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1 Spherical patterns

1.1 Introduction

Many objects in daily life exhibit various forms of symmetry. Balls, bowls,
cylinders or cones have infinitely many reflectional and rotational symmetries,
at least if there are no special patterns on their surface. But for other symmetri-
cal objects the number of symmetries is finite. Take, for instance, a rectangular
table, a chair, a cupboards or, in a more mathematical language, a cube, a reg-
ular prism or a regular pyramid. Or take balls with characteristic symmetrical
patterns on their surface, such as a football, a volleyball or a basketball.

For all these objects, their symmetries can be viewed as isometries in Euclidean
three-space. They form a group, the symmetry group of the object. It is interest-
ing to enumerate all possible finite symmetry groups. This has been done by
many authors in the past, and in many different ways. It turns out that there
are exactly fourteen types of finite symmetry groups in three-space (see, e.g.,
Fejes Tóth (1965), p. 59 ff. or Coxeter (1969), p. 270 ff.).

In the literature many names and notations for these groups have been pro-
posed, but one of the most illuminating is the signature notation, proposed
recently by John H. Conway and further developed by Conway and his co-
authors Heidi Burgiel and Chaim Goodman-Strauss in their beautiful and lav-
ishly illustrated book The Symmetries of Things. The first part of their book is
devoted to the symmetries of spherical and planar patterns. In this article, we
shall present the signature notation in a slightly adapted form. It has the ad-
vantage of reflecting in a very direct and simple way all symmetry features of
a pattern.
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1.2 Symmetrical objects and spherical patterns

Any finite group G of isometries must have at least one fixed point, a point that
is unchanged under all isometries of G. Indeed, take any point P together with
its images under all isometries of G. Together they form a finite point set, the
orbit of P. Any isometry of G maps this orbit onto itself by permuting its points,
so its centroid O must be invariant under all isometries of G. In other words, O
is a fixed point of all isometries in G.

Moreover, since G consists of isometries, i.e., mappings that preserve distance
between points, any sphere with center O is mapped onto itself by the elements
of G. Therefore, enumerating all finite groups of isometries in Euclidean three-
space is the same as enumerating all finite groups of isometries on the surface
of a sphere. Loosely spoken, any symmetrical object in three-space can be as-
sociated with a symmetrical pattern on a sphere around it by central projection
from O. Studying spherical patterns, which are two-dimensional, seems easier
than studying three-dimensional objects. Moreover, this approach connects the
study of (bounded) symmetrical objects in three-space to the study of planar
symmetrical patterns like wallpaper patterns and frieze patterns.

1.3 Examples of spherical patterns

In this subsection we give examples of spherical patterns, one for each type,
each with its signature. On this moment, these signatures are just names, but
later we shall explain how they are formed and how the signature of any sym-
metric spherical pattern can be found in a very easy way. We shall also prove
that our list is complete: there are no other spherical patterns with a finite sym-
metry group.

The first seven examples are called parametric patterns since they depend on a
parameter, in this case an integer N ≥ 1. Each choice of N yields a different
pattern. In our examples we have taken N = 7, but it is immediately clear
how other choices of N yield similar patterns. The other seven examples are
so-called platonic patterns since they may be associated with certain symmetry
groups of the platonic solids tetrahedron, cube, octahedron, dodecahedron and
icosahedron.

In each example reflections (if any) are marked by the great circles, drawn in
black, in which the reflection planes intersect the sphere. Rotations are indi-
cated by dots in various colors, marking the points where the rotation axis in-
tersects the sphere. Full explanations will be given later. Note that the coloring
of the patterns is essential: symmetries must leave colors unchanged.
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Parametric patterns

[g(7,7)] [s(7,7)]

[g(7) s] [g(7) x]

[g(7,2,2)] [g(2) s(7)] [s(7,2,2)]

Platonic patterns

[g(3,3,2)] [g(3) s(2)] [s(3,3,2)]
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[g(4,3,2)] [s(4,3,2)]

[g(5,3,2)] [s(5,3,2)]

1.4 Finite spherical groups of isometries

It is well-known that any isometry on the sphere is either a rotation around an
axis through its center, or a reflection in a plane through its center, or a rotatory
reflection (a reflection followed by a rotation around an axis perpendicular to
the plane of reflection).

Let G be a finite group of isometries on the sphere. Since the product of two
rotations again is a rotation and the product of two (possibly rotatory) reflec-
tions also is a rotation, either the group G consists solely of rotations (including
the identity) or the rotations in G form a normal subgroup H of index 2. Rota-
tions are direct isometries, (rotatory) reflections are opposite isometries. Oppo-
site isometries change orientation while direct isometries don’t.

The axis of a nontrivial rotation intersects the sphere in two diametrically op-
posed points, its poles. The rotations in G with a common axis, including the
identity, form a cyclic subgroup of G. If p is the order of this subgroup, the
two poles are called p-gonal poles, or p-fold centers, or p-poles for short. The
smallest positive angle of rotation in this subgroup is 2π/p.

Two poles are called equivalent in G if there is an isometry in G that transforms
one into the other. Note that antipodal poles always have the same order, but
need not be equivalent. In the examples in subsection 1.3 equivalent poles are
colored the same.

1.5 Chiral patterns

A pattern on the sphere, or a bounded object in three-space, is called chiral if
its only symmetries are direct isometries. In that case, its mirror image looks
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different from the original, just as a left hand and a right hand differ in ap-
pearance. (The Greek word ”cheir” means hand.) If the pattern or the object
permits at least one opposite isometry, it looks exactly the same as its mirror
image. Then it is called achiral. Chirality of patterns or objects is easily recog-
nized by using a mirror.

In the present subsection, we shall investigate the chiral patterns on the sphere.
The symmetry group G of such a pattern consists entirely of rotations, includ-
ing the identity. The following derivation of the enumeration of the finite rota-
tion groups is taken from Coxeter (1969), pp. 274-275.

Let n be the order of G and let P be a p-gonal pole on the sphere. We claim that
the number of poles that are equivalent to P (including P itself) equals n/p. To
prove this, take a point Q on the sphere near P. The rotations with center P
transform Q into a small regular p-gon with center P. The other isometries in
G transform these p-gons into p-gons around the poles that are equivalent to P.
In total, the vertices of these p-gons (including Q) form a set of exactly n points
on the sphere, divided into congruent regular p-gons. Thus there are n/p of
these p-gons, and just as many equivalent p-poles.

Now let us count the n− 1 non-trivial rotations in G in a special way, grouping
together the nontrivial rotations in classes of equivalent poles. For any p-gonal
pole there are p− 1 nontrivial rotations, so for any set of n/p equivalent p-poles
we have (p− 1)n/p nontrivial rotations. In total this yields

∑(p− 1)n/p

nontrivial rotations, where the summation is over al sets of equivalent poles,
each with its own value for p. But antipodal poles have the same set of rota-
tions, so each nontrivial rotation occurs twice in this summation. Thus we get
the equation

2(n− 1) = n ∑
p− 1

p

which can also be written as

2− 2
n
= ∑

(
1− 1

p

)
(1)

If n = 1 the group G is trivial: there are no poles and the sum is empty.
For n ≥ 2 we have

1 ≤ 2− 2
n
< 2

It follows from p ≥ 2 that 1/2 ≤ 1− 1/p < 1 so there can only be 2 or 3 sets of
equivalent poles.

If there are 2 sets, we have

2− 2
n
= 1− 1

p1
+ 1− 1

p2
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that is n
p1

+
n
p2

= 2

But both terms on the left are positive integers, so both are equal to 1, and

p1 = p2 = n

Each of the two sets of equivalent poles then consists of one n-gonal pole and
G is the cyclic group with one n-gonal pole at each end of its single axis.
The signature of this group is [g(n,n)]. See page 2 for an example with n = 7. [g(n,n)]
On page 10 a full explanation is given of this notation. To facilitate reading, we
shall always include signatures in square brackets. The letter ”g” is from the
term ”gyration point” used by Conway to denote a rotation center not lying in
a reflection plane. (The Greek word ”gyros” means round.)

If there are 3 sets of equivalent poles, we have

2− 2
n
= 1− 1

p1
+ 1− 1

p2
+ 1− 1

p3

whence
1
p1

+
1
p2

+
1
p3

= 1 +
2
n
> 1

It follows that not all pi can be 3 or more, so at least one of them, say p3, is 2,
and we have

1
p1

+
1
p2

>
1
2

This can be rewritten as 2p1 + 2p2 > p1 p2, or, equivalently, as

(p1 − 2)(p2 − 2) < 4

Taking p1 ≥ p2 we find as solutions (p1, p2) = (p, 2) (for any p ≥ 2)), (p1, p2) =
(3, 3), (p1, p2) = (4, 3) and (p1, p2) = (5, 3).

Summarizing, we have the following possibilities for finite rotation groups on
the sphere:

p1 p2 p3 n signature

p p − p [g(p,p)]
p 2 2 2p [g(p,2,2)]
3 3 2 12 [g(3,3,2)]
4 3 2 24 [g(4,3,2)]
5 3 2 60 [g(5,3,2)]

Each of the possibilities enumerated above can be realized as the symmetry
group of an chiral spherical pattern (see page 2), which proves that there are
exactly five types of chiral symmetry patterns on the sphere: two paramet-
ric patterns, with signatures [g(p,p)] and [g(p,2,2)] for any p ≥ 2, and three
platonic patterns, with signatures [g(3,3,2)], [g(4,3,2)] and [g(5,3,2)]. The last
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three are called platonic since their symmetry groups are the rotation groups
of the platonic solids: the tetrahedron ([g(3,3,2)]), the cube and the octahedron
([g(4,3,2)]) and the dodecahedron and the icosahedron ([g(5,3,2)]).

1.6 Achiral patterns

We now suppose that the spherical pattern is achiral, in other words, that its
symmetry group G contains at least one opposite isometry (reflection or rota-
tory reflection). Let n > 1 be the order of G. Then the rotations in G form
a subgroup H of order n/2. Note that the plane of a reflection intersects the
sphere in a great circle. For isometries of the sphere, it is convenient to speak
of a reflection in this circle instead of a reflection in the plane of the circle. A
reflection circle is sometimes called a mirror circle or mirror, for short.

Again, we investigate the nontrivial rotations in G. There are n/2− 1 of them.
In G, there can be two different kinds of rotation centers: they may or may not
be on a mirror. In the first case, if the order of rotation of such a center Q is q,
there must be q mirrors through Q, equally spaced with angles π/q.

For any point T near to Q but not on one of these mirrors, the rotations and
reflections through Q transform T into a 2q-gon. The other isometries in G
transform this 2q-gon into congruent 2q-gons around rotation centers that are
equivalent to Q. In total, these 2q-gons have n vertices, so the set of q-poles
equivalent to Q (including Q itself) consists of n/(2q) elements. For each q-
pole, there are q− 1 nontrivial rotations, so in the set of q-poles equivalent to
Q we count (q− 1)n/(2q) nontrivial rotations.

As in the former section, for a p-pole P not on a mirror the set of p-poles equiv-
alent to P accounts for (p − 1)n/p nontrivial rotations. Adding in this way
all nontrivial rotations in all sets of q-poles on mirrors and p-poles not on mir-
rors, we count every rotation twice, since antipodal poles have the same set of
rotations. Thus we get the following equation:

2
(n

2
− 1

)
= n ∑

q− 1
2q

+ n ∑
p− 1

p

where the first summation is over all sets of equivalent poles on mirrors and
the second summation is over all sets of equivalent poles not on mirrors.

We write the last equation in the form

1− 2
n
= ∑

(
1
2
− 1

2q

)
+ ∑

(
1− 1

p

)
(2)

If n = 2, the left hand side is 0, so both sums on the right must be 0 and there
are no nontrivial rotations. The group G then consists of the identity and either
a single reflection or the single rotatory reflection with rotation angle π, which
is the central inversion in the center of the sphere: the isometry that transforms
each point in its antipodal point. In the first case, where G contains a single
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reflection, its signature is [s], while in the second case, where G contains the [s]
central inversion, its signature is [x].1 [x]

Now suppose that n > 2. Then

1
3
≤ 1− 2

n
< 1

For p > 1 we have 1− 1/p ≥ 1/2, so the second sum contains at most one
term.

Case 1: not all rotation centers are on mirrors

We first investigate the case that the second sum is not empty, in other words,
that there is at least one p-pole not on a mirror (p > 1). The symmetry group
then is called a mixed group.

As we have seen, the second summation in equation (2) contains only one term,
so all p-poles are equivalent and equation (2) can be written as

1
p
− 2

n
= ∑

(
1
2
− 1

2q

)
If n = 2p both sides are zero. Since we supposed that n > 2, there are two,
necessarily antipodal p-gonal poles, counting for p rotations in G (including the
identity). If there are no mirrors then G must also contain p rotatory reflections.
These rotatory reflections must interchange the two antipodal p-gonal poles.
This is the group with signature [g(p) x]. [g(p) x]

If n = 2p and there is a mirror, it must interchange the two poles. Then G
consists of p rotations (including the identity), one reflection and p− 1 rotatory
reflections. This is the group with signature [g(p) s]. [g(p) s]

Now suppose that n > 2p. Then there is at least one q-pole on a mirror circle
with q ≥ 2. Then 1/2− 1/(2q) ≥ 1/4 and since p ≥ 2 it follows that

∑
1
4
≤∑

(
1
2
− 1

2q

)
=

1
p
− 2

n
<

1
p
≤ 1

2

Therefore there can only be one set of equivalent q-poles and, moreover, p can
only be 2 or 3.

If p = 2 equation (2) yields

1
2
− 2

n
=

1
2
− 1

2q

so n = 4q. There are two antipodal q-poles lying on q equally spaced mirror
circles, bounding 2q ‘lunes’ (2-gons) with angles π/q. The centers of these
lunes are 2-poles. The signature is [g(2) s(q)]. [g(2) s(q)]

1Conway uses a star (∗) and a multiplication sign (×), but we thought that it is more convenient
to use the letters ”s” and ”x”, respectively.

8



If p = 3 then, since 1/2− 1/(2q) < 1/p = 1/3, only q = 2 is possible. Then
equation (2) yields

1− 2
n
=

1
4
+

2
3

so n = 24. It follows that there are n/p = 8 three-poles P not on mirrors, and
n/(2q) = 6 two-poles Q on mirrors. These mirrors intersect each other at right
angles in the six points Q. This implies that there must be exactly three mirror
circles, dividing the sphere into eight octants, which are spherical triangles
with three right angles at the points Q. The eight 3-poles P are the centers of
these triangles. This pattern has signature [g(3) s(2)]. [g(3) s(2)]

Note that the groups of order 2 with signatures [s] and [x] may be seen as
special cases of the groups with signatures [g(p) s] and [g(p) x] for p = 1, since
a 1-gonal rotation (rotation angle 2π/1 = 2π) is the same as the identity.

We summarize our results in the following table:

p q n signature

p − 2p [g(p) x]
p 1 2p [g(p) s]
2 q 4q [g(2) s(q)]
3 2 24 [g(3) s(2)]

Case 2: all rotation centers are on mirrors

Finally, we consider the case that all rotation centers are on mirrors. The group
G then is called a reflection group. Equation (2) then yields

1− 2
n
= ∑

(
1
2
− 1

2q

)
But if we put n′ = n/2 (note that n is even!) this can be written as

2− 2
n′

= ∑
(

1− 1
q

)
which is exactly the same as equation (1), the equation that describes all possi-
ble finite rotation groups. In this case, the equation describes the possibilities
for the normal subgroupH of all rotations in G.

All rotation centers are on mirrors and all intersections of mirrors are rotation
centers, with q equally spaced mirrors through each q-fold center. Once again
enumerating all possibilities for H of order n′ = n/2, we find that for n′ ≥ 2
there are 2 or 3 equivalence classes of q-centers.

For 2 equivalence classes q1 = q2 = n′ = n/2 must hold, so there are two
antipodal q-poles (q = n/2)) with q equally spaced mirror circles connecting
them, forming 2q lunes with angles π/q at the poles. The signature is [s(q,q)]. [s(q,q)]
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For 3 equivalence classes, the same reasoning as on page 6 leads to the con-
clusion that there are four more possible types of symmetry groups, and the
examples on page (2) ff. show that each possibility can be realized. The follow-
ing table yields all reflection groups.

q1 q2 q3 n signature

q q − 2q [s(q,q)]
q 2 2 4q [s(q,2,2)]
3 3 2 24 [s(3,3,2)]
4 3 2 48 [s(4,3,2)]
5 3 2 120 [s(5,3,2)]

This completes our enumeration of the finite groups of isometries on the sphere.
We have proved that there are exactly 14 types of finite symmetry groups on
the sphere. Their signatures are given in the following table, where p ≥ 1 and
q ≥ 1 are arbitrary parameters. Note that [g(1,1)] is the trivial group consisting
of the identity alone, that the signatures [g(1) s] and [s(1,1)] both can be sim-
plified to [s], that [g(1) x] can be simplified to [x] and that [s(1,2,2)] is the same
group as [s(2,2)].

Rotation groups Mixed groups Reflexion groups
(chiral patterns) (achiral patterns) (achiral patterns)

Parametric groups [g(p,p)] [g(p) s)] [s(q,q)]
[g(p) x)]

[g(p,2,2)] [g(2) s(q)] [s(q,2,2)]

Platonic groups [g(3,3,2)] [g(3) s(2)] [s(3,3,2)]
[g(4,3,2)] [s(4,3,2)]
[g(5,3,2)] [s(5,3,2)]

1.7 Explaining examples and signatures

For each type of pattern we have given an example in subsection 1.3. For the
parametric patterns we have taken p = 7 and q = 7, respectively. In each
pattern the mirror circles are marked in black, while the rotation centers are
marked with colored dots. Equivalent centers are colored the same.

In this way, Conway’s signature notation becomes almost self-evident. All
equivalence classes of gyration points are enumerated between brackets after
the symbol ”g”, while all equivalence classes of rotation centers on mirrors are
enumerated between brackets after the symbol ”s”. In other words, rotation
centers of each color are entered only once in the signature. Finally, the oc-
curence of a rotatory reflection that is not the composition of a rotation and a
reflection in the group, is marked by the symbol ”x”.
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The reader is invited to check all mirror circles, gyration points and rotation
centers on mirrors in the given examples, thus verifying the correctness of the
given signatures. Also check that, indeed, equivalent poles are colored the
same (but not all poles are visible in the drawings). Note that the coloring
of the patterns is important: a symmetry of a pattern must leave all colors
unchanged.

In fact, it is very easy to find the signature of any spherical pattern with a
finite symmetry group. First find out whether it is chiral or achiral, then mark
all mirror circles and all poles, giving equivalent poles the same color. The
signature then can be read off by inspection, the only subtle point being the
possibility that the pattern doesn’t possess mirror circles but nevertheless is
achiral. Then there must be at least one rotatory reflection, and the signature
must be [g(p) x] for some p ≥ 1.

Note that equations (1) and (2) are satisfied by all chiral and achiral spheri-
cal patterns, respectively. The order n of the corresponding finite symmetry
group follows from these equations. Also, recall that the number of equivalent
p-gonal gyration points equals n/p while the number of equivalent q-gonal
rotation centers on mirrors equals n/(2q).

Equations (1) and (2) enabled us to enumerate all 14 types of symmetric pat-
terns in a rather simple manner and to prove that there are no other types.
As a matter of fact, equations (1) and (2) are essentially the same as Conway’s
‘Magic Theorem’ for spherical patterns (Conway (2008). p. 53). However, our
derivation (for chiral patterns based on Coxeter (1969), pp. 274-275) is more
elementary, not making use of any advanced topological results.
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2 Planar rosette patterns and frieze patterns

2.1 Rosette patterns

Now we turn to patterns in the Euclidean plane. First we consider patterns
with a finite number of symmetries. For reasons that will become clear in a
moment, these are called rosette patterns.

A rosette pattern may have various kinds of symmetry, but there must be at
least one fixed point, a point that is unchanged under all elements of its group
G of symmetries. Indeed, since the orbit of any point P is a finite point set, its
centroid O is a fixed point of all symmetries in G.

If there are two distinct fixed points O1 and O2, the line ` through O1 and O2
must consist entirely of fixed points, since any symmetry is an isometry. If
there is also a fixed point O3 not on `, any point in the plane is a fixed point
under all elements of G, so the group only consists of the identity, and the
pattern has no symmetry at all. If only the points of a line ` are fixed points of
all symmetries, G has only two elements: the identity and the reflection in `. In
common language, the pattern has the reflection in ` as its only symmetry.

In all other cases, there is exacty one point O that is fixed under all elements
of G. The symmetries then can only be rotations with center O or reflections in
lines through O.

If the pattern is chiral, its only symmetries are rotations. The group G then is
cyclic. If its order is p, then the smallest positive rotation angle is 2π/p and all
orbits are regular p-gons with center O. We denote its signature by [g(p)].

If the pattern is achiral, there must be a finite number, say q, of mirror lines
through O, equally spaced with angles π/q between adjacent lines. The group
then is the so-called dihedral group of order 2q, consisting of q reflections and q
rotations (including the identity). We denote its signature by [s(q)].

[g(11)] [s(11)]
Above, two examples of rosette patterns with their signatures are given. Note
that any rosette pattern may be pasted on a big sphere, say at its north pole,
thus yielding a parametric spherical pattern with signature [g(p, p)] for the
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cyclic group or [s(q, q)] for the dihedral group. In this way any rosette pat-
tern may be identified with a spherical pattern, having the ‘same’ group of
symmetries, which in the spherical case are spherical rotations and reflections
in circles through the antipodal poles and in the planar case rotations around
its center and line reflections in lines through its center.

2.2 Frieze patterns

Frieze patterns are planar patterns in which a motif is repeated in a row, say, a
horizontal row. Although a frieze pattern in real life is always finite, we shall
imagine that it is continued infinitely in both directions, so that its symmetries
include horizontal translations. If T is the translation taking each motif to its
neighbour to the right, any other translation in the symmetry group of the
pattern can be written as Tn for some integer n. But there may also be other
symmetries in the pattern.

It is well-known that there are exactly seven types of symmetry groups for
frieze patterns, and in fact we already know them, since they can be seen as
limiting cases of the seven types of symmetry groups for parametric spherical
patterns. As Conway observed: take a finite segment of a frieze pattern con-
sisting of N copies of the motif, and wrap it around the equator of a sphere
of a suitably chosen radius. Then a parametric spherical pattern results with
one of the seven signatures [g(N,N)], [s(N,N)], [g(N) s], [g(N) x], [g(N,2,2)],
[g(2) s(N)] and [s(N,2,2)]. Conversely, any parametric spherical pattern can be
unwrapped into the plane, yielding an N-segment of a frieze pattern.

Below, parametric spherical patterns with N = 7 are drawn, restricting the
sphere to a disk around the equator.

[g(7,7)] [s(7,7)]

[g(7) s] [g(7) x]
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[g(7,2,2)] [g(2) s(7)] [s(7,2,2)]

Unwrapping the patterns into the plane leads to segments of length 7 of the
corresponding infinite frieze patterns. It is natural, letling N → ∞, to denote
the signatures of these frieze patterns by [g(∞,∞)], [s(∞,∞)], [g(∞) s], [g(∞) x],
[g(∞,2,2)], [g(2) s(∞)] and [s(∞,2,2)], respectively.

[g(∞,∞)]

[s(∞,∞)]

[g(∞) s]

[g(∞) x]

[g(∞,2,2)]

[g(2) s(∞)]

[s(∞,2,2)]

Since the symmetry group of any frieze pattern is infinite, equations (1) and (2)
on pages 5 and 7, by letting n→ ∞. yield

2 = ∑
(

1− 1
p

)
(3)

for chiral frieze patterns and

1 = ∑
(

1
2
− 1

2q

)
+ ∑

(
1− 1

p

)
(4)

for achiral frieze patterns, where the p-summations in (3) and (4) are over
equivalence classes of gyration points, while the q-summation in (4) is over
equivalence classes of rotation centers on mirror lines.
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Note that the ‘north pole’ and the ‘south pole’ have gone to infinity in the ver-
tical direction, and that the rotations around these poles now have become
horizontal translations. These translations may be seen as ‘rotations’ with ‘ro-
tation angle’ 2π/∞ = 0 and ‘center’ at plus or minus infinity in the vertical
direction.

For these centers ‘at infinity’ we must take p = ∞ or q = ∞, respectively, so
1/p = 1/(2q) = 0, contributing a term 1 or 1/2 in the above summations. In
this way, equations (3) and (4) are easily verified for all frieze patterns.

Rotatory reflections on the sphere become glide reflections of frieze patterns in
the plane, a glide reflection being the combination of a reflection in a mirror
line (its axis) and a translation in the direction of the axis. Note that applying a
glide reflection twice results in a translation along the axis.

See pattern [g(∞) x] above for an example with a horizontal glide axis that is
not a mirror line of the pattern. In our example, the glide axis is indicated by a
dashed line with alternating half arrows.

Pattern [g(∞) s] also possesses horizontal glide reflections, but these are com-
posed of a horizontal reflection and a translation already present in the group,
so the glide reflections are not mentioned in the signature. Conway’s signature
notation never contains redundant information. This is also the reason why
equivalent poles are only entered once between the brackets.

A horizontal glide reflection also results when combining a vertical reflection
and a 2-gonal rotation (a half-turn) with center not on the mirror line. Then
the axis of the glide reflection is the line through the 2-center perpendicular
to the mirror line. Conversely, combining a glide reflection with a half-turn
with center on the glide axis results in an ordinary reflexion with mirror axis
perpendicular to the glide axis.

Patterns [g(2) s(∞)] and [s(∞,2,2)] yield examples with vertical mirrors and 2-
gonal rotation centers on a horizontal line. Since the vertical reflections and the
2-gonal rotations are already present in the group, the glide reflections are not
mentioned in the signature.

This completes our treatment of frieze patterns.
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3 Wallpaper patterns

3.1 Introduction

While rosette patterns admit no translations, and frieze patterns admit transla-
tions in one direction only, in the so-called wallpaper patterns translations in
more than one direction are present. We shall suppose that the symmetry
group G of such a pattern is discrete, meaning that for any point P there is a
circle around P which contains no other points of the orbit of P. This implies
that there is a bounded motif that is repeated infinitely all over the plane by the
translations in G. Note that, although we didn’t mention it explicitly, we tacitly
assumed that also for spherical patterns, rosette patterns and frieze patterns
the symmetry groups are discrete. For spherical patterns and rosette patterns
this was guaranteed by demanding that the symmetry groups be finite, thus
excluding, e.g., cases in which the pattern only consists of one (unmarked) cir-
cle, which has infinitely many rotations around its center.

The discreteness of the symmetry group G of a wallpaper pattern implies that
there exists a translation T1 with minimum positive translation distance d1 and
a second translation T2, independent of T1, with a minimum positive transla-
tion distance d2 ≥ d1. By reversing if necessary the direction of T2, we may
suppose that the angle α between T1 and T2 is non-obtuse. Furthermore, if
α < π/3 would hold, the translation distance of T1 − T2 would be less than d2
by the rule of sines, contradicting the choice of T2. So π/3 ≤ α ≤ π/2.

It is easy to prove that any translation T in G can be written as T = Tn
1 Tm

2
for certain integers n and m, in other words, that the normal subgroup T of
all translations in G is generated by T1 and T2. For any point P, the orbit of P
under T is a lattice spanned by vectors representing T1 and T2.

But wallpaper patterns may also have symmetries other than translations. In
fact, it is well-known, and we shall prove it again in this article, that there are 17
distinct types of wallpaper patterns. Each type has its own Conway signature,
which in a very concise way describes the symmetry features of the pattern.
As was the case with spherical patterns, rosette patterns and frieze patterns,
the signature of wallpaper patterns is easily read off from the pattern as soon
as one has identified its chirality and, if present, its mirror lines, its rotation
centers and its glide reflexion axes that are not mirror lines.

3.2 Examples of the 17 types of wallpaper patterns

In this subsection for each of the 17 types of wallpaper patterns we shall present
a simple example together with its signature. In each instance, mirror lines
will be marked in black and rotation centers by colored dots, where equivalent
centers get the same color. Glide reflexion axes that are not mirror lines will be
marked with dashed lines.
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The reader will have no difficulty interpreting and verifying the given signa-
tures. Following Conway, we use the signature [O] for the pattern in which
translations are the only symmetries. All other patterns have signatures which
should look familiar by now.

In pattern [s s] there are two types of non-equivalent mirror lines, both vertical.
In pattern [s x] vertical mirror lines and glide reflexion axes alternate at equal
distances. All mirror lines are equivalent, as are all glide reflexion axes. The
pattern [x x] has two types of non-equivalent glide reflexion axes, both vertical
and both with the same vertical translation distance.

Special mention deserves pattern [g(2,2) x], in which two non-equivalent types
of two-fold gyration points occur, colored blue and green, and two types of
glide reflexion axes that are no mirror lines. Note that a horizontal glide reflex-
ion, combined with a half turn around a center not on its axis, yields a glide
reflection with a vertical axis. This is why in the signature [g(2,2) x] only one
symbol ”x” occurs.

In the next subsections we shall give more details on the various patterns and
we also shall prove that there are no more than 17 types.

Seventeen wallpaper patterns with their signatures:

[O] [s s] [s x]

[x x] [g(2,2) s] [g(2,2) x]
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[g(2,2,2,2)] [g(2) s(2,2)] [s(2,2,2,2)]

[g(3,3,3)] [g(3) s(3)] [s(3,3,3)]

[g(4,4,2)] [g(4) s(2)] [s(4,4,2)]

[g(6,3,2)] [s(6,3,2)]
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3.3 Enumeration of wallpaper patterns

Isometries in the plane

It is well-known that every isometry in the Euclidean plane is either a transla-
tion, or a rotation, or a reflexion in a line, or a glide reflexion. Translations and
rotations are direct isometries, line reflexions and glide reflexions are opposite
isometries. Any group G of isometries either consists of direct isometries only,
or its direct isometries form a normal subgroupH of index 2 in G.

A pattern in the plane is called chiral if its group of symmetries consists of direct
isometries only, otherwise it is called achiral. Chirality of patterns can easily be
determined by using a mirror.

A rotation has a center and a rotation angle, which we shall always measure
anti-clockwise in radians modulo 2π. Sometimes it is convenient to consider
translations as rotations with zero angle and center at infinity in a direction
perpendicular to the translation direction.

In a discrete group G the rotations with a common center form a cyclic sub-
group of finite order p, generated by a rotation with angle 2π/p. Its center is
called a p-center. Likewise, the translations in G in a given direction form an
infinite cyclic group generated by a translation T with distance d > 0.

If R1 and R2 are reflections in mirror lines m1 and m2, respectively, then R2R1
(R1 followed by R2) is a translation with distance 2d if m1 and m2 are parallel
with distance d and a rotation with center A and rotation angle 2α if m1 and m2
intersect at A with intersection angle α.

If R1 and R2 are rotations with centers A1 and A2 and rotation angles 2α1 and
2α2, respectively, then R2R1 is a rotation with angle 2α1 + 2α2, or a translation
if 2α1 + 2α2 = 0 mod 2π. If it is a rotation, its center A3 can be found by
constructing the clockwise oriented triangle A1 A2 A3 with angles α1 at A1 and
α2 at A2.

If both R1 and R2 are half-turns, so that both rotation angles are equal to π,
then R2R1 is a translation with distance 2d(A1, A2) in the direction from A1 to
A2.

Chiral patterns

Let be given a wallpaper pattern with a discrete symmetry group G. First we
consider the case that the pattern is chiral, so all isometries in G are transla-
tions or rotations. We have already seen that the normal subgroup T of all
translations in G is generated by two independent translations T1 and T2 with
minimum translation distances d1 ≤ d2 and angle π/3 ≤ α ≤ π/2. For any
point P the orbit of P under the translation group is a lattice. If there are no
rotations, G coincides with its translation group and its signature is [O]. [O]

Now suppose that all rotations in G are half-turns, in other words, that there

19



are only 2-centers. Let A be a 2-center and let ABCD be the parallelogram with
B = T1 A, C = T2T1 A and D = T2 A. Then the other vertices of the parallelo-
gram, the midpoints of its sides and the center of the parallelogram must also
be 2-centers, nine centers in total. But centers that differ by a translation in T
are equivalent, so there are only four non-equivalent 2-centers in the parallelo-
gram, which can be taken at A and at the midpoints of AB, AC and AD.

A B

CD

We claim that all half-turns in G are equivalent to one of these four. In fact,
for any other half-turn there is an equivalent one with center E inside or on the
boundary of ABCD. But if E is not one of the nine 2-centers mentioned above, a
combination with the half-turn with center A would result in a translation not
generated by T1 and T2, which is impossible. Therefore there are exactly four
non-equivalent 2-centers, and the signature of this group thus is [g(2,2,2,2)] [g(2,2,2,2)]

If not all rotation centers are 2-centers, we may take two centers A and B of
order p and q both greater than 2 and with minimum distance d. Let C be such
that triangle ABC has angles π/p and π/q at A and B, respectively. Then C is
the center of a rotation in G with angle 2π/p + 2π/q = 2π − 2π/r for some
positive r, so

1
p
+

1
q
+

1
r
= 1 (5)

If p = q = 3 then also r = 3 must hold, so A, B and C are 3-centers. Then
all 3-centers form a lattice of equilateral triangles. By the choice of A and B
at minimum distance, no other centers of order greater than 2 occur inside a
circle with radius d and center A covering six triangles of this lattice or, for that
matter, anywhere in the plane.

A B

C

But then also 2-centers are impossible, since they would imply the existence of
rotations with angle 2π/2− 2π/3 = 2π/6, contradicting the former observa-
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tion. Combining rotations with angles ±2π/3 around A and ∓2π/3 around
B yields two translation T1 and T2. These two translations generate T . It fol-
lows that A, B and C are non-equivalent 3-centers, so the group we just have [g(3,3,3)]
described must have signature [g(3,3,3)].

If, in the same notations as above, p and q are not both equal to 3 but still
greater than 2, then C is closer to A than B, so C must be a 2-center. It follows
that r = 2 and

1
p
+

1
q
=

1
2

(6)

which can be written as (p− 2)(q− 2) = 4. Its only solutions with p ≥ q ≥
3 are (p, q) = (4, 4) and (p, q) = (6, 3). This implies in particular that in a crystallographic

restrictionwallpaper pattern only 2-centers, 3-centers, 4-centers and 6-centers can occur.
This is the famous crystallographic restriction.

If p = q = 4, then A and B must be adjacent 4-centers, and, again, C is a
2-center. Triangle ABC then is an isosceles right-angled triangle, which can
be seen as part of a square with A as one vertex, B as its center and C as the
midpoint of a side adjacent to A. Combining rotations around A and B with
angles ±2π/4 and ∓2π/4 yields translations along the sides of the square.
These translations generate T . It follows that A and B are non-equivalent 4-
centers, so the signature of this group is [g(4,4,2)]. [g(4,4,2)]

A

B

C

In a similar way, p = 6, q = 3 leads to a pattern of 6-centers, 3-centers and 2-
centers forming a lattice of equilateral triangles, with 6-centers at their vertices,
3-centers at their centers and 2-centers at the midpoints of their sides. The
signature of this pattern then is [g(6,3,2)]. [g(6,3,2)]

Note that equation (5) can be written as

2 =

(
1− 1

p

)
+

(
1− 1

q

)
+

(
1− 1

r

)
(7)

which has the same form as equation (3) on page 14. Also pattern [g(2,2,2,2)]
satisfies this equation (with four 2-centers of ‘weight’ 1

2 = 1− 1
2 ). Even patterns

with signature [O] satisfy this equation if we consider the two independent
translations T1 and T2 as ‘rotations’ with rotation angle 0 and ‘order’ p = q =
∞. Each then contributes a ‘weight’ of 1− 1/∞ = 1 to the right-hand side.
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Achiral patterns without rotations

Now we turn to achiral patterns. Then the group G must contain at least one
line reflection or glide reflection. The direct isometries in G form a normal
subgroupH of index 2. The translations form a subgroup T ofH which is also
normal in G.

First, suppose that there are no rotations in G, soH = T . Then mirror lines and
glide reflexion axes can occur in only one direction, since intersecting mirrors
or glide reflection axes yield nontrivial rotations.

If there is a mirror line m, then there are infinitely many equally spaced mirror
lines parallel to m. Let m′ be a mirror line at minimum distance from m. If
m and m′ are not equivalent, there are just two types of mirror lines, either
equivalent to m or to m′. The signature of the group then is [s s]. [s s]

If m and m′ are equivalent, they must be related by a glide reflection with the
midparallel n of m and m′ as its axis. Then mirror lines and glide axes alternate
at equal distances, and the group has signature [s x]. [s x]

Finally, if there are no mirror lines, all glide axes must be parallel and equidis-
tant. If n and n′ are adjacent glide axes, they cannot be equivalent, so the sig- [x x]
nature is [x x].

Achiral patterns in which all rotation centers are on mirrors

If in an achiral pattern rotations occur, there may be rotation centers on mirror
lines and rotation centers not on mirror lines (the so-called gyration points). We
first consider the case that all rotation points are on mirror lines. The normal
subgroupH of index 2 consisting of all direct isometries in G then is one of the
four types with signatures [g(2,2,2,2)], [g(3,3,3)], [g(4,4,2)] and [g(6,3,2)], and
the examples in subsection 3.2 show that in the last three cases it is possible [s(3,3,3)]

[s(4,4,2)]
[s(6,3,2)]

to connect all rotation points by mirror lines such that through every q-center
exactly q mirror lines pass with angles π/q. In this way we obtain the reflexion
groups with signatures [s(3,3,3)], [s(4,4,2)], [s(6,3,2)].

For patterns with signature [g(2,2,2,2)] this is only possible if the generators T1
and T2 of the translation group are orthogonal. Then the mirror lines form a
rectangular lattice with a 2-center at each lattice point. The signature of this [s(2,2,2,2)]
reflexion group is [s(2,2,2,2)].

Achiral patterns with gyration points and no mirror lines

Next we consider the case of achiral patterns with gyration points, i.e., rota-
tions centers not on a mirror line. Again, the normal subgroup H of all direct
isometries in G has signature [g(2,2,2,2)], [g(3,3,3)], [g(4,4,2)] or [g(6,3,2)].

First we suppose that the achiral pattern has no mirror lines. Then all rotation
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centers are gyration points, and there must be a glide reflexion G in G. Like all
isometries in G, the glide reflexion G must map p-centers on p-centers. But if it
maps a p-center A on a p-center A′ that is equivalent to A in H, then there is a
direct isometry D mapping A′ back to A. Therefore the opposite isometry DG
has a fixed point A, so it must be a reflexion in a line through A, contradicting
the assumption that the pattern has no mirror lines.

But if G cannot map gyration points on equivalent gyration points (equivalent
in H), the cases that the signature of H is [g(4,4,2)] or [g(6,3,2)] are excluded
since, e.g., 2-centers must be mapped on (necessarily equivalent) 2-centers.
Also [g(3,3,3)] is impossible, for suppose that a 3-center A is mapped to a non-
equivalent 3-center B, then, since G2 is a translation, B = GA must be mapped
to a 3-center A′ = G2 A equivalent to A. But then any 3-center C not equivalent
to A or B is mapped to a 3-center C′ equivalent to C, contradiction.

However, if the signature ofH is [g(2,2,2,2)] it may happen that there are glide
axes but no mirror lines, provided the translation group has orthogonal gener-
ators. If A, B, C and D are 2-centers forming a rectangle ABCD of minimum
side lengths, then there is a glide reflexion G with GA = C and GB = D. In fact,
there are two such glide reflexions with perpendicular axes parallel to the sides
of the rectangle, both passing through its center. There are two non-equivalent [g(2,2) x]
types of 2-centers and the pattern has signature [g(2,2) x].

Achiral patterns with gyration points and mirror lines

Finally we consider achiral patterns with gyration points and mirror lines. It
may happen that all mirror lines are parallel. We take them vertical. Gyration
points then can only be of order 2 and they must be situated halfway between
two adjacent mirror lines. Let A be such a gyration point. Since there must be
vertical translations, there is a vertical translation T with minimum translation
distance 2d. Then a point B above A at distance d is also a gyration point. All
other gyration points are equivalent to either A or B and the signature of this [g(2,2) s]
pattern is [g(2,2) s].

If there are mirror lines in more than one direction, the setM of all mirror lines
is a symmetric subset of the set of all mirror lines in a pattern with signature
[s(2,2,2,2)], [s(3,3,3)], [s(4,4,2)] or [s(6,3,2)]. Thus,M divides the plane into con-
gruent rectangles, squares, isosceles rectangular triangles, equilateral triangles
or rectangular triangles with angles π/3 and π/6. Only divisions into rectan-
gles, equilateral triangles and squares admit gyration points, of order 2, 3 and
4, respectively. This results in three more patterns with gyration points and [g(2) s(2,2)]

[g(3) s(3)]

[g(4) s(2)]

mirror lines. Their signatures are [g(2) s(2,2)], [g(3) s(3)] and [g(4) s(2)]. See
section 3.2 for examples.

This completes our enumeration of all types of wallpaper patterns.

The following table summarizes our results on wallpaper patterns. The sym-
metry groups of chiral patterns are called rotation groups (bearing in mind that
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translations can be viewed of as rotations with angle 0 and center at infinity).
Groups generated by (glide) reflections are called reflexion groups and groups
of achiral patterns with gyration points mixed groups.

Rotation groups Mixed groups Reflexion groups
(chiral patterns) (achiral patterns) (achiral patterns)

[O] [g(2) s] [g(2) x] [s s] [s x] [x x]
[g(2,2,2,2)] [g(2) s(2,2)] [s(2,2,2,2)]
[g(3,3,3)] [g(3) s(3)] [s(3,3,3)]
[g(4,4,2)] [g(4) s(2)] [s(4,4,2)]
[g(6,3,2)] [s(6,3,2)]

3.4 Conway’s ‘magic theorems’

One of the most intriguing points in the treatment of symmetry patterns in
Conway (2008) is his use of ‘magic theorems’ to facilitate the enumeration of
symmetric patterns. These theorems are used early in the book, but the proofs
are postponed many times, which is caused by the fact that they make use of
rather advanced topological tools like the concept of ‘orbifold’ and the classifi-
cation of surfaces in three-space. In our treatment of symmetric spherical and
planar patterns, however, these ‘magic theorems’ appear as by-products that
are obtained in an elementary way, as we shall show presently. It must, how-
ever, be stressed that Conway’s proof of his ‘magic theorems’ provides deeper
insight and applications in many other symmetry problems, as is amply illus-
trated in parts II and III of his book (Conway (2008)).

First, for any symmetric feature appearing in the signature of a pattern, Con-
way defines its ‘cost’ in the following way. Instead of ‘cost’, we rather prefer to
speak of ‘weight’.

• For an equivalence class of p-fold gyration points, its weight is 1− 1
p .

• For an equivalence class of q-fold rotation centers on mirrors, its weight
is 1

2 −
1
2q .

• For a symbol ”s” (with or without brackets), its weight is 1.

• For a symbol ”x”, its weight is 1.

• For the symbol ”g”, its weight is 0.

• For the symbol ”O”, its weight is 2.

Note that for ∞-fold gyration points or ∞-fold rotation centers on mirrors (as
occur in frieze patterns) the weight is 1 or 1

2 , respectively.
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The magic theorem for spherical patterns: The total weight of the sig-
nature of a pattern with a symmetry group of order n equals 2− 2

n .

Proof: For chiral patterns, this is equation (1) on page 5. For achiral patterns
this is equation (2) on page 7, adding 1 to both sides to account for the symbol
”s” or the symbol ”x”.

The magic theorem for frieze patterns: The total weight of the signature
of a frieze pattern is 2.

Proof: For chiral patterns, this is equation (3) on page 14. For achiral patterns
this is equation (4) on page 14, adding 1 to both sides to account for the symbol
”s” or the symbol ”x”.

The magic theorem for wallpaper patterns: The total weight of the sig-
nature of a wallpaper pattern is 2.

Proof: For chiral patterns, see equation (7) on page 21 and the remarks follow-
ing it. For achiral patterns, the reader is invited to find the small modifications
that are needed to adapt the proof for chiral patterns. Anyhow, the validity of
the magic theorem in this case can also be verified directly.

A note on notations

As a final remark on our adapted signature notation, we note that Conway’s
signature notation is much more compact than ours, omitting all comma’s,
brackets and the letter ”g” for gyration points. For our letters ”s” and ”x”,
Conway uses the symbols ∗ and ×, respectively. His signatures are put in bold
face font. So, for instance, for our notations [g(2) s(2,2)] and [s x], Conway uses
2∗22 and ∗×. See also Conway (2008), p. 416, for a table of various other nota-
tions for wallpaper groups and finite spherical groups, among others the much
used notation of the International Tables for X-ray Crystallography.
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