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ABSTRACT. Fine and Gillman have shown that CH implies that if X is a dense
proper subspace of w* = fw — w, then BX # w*. Here it is shown to be
consistent with MA +¢ = w, thatforevery p € w* wehave g(w*—{p}) = w*
and also that w* has a dense subspace X with dense complement such that
BX = w*.

0. INTRODUCTION

All spaces are Tychonoff and X* denotes pX — X . Fine and Gillman [FG,
4.3] proved that CH implies that for each p € 0", B(w" - {p}) # @ . An easy
modification of their proof yields that for all p € ", if p has character ®, in
" then B(w" - {p}) # w*. This is a more general result since it is consistent
with - CH that some p € w" has character ®, in o’ [K,, remarks on p.
303] or [K,].

The purpose of this paper is, among other things, to show that the statement
“B(w” - {p}) = w" for every p € w"” is consistent with MA +c = w, . This
shows that in the Fine and Gillman result CH is essential, which answers a
question in [G], and that it cannot be weakened to MA.

Our proof depends on a result of Kunen concerning the nonexistence of
certain gaps in Z(w)/fin, see [B] for details, and on a result showing that
Hausdorff gaps in #(w)/fin cannot be “small” under MA (see §2).

1. CONVENTIONS AND DEFINITIONS

Cardinals are initial (von Neumann) ordinals, and get the discrete topology.
We use k* to denote Sk — K, the space of free ultrafilters on k. Also, C
denotes proper inclusion.
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Let X beaspace. Asusual, C*(X) denotes the set of all continuous bounded
real-valued functions on X . A subspace Y C X is said to be C*-embedded in
X provided that every f € C*(Y) extends to some fe C*(X).

Let X be a space and let k be a cardinal. A subset 4 C X isa P -setin X
provided that the intersection of fewer than x neighborhoods of A is again a
neighborhood of 4. If for some x € X, {x} isa P -set for ¥ = w, , then we
say that x isa P-pointof X.

Let a and b be subsets of w. We say that a is almost contained in b,
ac® b,if |a—b| < w. Two families 4 and B of subsets of w are orthogonal,
AL B, if forevery ac 4 and b € B we have |[anb| < w. Let 4 and B
be families of subsets of w such that 4 | B. We say that 4 and B can be
separated if there is a subset d of w such that

foreveryac A4, aC’ d, and foreverybeB, b<C* w-d.

If 4 is a family of subsets of w and x C w then 4 | x denotes the family
{anx:aeA4}. .

We assume that the reader is familiar with the standard partial order termi-
nology concerning proofs involving Martin’s Axiom (abbreviated MA), see e.g.
[K;]or[R].

2. GAPs IN #(w)/ fin

We are interested in statements of the following form, where k¥ and A are
infinite cardinals
G(x ,A): there are a k-sequence (Uf : ¢ < k) of clopen sets in w* and a
A-sequence (Vé : &< A) of clopen sets in w* such that
(1) U, c U, if¢é<n<k,
(2) v, c Ve if ¢<n<i,
(3) (U§<K Ug) n (U¢<,1 V.f) =0,
4) Usee U NWUss Vo)™ # 9.
This has a straightforward translation in terms of the existence of certain fam-
ilies of subsets in w, and in terms of the existence of certain sequences in the
Boolean algebra Z(w)/ fin, which we leave to the reader.
Two classical results of Hausdorff, [Ha], are that G(w,w) is false but
G(w,,w,) is true. It is well known, and easy to prove, that the following
holds.

2.1. Proposition. MA implies -G(x , w) for each k < c.
Kunen has extended 2.1 by proving

2.2. Theorem. MA implies that if k and A are regular cardinals and w <k ,
A<c, then G(k,A) holds if k =A=w,.

He has also shown that MA +- CH gives no information about G(w, ,¢) and
G(c,c), by proving the next result.
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2.3. Theorem. (A) It is consistent with MA (and, necessarily, —CH) that
G(w, ,c) and G(c,c) both are false.
(B) It is consistent with MA+-CH that G(w, ,¢c) and G(c,c) both are true.

For the proofs of Theorems 2.2 and 2.3, see Baumgartner [B]. Let us also
remark that PFA implies (A) (and ¢ = w, ) but both (A) and (B) are consistent
with ¢ being any uncountable regular cardinal.

We finish this section by discussing a definition that will be useful later. Let
SG(k ,A) (S =strong) be the strengthening of G(x,A) one obtains by replacing
(4) of this section by

(45) |(U¢<x U.f)_ n (U5<;, V.f)_| =1.
2.4. Theorem. MA + -CH implies that SG(w, , w,) is false.

Before proving this, we translate it into combinatorics. If 4 = {aé: ¢ <k}
is a family of subsets of w, we call 4 a k-tower iff a; c* a, whenever & < 7.
A Hausdorff gap is a pair (4, B) of w,-towers such that 4 L B and 4 and B
cannot be separated. To prove the theorem we must show that whenever (4, B)
is a gap, we can find an x C w such that (4 | x,B | x) and (4 | (w\x),
B | (w\x)) are both Hausdorff gaps.

We remark that our definition of tower did not imply that the a . are strictly
increasing modulo finite sets, or even that they are infinite; however, if (4, B)
is a gap, these things must hold for some cofinal subsequence of 4 and B. Our
definition was chosen to reduce the amount of information we must “force” to
hold for x.

We now need three lemmas. The first gives a sufficient condition for (4, B)
to be a gap.

2.5. Lemma. If A and B are w,-towers, A L B, ‘v‘é(af N b{ = ), and
Ve né<n— a; N bn # @), then (A, B) is a Hausdorff gap.

We will “force” an x such that (4 | x,B | x) and (4 | (w\x),B | (w\x))
both satisfy this condition on some cofinal set. The next lemma will be used to
show that our partial order has the ccc.

2.6. Lemma. If (A, B) is a Hausdorff gap, then for each n there isa v C w
with |v|>n and |{£:v C a:} = {n:vc bn}l =w,.

Proof. By induction on n. It is easy for n = 1. If it holds for n, we prove
it for 2n as follows. By the lemma for n, fix v C w with |v| > n such that
X={x:vCa}and Y= {nvcC b,} both have size w,. Now apply the
lemma for n again to the Hausdorff gap ({a,\v: £ € X}, {b\vineY}).

As in many MA arguments, rather than meeting dense sets, we will apply the
following lemma to our partial order.

2.7. Lemma. MA + -CH implies that if P is ccc and p P Jor < w, then
there is a filter G C P such that |{¢: P EGH=0,.
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Proof. 1t is well known that , 1s a pre-caliber for P (which requires only that
G is centered), and 2.7 is proved in exactly the same way.

Proof of Theorem 2.4. Let (4, B) be a Hausdorff gap. We may assume V¢& (aé N
= () (if not, replace b by b :\a;) . By 2.5, it is enough to find a cofinal
Y Cw, andan x €Ew such that

Vé,neY(é<n—»afnbnnx#g&(%nbn)\x766).

Elements of P will be pairs, p = (s, ¥,) such that 5, € 2<“ (an approxi-
mation to x ), y, € [@,]°” (an approximation to Y ), and

Y. ney,<n—anb,ns, {0}) #D&a,nb, N5, {0} #2).

Let p, = (2,{¢}). Assuming P has ccc we may apply 2.7 to get afilter GC P

such that Y = {&: p; € G} has size @, and let x = U{s (1): p € G}.
If P is not ccc, let {p :a < w .} be an antichain. By the usual A-system
and thinning arguments, we may assume p, = (s.y,), where s € 2" and
a< f— max(y,) < min(y,). Let ¢, = (ﬂiey a;)\n and dg = (ﬂ¢’€°yp b)\n.
Then ({c,: a < w,}, {d B < w,}) is also a gap.

By 2.6, fix va w1th |v]| > 2 and fix @ < § suchthat v C ¢, and vCd,.
Note that vNn = . Fix i,j € v with i # j. Then p, and Py have a
common extension, (¢,y_ U yﬂ) where ¢ extends s, #(i) =0, and t( Jj)=1.

Call U C " a strict F _-set iff U is of the form Uegcr U, , with each U,
clopen and ¢ < — U C U Theorem 2.4 implies 1mmed1ate1y that under
MA+-CH, if U and V are dlS_]Olnt strict F, -sets with K=U" NV~ #3Q,
then K has no isolated points. A similar proof shows thatin K, nonempty G;-
sets have nonempty interiors. We do not know if K is homeomorphic to w";
note that Parovitenko’s characterization of " is false under ~CH [vDvM].

3. @" — {p} cAN BE C*-EMBEDDED IN "

In this section we shall show that it is consistent with MA +¢ = ®, that for
every p € " we have B(w" - {p}) =

3.1. Lemma. Suppose that ~G(x , w) for every k with w < k < c. If there is
a closed P-set A in " such that w* — A is not C*-embedded in ", then
G(c,¢).

Proof. Since by Tietze’s Theorem closed subsets of w”* are C*-embedded in
w" it follows that ®* — 4 is not C*-embedded in its closure in w*. We can
therefore find disjoint zero-sets Z(0) and Z(1) of w" — 4 such that Z(0)~
Z(1)" #J [GJ, 6.4(3)]. Pick a point p € Z(0)" N Z(1)” . We shall construct
a c-sequence (U T & <) of clopen subsets of w* such that

(1) U, cZ(0) for {<c,
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(2) U, c U, for (<n<e,

(3) P€ Use  Us) ™
Once this has been done, the same construction yields a c-sequence (Véz E<o)
of clopen sets in Z(1) having similar properties. The U, ¢ ’s and the V,’s then
establish G(c,¢).

We shall now construct the sequence (UE: ¢ < ¢). Enumerate all clopen
neighborhoods of p as (Pc: ¢ < ¢). We shall ensure (3) by having PNU; #9
forall £<c. Let y <c¢, and assume Ué to be constructed for & < y, with the
obvious inductive hypotheses being satisfied. We claim that

(4) there is a clopen U’ in " with U, U, C U’ C Z(0),
(5) there is a nonempty clopen U” in w* with U"” C (Z(0)n P)-U'.

Then U, will be U'uU". The fact that U' N U" = @ ensures that U, cU,
for (< y.

We prove (4). Since A4 is a P -set and ch U, € Z(0) € " — A there is a
clopen K in w* with ch U, CKC w* — A. Clearly KN Z(0) is a closed
Gs-set in K, hence in @*. If K Z(0) is clopen let U' = K n Z(0), else
" — (KN Z(0)) is the union of a strictly increasing sequence of clopen sets of
", hence there is a clopen U’ in " with U, , U, C U’ C KN Z(0) since
-G(cf(y) , w) by assumption.

We prove (5). Since (w* —U')n P, is a neighborhood of p and p € Z(0)” we

can find a point x € (0" - U’)N P,NZ(0). Since A is closed there is a clopen
neighborhood C of x that misses 4. Then T = (0" - U')N P,NnCNZ0)

is a nonempty G; in w", hence has nonempty interior [GJ, 6S.8]. So for U”
just pick any nonempty clopen (in w") set that is contained in 7T .

3.2. Lemma. Let p € X. If there is a regularly open set U in X such that
peU —U, such that bdU = U™ — U has no isolated points and such that
both U and X — U~ are C*-embedded in X, then X — {x} is C"-embedded
in X.

Proof. Consider any continuous bounded function f: X — {x} — R. Since U
is C*-embedded in U, f | (U™ — {p}) extends to a continuous function
f,: U —R. Since X — U™ is C*-embedded in (X —U~)~, and since U is
regularly open, so that (X-U" )" =X-U, f | (X-U")—{p}) extendsto a
continuous function f,: (X — U) — R. By construction, f; [ (bdU—-{p})=f |
(bdU — {p}) for i€ {0,1}. Hence f, | bdU =f, | bdU since bd U has no
isolated points. Therefore f = f, Uf, is a function X — R. By construction f
extends f . Also, f is continuous since both f| U™ =f, and fI (X - U) =f,
are continuous.

3.3. Lemma. Let U bean open F_ in w" suchthat " —U~ is C"-embedded
in @ . If pebdU then w* - {p} is C*-embedded in w" .
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Proof. U is C-embedded since every open F, of »" is C*-embedded [GJ,
14.27], and U is regularly open since every open F_ of " is regularly open
[FG, 3.1]. Also, since U is C*-embedded in U~ ,bd U = U*, but U is o-
compact, hence realcompact [GJ, 8.2], and therefore U™ has no isolated points
[GJ, 9D.1]. Hence the lemma follows from Lemma 3.2.

3.4. Corollary. Suppose that —~G(k ,w) for every k with w <x<c. If pew*
is not a P-point and if w* - {p} is not C*-embedded in w*, then G(c,c).
Proof. Since p is not a P-point, there is an open F, UCc w* such that
p€ U —U. By Lemma 3.2 we conclude that w* — U~ is not C*-embedded
in @". Since we can write U as the union of a strictly increasing w-sequence
of clopen sets in w”, our assumption ~G(x ,w) for every k¥ with w < k < ¢
easily implies that U™ is a P.-set (prove that G(k,w) is equivalent to the
following “unordered” version: UG(x ,w): There are collections % and 7
of clopen sets in w* with |%| < @ and |7| <k such that U#Z nU? =2
but (U%) Nn(UZ")” # QD). The desired result follows now from Lemma 3.1.

We are now in the position to prove the following

3.5. Theorem. Ifthereis a point p € 0" such that w*—{p} is not C*-embedded
in " then at least one of the following statements is true:

(1) Thereisa k with w < k < ¢ such that G(k , ).

(2) G(c,0).

(3) There are regular cardinals x , A with w, < x ,A < ¢ such that SG(x ,A).
Proof. Suppose that (1) is not true. If p is not a P-point then by Corollary
3.4, G(c,c). So we may assume that p is a P-point. We shall establish (3).

Claim. If Z is a noncompact zero-set of w" — {p} then there are a regular
cardinal w, < k < ¢ and a x-sequence (Ué: ¢ < k) of clopen subsets of w*
such that

(@) U, Z for { <k,
(b) UécU” if{<n<k,
(©) P € Uper Up)™ -

The proof of this claim is similar to the proof of 4.1. For the reader’s con-
venience we shall give most of the details. Enumerate all clopen neighborhoods
of p as <Pf: ¢ < ¢). By transfinite induction we shall construct for every & < ¢
a clopen set U, in " such that

(d) U, cz for £ <,
(e) if p ¢ (Un<f U,’)_ then U, c U, forevery n<¢, and UNP #O,
() if pe (U, U,) then U,=@.
Let £ < ¢, and assume U, tobe constructed forevery n<¢. If p e (U,’« Un)
then (f) tells us that U, =@. So suppose that p ¢ (Un < Un)_ . We claim that

v,cucz,

(g) thereis aclopen U’ in w* with Upee
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(h) there is a nonempty clopen U” in w* with U C (ZnP,)-U".
4

Then U, willbe U'UU". The fact that U'nU" = @ ensures that U, C U,
for n< €.

We prove (g). Since p ¢ (Un < U,,)' there is a clopen K in " with
Ur;<6 U, cKc " - {p}. Clearly, KN Z is a closed Gj-set in K, hence in
" . Since by assumption we have ~G(w , k) for every k with w < k < ¢, we
can find U’ precisely such as in the proof of 4.1.

We prove (h). Since (w* - U')n P, is a neighborhood of p and pe Z™,
T=(w"-U") NP,NZ contains a nonempty G; in ", hence it has nonempty
interior [GJ, 6S.8]. So for U” just pick any nonempty clopen (in w") set that
is contained in T .

Now if U, # @ for every £ < c, let k = c. Observe that (e) implies that

pE (U5<x Uf)' . If there is a & < ¢ with Ué =, let a be the first £ having
this property and let k = cf(a). Observe that (f) implies that in this case also
P € (Ug, U) . That U, C U, for all n and. ¢ with 7 < £ < k follows
trivially from (e). That cf(x) > w, is clear since p is a P-point.

Since " —{p} isnot C*-embedded in w", there are disjoint zero-sets Z(0)
and Z(1) of " — {p} with Z(0)" N Z(1)” # @ [GJ, 6.4(3)]. Clearly {p} =
Z(0) nZ(1) . A straightforward application of the claim therefore proves
SG(x ,A) for certain regular uncountable cardinals k¥ and A with o, < «,
A<c.

3.6. Corollary. If MA + ¢ = w, + ~G(w, , <) + ~G(c, ) then f(w* - {p}) = ©"
for every p e w*.

Proof. We shall prove that under MA +c = w, + ~G(w, ,¢) + ~G(c, ¢) the state-
ments (1), (2) and (3) of Theorem 3.5 are false.

That (1) is false is clear by 2.1. That (2) is false is also clear. For (3), first
observe that k¥ = A = ¢ is not possible since SG(c,c) implies G(c¢,c). Since
both ¥ and A have uncountable cofinality there are two possibilities, namely
(@) k = w; and A = w, (or vice versa), and (b) k = A = w,. However,
(a) is impossible because of ~G(w, ,c), and (b) is also impossible because of
Theorem 2.4.

We can now present our main result.

3.7. Theorem. It is consistent with MA + ¢ = w, that B(w” - {p}) = @* for
every pew”.

Proof. Theorem 2.3(A) and Corollary 3.6.

4. A DENSE C*-EMBEDDED SUBSET OF ° HAVING DENSE COMPLEMENT

It is well known that " is not extremally disconnected [GJ, 6R.1], and
therefore not every dense subspace of w* is C*-embedded [GJ, 6M.2]. In
view of Theorem 3.7 it now is natural to ask whether there can be a small dense
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C*-embedded subspace of w*. In this section we shall answer this question
affirmative if we interpret “small” to mean “with dense complement”. We do
not know whether " can have a dense C*-embedded subspace of cardinality
less than 2°, or of cardinality ¢. We also do not know whether " can have
two disjoint dense C*-embedded subspaces.

4.1. Theorem. Let bY be a compactification of a space Y such that

(A) every countable subset of bY — Y is closed in bY - Y,
(B) B(bY —{y})—bY for yebY - Y.

Then BY = bY .

Proof. Let f:Y — R be a bounded continuous function. By a classical result
of Lavrentieff, cf. [E, 4.3.20], there is a Gs-subset G of bY with G2 Y such
that f can be extended to a continuous f: G — R. By (A) every countable
subset of bY — Y is relatively discrete. Hence bY — Y has no infinite compact
subsets. It follows that bY — G, being a g-compact subset of bY — Y, is at
most countable. Now since bY — G is relatively discrete, by applying (B), it is
easy to extend f to a function f': Y — R which is continuous at all points of
bY — Y . The details of checking this are left to the reader. It follows that f’ is
a continuous extension of f, which is as required.

So in view of 3.7 we need only to construct a dense set X C " such that
(1) @* — X is also dense, and (2) every countable subset of w* — X is closed
in w® — X . This is easy. We can for example let X be the set of all non-weak
P-points in w”. Then X is dense, and so is w" — X, [K,].
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