
Trisectors of the same color but not at the same vertex intersect in points of
the same color indicated by small dots: nine red, nine blue and nine green
intersection points. The reader is invited to inspect the resulting collection of
27 colored intersection points of pairs of trisectors in figure 2.
Morley considered cardioids that are tangent to each of the extended sides of
triangle ABC. He discovered that the set of the so-called centers of these car-
dioids is very special: it consists of nine lines in three directions, three in each
direction, intersecting in 27 points at angles ±π/3. These lines are called the
axes of the triangle. In figure 2, the nine axes are drawn as dashed black lines.
Furthermore, Morley proved the astonishing fact that the 27 intersection points of
the axes are precisely the 27 colored intersection points of pairs of trisectors constructed
above.
Now we are ready to explain the construction of the Morley triangles. Choose
an axis in each of the three directions. This can be done in 27 ways. Each of
these creates an equilateral triangle, called a Morley triangle. From the Morley
triangles, 18 are proper, having vertices in three different colors, and the re-
maining 9 triangles turn out to be monochromatic, having vertices in one color
only. Triangle OPQ from figure 1 is one of the proper Morley triangles.
In the book Inversive Geometry [2], it takes less than four pages (§ 137, § 138
and § 140 on pp. 239-244) to elucidate the role of cardioids in the discovery
of Morley’s results, but this is not easy reading because of the idiosyncratic
notation and style. The present paper offers self-contained explanations of this
role of cardioids with full details of the proofs and with figures to illustrate the
arguments. In this way, we hope to make this elegant, and almost forgotten
fragment of analytic Euclidean geometry more accessible to modern readers.

3. Clinants, bisectors and trisectors

Throughout this paper, the points in the plane will be viewed as complex num-
bers in the Argand plane (the Euclidean plane co-ordinated by complex num-
bers). Complex numbers will be represented by lower case letters. We will
always use the letter t for points on the unit circle, so t t = 1, in other words,
t = 1/t. Sometimes, we will also use τ (the Greek letter ‘tau’) instead of t.
Recall that, for given lines ` and m, the directed angle from ` to m is the angle
through which a variable line has to be turned in the counterclockwise sense,
in order to pass from the position ` to the position m. This angle is considered
modulo π. For parallel lines, this angle can be taken 0.
The clinant of a line is the complex number on the unit circle that has as its
argument twice the directed angle from the real axis to the line. The clinant
uniquely describes the direction of the line: two lines are parallel if and only
if they have the same clinant. Furthermore, two lines are perpendicular if and
only if their clinants differ by a factor −1.
The clinant will always be calculated—and arises in a natural way—as the quo-
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tient τ = (z − x)/(z − x), where x and z are two distinct points on the line.
Indeed, the vectors z− x and x− z both indicate the direction of the line, but in
opposite sense. The quotient (z− x)/(z− x), however, remains the same if we
interchange z and x. In fact, it is a complex number on the unit circle that only
depends on the line, and not on the particular choice of z and x on this line. For
any fixed point x on a line with clinant τ, the equation (z− x)/(z− x) = τ, or

z− x = τ(z− x)

represents, for variable z, the points on the line.
Clinants are very convenient to define trisectors. First the idea is explained for
the simpler case of bisectors.

Definition of bisectors: Let a, b and c be distinct points, determining
lines ac and bc. Let the clinants of the lines ac and bc be ta and
tb, respectively. Then any line through c with clinant t satisfying
t2 = tatb is called a bisector at c of the lines ac and bc.

Note that, by this definition, the directed angle at c from the line bc to the line
ac has precisely two bisectors, intersecting at right angles, see figure 3. Their
clinants are ±

√
tatb. Recall that each complex number different from 0 has two

complex square roots, differing by a factor −1. Multiplying the directed angle
from bc to either one of the two bisectors by a factor 2, yields the directed angle
from bc to ac, modulo π. This justifies the terminology bisector.

c b

a

Figure 3: Bisectors of lines ac and bc.

c b

a

Figure 4: Trisectors adjacent to bc.

In relation to Morley’s theorem, trisectors are important. They are defined in a
similar manner.

Definition of trisectors: Let a, b and c be distinct points, determin-
ing lines ac and bc. Let the clinants of the lines ac and bc be ta and
tb, respectively. Then any line through c with clinant t satisfying
t3 = tat2

b is called a trisector at c of the lines ac and bc, adjacent to the
line bc.

See figure 4. The intuition behind this definition is that the direction of the
line bc pulls twice as hard as the direction of the line ac. Note that there are
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three trisectors adjacent to bc, intersecting at angles ±π/3. If 3
√

tat2
b is one of

the (complex) cube roots of tat2
b, the others are ω 3

√
tat2

b and ω2 3
√

tat2
b, where

ω = e2πi/3. These cube roots are the clinants of the trisectors adjacent to bc.
Multiplying the directed angle from bc to any trisector adjacent to bc by a fac-
tor 3, yields the directed angle from bc to ac, modulo π. This justifies the termi-
nology trisector. By the definition above, any angle determined by two distinct
intersecting lines, has six trisectors, three adjacent to one leg and three adjacent
to the other. Note that the use of the word ‘adjacent’ in the definition of tri-
sectors agrees with its use in the formulation of the simple version of Morley’s
theorem. Also note that in our definition the case that a, b and c are collinear is
not excluded: even in this case there are three trisectors at c, one of these being
the line through a, b and c itself.

4. The standard cardioid and its tangent lines

When t runs through the unit circle, the equation

x = 2t− t2 (1)

is a parametric representation of a closed curve, called the standard cardioid (see
figure 5). More generally, a cardioid is a curve that is similar to the standard
cardioid. Its name is derived from its heart-like shape. The point 0 is called the
center of the cardioid. Centers of cardioids will play an important role in the
sequel. The cardioid has a cusp when dx/dt = 0, which occurs for parameter
value t = 1 at the point x = 1. The real axis, characterized by z = z, will
be called the cusp tangent line. The point x = −3, taken for parameter value
t = −1, is called the apse of the cardioid. Its tangent line is perpendicular to the
cusp tangent line.
Now we will derive an equation for the tangent line at the point on the cardioid
with parameter value t 6= 1. Let us first find its clinant. Taking differentials
from the equation x = 2t− t2 yields

dx = 2(1− t)dt = 2(1− t) it dθ

where the real number θ is the argument of t = eiθ , always taken, as usual,
modulo 2π. It follows that

dx = 2(1− t)dt = 2(1− 1
t
) (−i)

1
t

dθ =
1
t3 2(1− t) it dθ =

1
t3 dx.

Therefore, dx/dx = t3. Since in terms of differentials the clinant of the tangent
line equals dx/dx, we have proved: the clinant of the tangent line at the point with
parameter value t of the standard cardioid x = 2t− t2 equals t3. Moreover, for any
point z on the tangent line, we have

t3 =
z− x
z− x

=
z− (2t− t2)

z− (2t− t2)

5



which, using t = 1/t, can be simplified to

z− 3t + 3t2 − z t3 = 0. (2)

This is the promised equation for the tangent line for parameter value t. It also
holds for t = 1: the tangent line at the cusp is z− z = 0 with clinant t3 = 1.

z

0 1−3

x = 2t - t2

Figure 5: The standard cardioid. Figure 6: Tangent lines to the cardioid.

As above, we will use the Greek letter ω (‘omega’) to denote the complex num-
ber ω = e2πi/3. Note that the tangent lines to the cardioid for parameter values
t, ωt and ω2t are parallel. Indeed, their clinants are t3, (ωt)3 and (ω2t)3, and
so are all equal, as ω3 = 1.
Figure 6 shows the cardioid as the envelope of its tangent lines. The curve
divides the plane into two regions: an outer region and an inner region. For
each point z in the outer region, there are precisely three distinct points on
the cardioid for which the tangent line runs through z. This is obvious from
figure 6, but it can also be explained as follows. Note that for any solution t = u
of the cubic equation (2), conjugating the equation shows that also t = 1/u is a
solution. Since u = 1/u precisely when u is on the unit circle, (2) has either one
or three solutions on the unit circle, counted with multiplicity. Multiple roots
can be found by differentiating (2) with respect to t and conjugating, yielding
z = 2t − t2, so they occur precisely if z is on the cardioid. If z is in the outer
region of the cardioid, then there are at least two distinct points on the cardioid
with tangent lines through z. Hence, then there must always be a third point
on the cardioid with tangent line through z.
Taking, as in figure 7, a point z in the outer region of the cardioid, the cubic
equation (2) has three distinct solutions t1, t2 and t3, all situated on the unit
circle. After dividing (2) by −z, we see that the constant term is −z/z, so

z/z = t1t2t3. (3)

Taking cubes gives (z/z)3 = t3
1t3

2t3
3. This can be seen as a relation between

clinants of certain lines. Indeed, z/z is the clinant of the line connecting z to the
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center 0 of the cardioid, and t3
k is the clinant of the tangent line for parameter

value tk for k = 1, 2, 3. Therefore, we get that the cube of the clinant of the line
connecting z to the center 0 of the cardioid equals the product of the clinants
of the three tangent lines from z. In other words, the clinant of the line z0 is one
of the cube roots of the product of the clinants of the three tangent lines from z. Note
that the cube roots of a complex number different from zero differ by a factor
ωk, where k = 0, 1 or 2.

0 1

z

x2 = 2t2 - t2
2

x1 = 2t1 - t1
2

x3 = 2t3 - t3
2

Figure 7: Three tangent lines through z.

z

x1

x3

x2

0 1

Figure 8: z on the double tangent line.

Equation (3) will play an important role in the next section, where the relation
between tangent lines and trisectors will be explained. To help the reader to
get an intuitive feeling for equation (3) in the case depicted in figure 7, we
reformulate it in terms of the arguments of the vectors 0− z, x1 − z, x2 − z and
x3 − z, pointing from z to 0, x1, x2 and x3, respectively. Since the argument of
a direction vector of a line is, modulo π, half the argument of the clinant of the
line, we get

arg(0− z) =
1
3
(arg(x1 − z) + arg(x2 − z) + arg(x2 − z)) (mod π/3) (4)

so the argument of 0 − z equals the arithmetic mean of the arguments of the
three complex numbers xk − z (k = 1, 2, 3), modulo π/3. The reader is invited
to check this in figure 7 by verifying, using a protractor, that ∠x2z0 = ∠0zx1 +
∠0zx3.

5. Trisectors and double lines

There is a unique line that is tangent to the standard cardioid in more than
one point (see figure 8): the double tangent line, or double line for short. It is
vertical, so its clinant is −1. The parameter values t yielding a vertical tangent
line satisfy t3 = −1. The value t = −1 gives the tangent line at the apse, so
each of the other two possibilities, t = −ω and t = −ω2, must give the double
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line. Indeed, substitution into (2) in both cases, using ω2 + ω + 1 = 0, yields
the same equation:

z + z = 3.

Therefore, this equation represents the double line and the two tangency points
x3 and x1 on the double line have parameter values−ω and −ω2, respectively.
From any point z on the double line different from the two tangency points,
there is precisely one other tangent line to the cardioid. Take z on the double
line, but not on the closed interval between x1 and x3, as in figure 8. Then
it follows from (4) that ∠x2z0 = ∠0zx1 + ∠0zx3 = 2∠0zx1. Hence, the line
connecting z to 0 is the inner trisector of the angle ∠x1zx2 adjacent to the dou-
ble line, i.e., ∠x1zx2 = 3∠x1z0. This is a first hint of the connection between
cardioids and Morley’s theorem.
To further explore this connection, let z1z2z3 be any triangle. From now on, we
assume, as we may without loss of generality, that the standard cardioid x =
2t− t2 is situated inside triangle z1z2z3, touching each of its sides, and that z2z3
is the double line, as in figure 9. Note that this implies that the given triangle
z1z2z3 is drawn in a way that is different from the triangle in the figures 1 and 2,
where it was denoted ABC. However, the choice of the coloring in figure 9
(and later figures) for triangle z1z2z3 has been chosen according to the coloring
in figure 2 for triangle ABC.

x2

x3

z2

z3

z1

0 1

Figure 9: Inner trisectors adjacent to z2z3.

z2

z3

z1

c1

c3

c2

Figure 10: Inner trisectors and cardioids.

The lines z20 and z30 (drawn in blue) are inner trisectors adjacent to z2z3. They
have been given the same color, as they are adjacent to the same side of the
triangle. The other inner trisectors of the angles at z3 and z2 in triangle z1z2z3
are drawn in green and red, respectively.
Clearly, there are precisely two other cardioids situated inside triangle z1z2z3
that touch each side and have one side of the triangle as a double line. In fig-
ure 10, the three cardioids with their accompanying inner trisectors are drawn
in blue, green and red. Their centers are c1 = 0, c2 and c3. Therefore, in order
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to prove the simple version of Morley’s theorem, it suffices to show that the
centers of the three cardioids form an equilateral triangle. However, from now
on, we will aim directly at proving Morley’s results in their general form. To
this end, we first have to consider cardioids in general position.

6. Cardioids in general position

In this section, the formulas (2) and (3), the clinant interpretation of (3) and the
relation between centers and trisectors for the standard cardioid are extended
to cardioids in general position. For given complex numbers c and a with a 6= 0,
the equation

x = c + 2aτ − aτ2 (5)

represents, for parameter τ running through the unit circle, a cardioid with
center c. Indeed, with a = |a|eiα, b = |a|e3iα, τ = e2iαt, equation (5) can be
rewritten as

x− c
b

= 2
a
b

τ − a
b

τ2 = 2t− t2. (6)

Therefore, equations (5) and (6) both represent a cardioid with center c of any
size in any orientation.
To find an equation of the tangent line to a cardioid with equation (5) for pa-
rameter value τ with τ 6= a/a (the cusp value, given by dx/dτ = 0), we first
determine its clinant by means of differentials, as we did in section 4. With
τ = eiθ , we have

dx = (2a− 2aτ)dτ = (2a− 2aτ)iτdθ

so

dx = (2a− 2aτ) i τdθ = (2a− 2a
1
τ
)(−i)

1
τ

dθ =
1
τ3 (2a− 2aτ)iτdθ =

1
τ3 dx.

Therefore, the clinant dx/dx of the tangent line to the cardioid in general position
x = c + 2aτ− aτ2 at the point with parameter value τ equals τ3. It follows that the
tangent line is given by the equation z− x = τ3(z− x) or, using x = c + 2aτ−
aτ2

z− c− 2aτ + aτ2 = τ3(z− c− 2a
1
τ
+ a

1
τ2 )

which can be simplified to

(z− c)− 3aτ + 3aτ2 − τ3(z− c) = 0. (7)

This is the equation of the tangent line to (5) at the point with parameter value τ.
It also holds for the cusp parameter τ = a/a. Then the equation of the tangent
line is (z− c)− (a/a)3(z− c) = 0 with clinant τ3 = (a/a)3. This completes the
promised extension of equation (2) to cardioids in general position.
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Special attention deserves the case that the double line of the cardioid is verti-
cal. This occurs if and only if the complex number b in equation (6) is real, as
this equation can be written as x = c + b(2t − t2) and, moreover, the double
line of the standard cardioid is vertical. However, if b is real (and b 6= 0), we
can write a instead of b, thus getting x = c + 2at− at2, which is of the form (5)
with a real and τ = t (if b is not real, this is not the case!).
If a is real, substitution of the parameter values τ = −ω and τ = −ω2 in (7)
yields the same equation, which therefore must be the equation of the double
line. Using ω3 = 1 and ω2 + ω + 1 = 0, this equation can be simplified to

z + z = c + c + 3a (a real).

We thus have proved: if a cardioid has a vertical double line, then its equation can
be taken as x = c + 2aτ − aτ2 with a real. The tangency points of the cardioid on the
double line then occur for parameter values τ = −ω and τ = −ω2.
Returning to the case of a cardioid Γ in general position, take a point z in the
outer region of Γ. Then there are three distinct parameter values τ1, τ2, τ3 for
which z is on the tangent line. Hence, the cubic equation (7) in τ has the three
solutions τ1, τ2 and τ3. After dividing (7) by −(z− c), we see that the constant
term is −(z− c)/(z− c), so

(z− c)/(z− c) = τ1τ2τ3. (8)

This is the extension of equation (3) to cardioids in general position. It follows
from (8) that the clinant of the line connecting z to the center c is one of the cube roots
of the product τ3

1 τ3
2 τ3

3 of the clinants of the three tangent lines through z.
An important consequence of (8) is the following lemma, which describes the
relation between centers and trisectors for cardioids in general position.

Lemma 1: If z is a point on the double line of a cardioid with center c,
then the line zc is a trisector at z, adjacent to the double line, of the angle
from the double line to the other tangent line through z to the cardioid.

Proof: Let again τ1, τ2, τ3 be the parameter values of the three points on
the cardioid for which the tangent line runs through the point z. Two of these
values are the parameter values of the tangency points on the double line. Let
these values be τ1 and τ3. Then τ3

1 = τ3
3 is the clinant of the double line, while

τ3
2 is the clinant of the other tangent line through z. It follows from (8) that the

cube of the clinant of the line zc equals τ3
2 (τ

3
1 )

2, so by the definition of trisectors
from section 3, zc is one of the trisectors adjacent to the double line of the angle
from the double line to the other tangent line through z. �

Note that lemma 1 holds for all points z on the double line, even for the two
tangency points. Then the other tangent line through z coincides with the dou-
ble line, but also in that case it is true that zc is one of the three trisectors of the
(zero) angle at z. Indeed, then the directed angle from the double line to zc is
either π/3 or −π/3, so multiplication by a factor 3 gives 0 modulo π.
The converse of lemma 1 also holds:
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Lemma 2: If a cardioid Γ is tangent to each of two distinct intersecting
lines za and zb and if the center c of Γ is on one of the trisectors adjacent
to zb of the angle at z from zb to za, then zb is the double line of Γ.

Proof: Let ta, tb and tc be the clinants of za, zb and zc, respectively. Then
t3
c = tat2

b. Let zd, with clinant td, be the third tangent line from z to Γ. It then
follows from (8) that t3

c = tatbtd, so tb = td. Hence, the lines zb and zd coincide,
in other words, zb is the double line of Γ. �

7. Trisectors and centers of doubly inscribed cardioids

Morley discovered his results by studying the infinitely many cardioids touch-
ing the sides, extended to full lines, of a given triangle z1z2z3. That is, he con-
sidered all cardioids touching each one of the three given lines z2z3, z3z1 and
z1z2. We will call such cardioids inscribed cardioids. Note that inscribed car-
dioids need not be situated inside the triangle. Morley paid special attention
to inscribed cardioids for which, moreover, one of the given lines is the dou-
ble line (such as, for example, the three cardioids in figure 10 and the nine
cardioids in figure 11). We will call such cardioids doubly inscribed cardioids.

Lemma 3: For each line of triangle z1z2z3 there are nine doubly in-
scribed cardioids with that line as double line. The centers of these car-
dioids are precisely the nine points of intersection of pairs of trisectors
adjacent to the double line at the two vertices on the double line.

Proof: We assume without loss of generality that the chosen line is z2z3 and
that the doubly inscribed cardioid with z2z3 as double line that is situated in-
side triangle z1z2z3, is the standard cardioid x = 2t− t2.
We start our proof by investigating pairs of trisectors adjacent to z2z3, of course
with one trisector at z2 and the other at z3. At each of the vertices z2 and z3
there are three trisectors adjacent to z2z3, as shown in figure 11, where they
have been drawn in blue. Note that no pair of these trisectors is parallel. In-
deed, in the notation of figure 9, for the inner trisectors z20 and z30, we have
0 < ∠0z3z2 +∠0z2z3 < π/3. Furthermore, for any other pair of trisectors ad-
jacent to z2z3, we have to add integer multiples of π/3 to these angles, but this
never leads to an angle sum that is an integer multiple of π, so we never get
parallel trisectors. Therefore, the 2× 3 = 6 trisectors give 3× 3 = 9 pairs of
trisectors adjacent to z2z3 and each of these pairs intersects in a point, which is
indicated in figure 11 by a small blue dot.
Any cardioid Γ with double line z2z3 is determined as soon as its center is
given. This follows from the definition of a cardioid as a curve in the plane
that is similar to the standard cardioid. Therefore, each of the nine intersection
points c of pairs of trisectors mentioned above defines a unique cardioid Γ with
center c and double line z2z3. Since z2c is a trisector adjacent to z2z3 of the angle
from z2z3 to z1z2, Γ is also tangent to z1z2, and since z3c is a trisector adjacent
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to z2z3 of the angle from z2z3 to z1z3, Γ is also tangent to z3z1. Hence Γ is a
doubly inscribed cardioid and lemma 3 is proved. �

z2

z3

z1

Figure 11: The 6 trisectors adjacent to z2z3 and the 9 inscribed cardioids with double line z2z3.

8. The axes of triangle z1z2z3

Perhaps the most surprising aspect of Morley’s results on inscribed cardioids
is his discovery that the set of their centers consists of nine lines in three direc-
tions, three in each direction, intersecting at angles ±π/3 in 27 points. These
lines are the axes of triangle z1z2z3. In figure 2, the axes have been drawn as
dashed black lines. The axes of a triangle are defined as follows.

Definition of axes: Let Γ, given by x = c+ 2at− at2, be an inscribed
cardioid of a triangle z1z2z3, and let t1, t2, t3 be parameter values
of points where Γ touches the lines of the triangle. Then the line
through the center c of Γ with clinant t1t2t3 is called an axis of the
triangle.

Note that t1, t2, t3 are not uniquely defined for a doubly inscribed cardioid Γ. In
that case there are two possibilities for the parameter value of the point where
Γ touches the double line, giving two axes through its center.

Lemma 4: The clinant of any axis ` of a triangle z1z2z3 is a cube root of
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the product of the clinants of its sides. Each point of ` is the center of an
inscribed cardioid.

Proof: The first statement follows from the definition of axes and the prop-
erty of cardioids that the clinant of the tangent line for parameter value t is t3.
Let c be the center of an inscribed cardioid Γ given by x = c + 2at− at2. Sup-
pose that t1, t2 and t3 are parameter values for which Γ touches the lines z2z3,
z3z1 and z1z2, respectively, of triangle z1z2z3. Let ` be the axis through the
center c of Γ with clinant t1t2t3.
On account of (7), the tangent line at Γ for parameter value t is given by

(z− c)− 3at + 3at2 − t3(z− c) = 0. (9)

For t = t1, t = t2, t = t3 this equation represents the lines of triangle z1z2z3.
We will prove next that every point of the axis ` is the center of an inscribed
cardioid. But first, define the following symmetric expressions in t1, t2 and t3:

s1 = t1 + t2 + t3, s2 = t1t2 + t2t3 + t3t1, s3 = t1t2t3.

Then
s1 =

1
t1

+
1
t2

+
1
t3

=
s2

s3
.

Note that s1 = 0 would imply, as t1, t2 and t3 are on the unit circle, that t1, t2 and
t3 are the vertices of an equilateral triangle. Consequently, t3

1 = t3
2 = t3

3 would
hold, so the lines of triangle z1z2z3, with equal clinants, would be parallel,
contradiction. Hence, we may suppose that s1 6= 0.
Let c1 be any point on the axis ` other than c. Then

(c1 − c)/(c1 − c) = t1t2t3 = s3.

Define
a1 = a− 1

3
(c1 − c) s1. (10)

We claim that a1 6= 0 holds and that the cardioid Γ1, given by the equation
x = c1 + 2a1t− a1t2, is an inscribed cardioid. Let, for each parameter value t, a
line be given by the equation

(z− c1)− 3a1t + 3a1t2 − t3(z− c1) = 0. (11)

If a1 6= 0, this is the equation of the tangent line of Γ1 at the point with param-
eter value t. We will prove that, without any assumption on a1, equation (11)
for t = t1, t = t2, t = t3 represents the lines z2z3, z3z1 and z1z2, respectively.
Then, as a consequence, a1 6= 0 must hold, since otherwise, by (11), the point
z = c1 would be on each of the three lines of z1z2z3, which is impossible.
To prove our claims, note that, with the notations ∆c = c1 − c (so ∆c/∆c = s3)
and ∆a = a1 − a, we have, on account of (10)

∆a = −1
3

∆c s1 = −1
3

∆c
s2

s3
= −1

3
∆c s2
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so
∆c s2 = −3∆a

and, since ∆a = − 1
3 ∆c s1

∆c s1 = −3∆a.

Hence, for t = t1, t = t2 or t = t3, we have

0 = ∆c(t− t1)(t− t2)(t− t3)

= ∆c(t3 − t2s1 + ts2 − s3)

= ∆c t3 + 3∆a t2 − 3(∆a)t− ∆c.

Expanding and rearranging the last expression yields that, for t = t1, t = t2 or
t = t3

(c1 − c) + 3(a1 − a)t− 3(a1 − a)t2 − (c1 − c)t3 = 0. (12)

Subtracting equation (12) from equation (9) gives equation (11). Hence, for
t = t1, t = t2 and t = t3 equation (11), just like (9), represents the lines z2z3,
z3z1 and z1z2, respectively. Therefore, a1 6= 0 holds and the cardioid Γ1 is an
inscribed cardioid, as desired. �

z2

z3

z1

c
a

Figure 12: A sequence of inscribed cardioids with their centers on an axis of z1z2z3, together
with the sequence of corresponding collinear a-values.

The proof above shows that, as c1 runs over the axis `, the inscribed cardioid
Γ1 with equation x = c1 + 2a1t − a1t2 that we have defined in the proof of
lemma 4 has the property that the parameters of the tangency points to the
triangle z1z2z3 do not depend on c1. In particular, they are equal to the param-
eters t1, t2, t3 of the tangency points of Γ to z1z2z3. Moreover, by (10), the point
a1 also runs over a line. We will call this line the a-line.
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As an illustration of lemma 4 and the a-line, we have drawn in figure 12 an
inscribed but not doubly inscribed cardioid x = c + 2at− at2 with center c and
point a (in blue), together with a sequence of inscribed cardioids with centers
on the (uniquely determined) axis through c. The corresponding part of the
a-line is also marked.

Lemma 5: If a cardioid is doubly inscribed, then its center lies on pre-
cisely two axes.

Proof: If Γ is a doubly inscribed cardioid with, say, z2z3 as double line, then
there are two parameter values t1 and t′1 for which Γ touches the double line.
The clinants of the corresponding axes through the center c of Γ then are t1t2t3
and t′1t2t3. By lemma 4, a third axis through c would only be possible if c would
also be the center of an inscribed cardioid Γ1 6= Γ. On account of lemma 3, z2c
and z3c are trisectors adjacent to z2z3, so on account of lemma 2 also Γ1 must be
doubly inscribed with z2z3 as double line. It follows that Γ and Γ1, as doubly
inscribed cardioids with the same center and the same double line, must be the
same. Contradiction. �

9. Monochromatic Morley triangles

In this section, we will prove the following lemma on monochromatic Morley
triangles, i.e., triangles with their sides along axes of triangle z1z2z3 and with
vertices that are centers of doubly inscribed cardioids with the same double
line.

Lemma 6: For each center c1 of a doubly inscribed cardioid there exist
two more centers c2 and c3 of doubly inscribed cardioids with the same
double line such that c1c2c3 is a monochromatic Morley triangle.

Proof: First, we will define c2 and c3. Suppose that c1 is the center of a dou-
bly inscribed cardioid Γ1 and that z2z3 is its double line, which, as before, we
assume to be vertical. By lemma 3, its center c1 is the intersection of two trisec-
tors z3c1 and z2c1 adjacent to z2z3. Let c2 and c3 be the intersections of the pairs
of trisectors adjacent to z2z3 that are obtained from the former pair by multi-
plying their clinants simultaneously by ω or ω2, respectively (see figure 13).
We will prove that the (elongated) sides of triangle c1c2c3 are axes of triangle
z1z2z3. This will establish the lemma.
Let Γ1 be given by the equation x = c1 + 2a1t− a1t2 for some real number a1
(cf. section 6). As a1 is real, the parameter values of the tangency points of
Γ1 on the double line z2z3 are t = −ω and t = −ω2. Let t2 and t3 be the
parameter values of the points of tangency of Γ1 on z3z1 and z1z2, respectively.
Then, on account of equation (8), the clinants of the trisectors z3c1 and z2c1 are
(−ω)t2(−ω2) = t2 and (−ω)t3(−ω2) = t3, respectively. Take t1 = −ω.
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z2

z3

z1

c1

c3

c2

Γ1

Γ2

Γ3

Figure 13: The monochromatic Morley triangle c1c2c3.

Let Γ2 be the doubly inscribed cardioid with center c2, double line z2z3 and
equation x = c2 + 2a2τ − a2τ2 for some real a2. Then, as above, the parameter
values for the points of tangency on the double line are τ = −ω and τ = −ω2.
Let τ2 and τ3 be the parameter values of the points of tangency on z3z1 and
z1z2, respectively. Then, again by (8), the parameter values τ2 and τ3 are also
the clinants of the trisectors z3c2 and z2c2, which are equal to ωt2 and ωt3 by
the definition of c2. Therefore, τ2 = ωt2 and τ3 = ωt3. This time, we take
τ1 = −ω2 = ωt1, so τk = ωtk for all k = 1, 2, 3.
The equation of the tangent line to the cardioid Γ1 for parameter value t (cf. (7))
is given by

(z− c1)− 3a1 t + 3a1 t2 − t3(z− c1) = 0. (13)

The tangent line to Γ2 for τ = ωt is given by

(z− c2)− 3a2 ωt + 3a2 ω2t2 −ω3t3(z− c2) = 0. (14)

For t = t1, t = t2 or t = t3, equations (13) and (14) both represent the lines z2z3,
z3z1 or z1z2, respectively. Subtracting (13) from (14) and using ω3 = 1 yields
the following cubic equation in t

(c1 − c2) + 3(a1 −ωa2) t− 3(a1 −ω2a2) t2 − (c1 − c2)t3 = 0.

Its three solutions are t1, t2 and t3, so (c1 − c2)/(c1 − c2) = t1t2t3. Hence, the
clinant of the line c1c2 equals t1t2t3, which implies that the line c1c2 is an axis
of triangle z1z2z3.
By cyclically permuting c1, c2 and c3, it follows that also the lines c2c3 and c3c1
are axes of triangle z1z2z3. Indeed, starting with c2 instead of c1, in the calcula-
tion above we only have to replace t2 and t3 by ωt2 and ωt3, respectively, while
keeping t1 = −ω. Then it follows that the clinant of c2c3 equals t1(ωt2)(ωt3) =
ω2t1t2t3. Similarly, starting with c3 yields t1(ω

2t2)(ω
2t3) = ωt1t2t3 as the cli-

nant of c3c1. Therefore, c1c2c3 is a monochromatic Morley triangle. �
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Figure 11 shows the nine centers of doubly inscribed cardioids with z2z3 as
double line as small blue dots. We have shown that three of these centers form
a blue monochromatic Morley triangle. From the remaining six blue centers
in a similar way two more blue monochromatic Morley triangles can be con-
structed. The reader is invited to identify them in figure 11.

10. Centers of doubly inscribed cardioids on an axis

In this section, we will prove the following lemma:

Lemma 7: Each axis of triangle z1z2z3 contains precisely six centers of
doubly inscribed cardioids, two for each side as double line.

Proof: Choose an inscribed cardioid and let τ1, τ2 and τ3 be parameter values
of its tangency points with the lines z2z3, z3z1 and z1z2, respectively. Let ` be
the axis of z1z2z3 with clinant τ1τ2τ3 through the center of the cardioid. In
section 8 we have shown that for each point c on ` it is possible to choose an
inscribed cardioid Γ with center c and equation x = c + 2aτ− aτ2 such that the
parameter values of the tangency points of Γ with the lines z2z3, z3z1 and z1z2
are τ1, τ2 and τ3, respectively, independently of the choice of c on `. Moreover,
using equation (10), it was shown that, as c runs over the axis `, the point a also
runs over a line, which we called the a-line.
As observed in section 6, the a-line cannot pass through the origin, since for
a = 0 the cardioid degenerates into a point, and a point cannot touch all lines
of triangle z1z2z3. Therefore, if the center c runs over the axis ` while a runs
over the a-line, the argument of a runs over an open interval of length π. To be
more precise, let a = |a| eiα, then we may take α0 < α < α0 + π for a certain α0.
Now we will investigate for which points c on the axis ` the chosen inscribed
cardioid Γ with c as its center is doubly inscribed. In section 6, we have rewrit-
ten the equation of Γ as x = c + b(2t− t2) using b = |a|e3iα and τ = e2iαt, thus
showing in an explicit way its similarity to the standard cardioid x = 2t− t2

(cf. equation (6)). For the standard cardioid, the two points of contact with
the double line occur for parameter values t = −ω and t = −ω2, so for the
cardioid Γ the two points of contact with its double line occur for parameter
values τ = −e2iαω and τ = −e2iαω2. If for some α one of the two parame-
ter values −e2iαω and −e2iαω2 equals τ1, τ2 or τ3, then Γ is a doubly inscribed
cardioid with z2z3, z3z1 or z1z2, respectively, as double line. To be more pre-
cise, let τk = eiθk for k = 1, 2, 3, and suppose that for a certain α we have
−e2iαω = τk = eiθk . Then e2iα = eiπe−2πi/3eiθk so α = 1

2 (π/3 + θk) mod-
ulo π. Similarly, if we have −e2iαω2 = τk = eiθk then e2iα = eiπe−4πi/3eiθk so
α = 1

2 (−π/3+ θk) modulo π. Therefore, as a rule, there are precisely six values
of α in the open interval 〈α0, α0 + π〉, given by α = 1

2 (±π/3 + θk) modulo π,
corresponding to six centers c on the axis ` for which Γ is doubly inscribed, two
centers for each line of triangle z1z2z3 as double line.
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The only exception would occur if one of the six α-values would be equal to α0
modulo π. In that case, for one of the lines of triangle z1z2z3, say for z2z3, there
would be only one center c1 of a double inscribed cardioid with z2z3 as double
line on `. However, on account of lemma 6, c1 is a vertex of a monochromatic
Morley triangle c1c2c3. The axes through c1 then are the lines c1c2 and c1c3, and
since by lemma 5 no other axes through c1 are possible, ` must be one of these,
contradicting our assumption that c1 is the only center of a doubly inscribed
cardioid with z2z3 as double line on `. �

11. The full Morley trisector configuration

In section 9, we identified three monochromatic blue Morley triangles. Their
vertices are the nine centers of doubly inscribed cardioids with z2z3 as double
line. On account of lemma 7, the nine axes along their sides must all be differ-
ent. We claim that this set of nine axes is complete: there can be no other axes.
Indeed, choose any axis. Then by lemma 7 it contains a blue point. By lemma 6
this point is a vertex of a monochromatic blue Morley triangle, so it lies on two
of the nine axes, and by lemma 5 it cannot lie on any other axis. Therefore the
chosen axis is one of the nine.
The nine axes occur in three directions, three in each direction, intersecting in
3× 3× 3 = 27 points, nine blue points, nine red points and nine green points,
with two points of each color on each axis and two axes through each colored
point. Note that two points of the same color on an axis are vertices of a unique
monochromatic Morley triangle. Since there are 3 × 3 = 9 monochromatic
Morley triangles, the remaining 27 − 9 = 18 Morley triangles are ‘proper’,
having vertices in three different colors.
It would be nice to produce an animation based on figure 2 in which one could
trace the nine axes, while for each center c on an axis the corresponding car-
dioid touching the sides of triangle z1z2z3 were shown (cf. figure 12). For rea-
sons of clarity, we have abstained from adding cardioids to figure 2.
This concludes our elaboration of the text on cardioids and Morley’s full tri-
sector configuration on pages 239-244 in [2]. We summarize our lemmas and
other results in the following theorem.

Theorem: Let z1z2z3 be an arbitrary triangle with sides extended to
full lines. Let t0 be the product of the clinants of these lines. Then:
1. The set of all centers of inscribed cardioids—cardioids touching each
of the three lines of triangle z1z2z3—consists of nine lines, called the axes
of the triangle, in three directions under angles ±π/3, three axes in each
direction. The clinants of the axes are the three cube roots of t0.
2. The 27 intersection points of the axes are the centers of the 27 doubly
inscribed cardioids, i.e., the inscribed cardioids having one of the lines
of z1z2z3 as double line, nine cardioids for each line of z1z2z3.
3. Each axis contains exactly six centers of doubly inscribed cardioids, two
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for each line of z1z2z3 as double line.
4. For each side of the triangle, the nine centers of the doubly inscribed
cardioids with this side as double line are the nine points of intersection of
pairs of trisectors adjacent to this side, at different endpoints.
Consider the 27 equilateral triangles that are created by making a choice
of three axes, one in each direction.
5. For nine of these equilateral triangles, the vertices are intersection points
of pairs of trisectors adjacent to the same side of triangle z1z2z3, three tri-
angles for each side of z1z2z3.
6. For the remaining 18 equilateral triangles, the vertices are intersection
points of pairs of trisectors adjacent to the three sides of z1z2z3, one vertex
for each side.

It seems appropriate to end with a quotation from a letter by Frank Vigor Mor-
ley to Cletus Oakley, who had asked him about the origins of his father’s theo-
rem ([3], p. 741):

”Now my father did not lack warmth for any geometric property so simple
and startling as this one. I never asked him outright the question, though
it is a proper one, that Professor Oakley now asks me, namely, why at the
time of the discovery my father kept his cool about promoting the ‘gem’
– there might have been some bit of hoo-ha if he had removed the cover
and sent it to the showroom as a separate static cut stone. I think the
way the theorem is presented in the book Inversive Geometry [2] may
answer the question. Attention to the detached theorem was not, for him,
to interfere with the pleasure of watching his ‘mobile’ of cardioids and
their tangents: it was the cardioids which led him to, and provided for him
the most elegant proof of, the trisector theorem. Proof and theorem were
pleasing in their togetherness.”
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