Actions on the Hilbert cube

Jan van Mill

To Cor Baayen, at the occasion of his retirement

Abstract: We provide a negative answer to Problem 933 in the "Open Problems in Topology Book".

Key words & phrases: Lie group, action, conjugate

AMS Subject Classification: 57N50

1. INTRODUCTION

Let Q denote the Hilbert cube $\prod_{i=1}^{\infty} [-1, 1]_i$. In the "Open Problems in Topology Book", WEST [2] asks the following (Problem #933):

Let the compact Lie group G act semifreely on Q in two ways such that their fixed point sets are identical. If the orbit spaces are ANR's, are the actions conjugate?

The aim of this note is to present a counterexample to this problem. For all undefined notions we refer to [1].

2. The Example

Let G be a group and let $\pi: G \times X \to X$ be an action from G on X. Define $\text{Fix}(G) = \{x \in X : (\forall g \in G)(\pi(g, x) = x)\}$. It is clear that Fix(G) is a closed subset of X: it is called the *fixed-point set* of G. The action π is called *semifree* if it is free off Fix(G), i.e., if $x \in X \setminus \text{Fix}(G)$ and $\pi(g, x) = x$ for some $g \in G$ then g is the identity element of G. The space of orbits of the action π will be denoted by X/G. Let \mathbb{I} denote the interval [0, 1].

Let G denote the compact Lie group $\mathbb{T} \times \mathbb{Z}_2$, where \mathbb{T} denotes the circle group. We identify \mathbb{Z}_2 and the subgroup $\{-1, 1\}$ of \mathbb{T} . In addition, D denotes $\{z \in \mathbb{C} : |z| \leq 1\}$. We let G act on $D \times D$ in the obvious way:

$$((g,\varepsilon),(x,y))\mapsto (g\cdot x,\varepsilon\cdot y) \qquad (g\in\mathbb{T},\varepsilon\in\{-1,1\},x,y\in D),$$

where "." means complex multiplication. Observe that this action is semifree, and that its fixed-point set contains the point (0,0) only. Also, observe that $(D \times D)/G \approx \mathbb{I} \times D$.

Lemma 2.1. Let H denote either G or \mathbb{T} . There is a semifree action of H on $Q \times \mathbb{I}$ having $Q \times \{0\}$ as its fixed-point set. Moreover, $(Q \times \mathbb{I})/G$ and Q are homeomorphic.

PROOF. We will only prove the lemma for G since the proof for \mathbb{T} is entirely similar. We first let G act on $X = D \times D \times Q$ as follows:

$$((g,\varepsilon),(x,y,z)) \mapsto (g \cdot x, \varepsilon \cdot y, z) \qquad (g \in \mathbb{T}, \varepsilon \in \{-1,1\}, x, y \in D, z \in Q).$$

This action is semifree and its fixed-point set is equal to $\{(0,0)\} \times Q$. Also observe that $X/G \approx \mathbb{I} \times D \times Q$.

We now let G act coordinatewise on the infinite product X^{∞} . This action is again semifree, having the diagonal \triangle of $\{(0,0)\} \times Q$ in X^{∞} as its fixed-point set. Also, X^{∞}/G is homeomorphic to $(I \times D \times Q)^{\infty} \approx Q$. Since \triangle projects onto a proper subset of X in every coordinate direction of X^{∞} , it is a Z-set. Since $X^{\infty} \approx Q$ there consequently is a homeomorphism of pairs $(X^{\infty}, \triangle) \to (Q \times \mathbb{I}, Q \times \{0\})$. We are done.

We will now describe two actions of G on $Q \times [-1, 1]$. By Lemma 2.1 there is a semifree action $\alpha_r \colon \mathbb{T} \times Q \times \mathbb{I} \to Q \times \mathbb{I}$ having $Q \times \{0\}$ as its fixed point set, while moreover $Q \times \mathbb{I}/G \approx Q$. We let \mathbb{T} act on $Q \times [-1, 0]$ as follows:

$$(z,(q,t)) \mapsto (\bar{q},s)$$
 iff $\alpha_r(z,(q,-t)) = (\bar{q},-s).$

We will denote this action by α_l . So $\alpha = \alpha_l \cup \alpha_r$ is an action of \mathbb{T} onto $Q \times [-1, 1]$, having $Q \times \{0\}$ as its fixed-point set. Now define $\bar{\alpha} : G \times (Q \times [-1, 1]) \to Q \times [-1, 1]$ as follows:

$$\bar{\alpha}((z,\varepsilon),(q,t)) = \begin{cases} \alpha(z,(q,t)), & (\varepsilon=1), \\ \alpha(z,(q,-t)), & (\varepsilon=-1). \end{cases}$$

Then $\bar{\alpha}$ is a semifree action of G onto $Q \times [-1, 1]$ having $Q \times \{0\}$ as its fixed-point set, while moreover $(Q \times [-1, 1])/\bar{\alpha} \approx Q$. Observe the following triviality.

Lemma 2.2. If $A \subseteq Q \times [-1, 1]$ is $\bar{\alpha}$ -invariant such that A is not contained in $Q \times \{0\}$, then A intersects $Q \times (0, 1]$ as well as $Q \times [-1, 0)$.

We will now describe the second action on $Q \times [-1, 1]$. By Lemma 2.1 there is a semifree action $\beta_r \colon G \times Q \times \mathbb{I} \to Q \times \mathbb{I}$ having $Q \times \{0\}$ as its fixed point set, while moreover $Q \times \mathbb{I}/G \approx Q$. Construct β_l from β_r in the same way we constructed α_l from α_r . Then $\beta = \beta_l \cup \beta_r$ is a semifree action from G onto $Q \times [-1, 1]$ having $Q \times \{0\}$ as its fixed-point set. Moreover, $(Q \times \mathbb{I})/\beta$ is the union of two Hilbert cubes, meeting in a third Hilbert cube, hence is an **AR**. (It can be shown that $(Q \times \mathbb{I})/\beta \approx Q$.)

Now assume that the two axions $\bar{\alpha}$ and β are conjugate. Let $\tau: Q \times [-1, 1] \to Q \times [-1, 1]$ be a homeomorphism such that for every $g \in G$, $\beta(g) = \tau^{-1} \circ \bar{\alpha}(g) \circ \tau$. Then $\tau(Q \times (0, 1])$ is a connected $\bar{\alpha}$ -invariant subset of $Q \times [-1, 1]$ which misses $Q \times \{0\}$. This contradicts Lemma 2.2.

References

- J. van Mill. Infinite-Dimensional Topology: prerequisites and introduction. North-Holland Publishing Company, Amsterdam, 1989.
- [2] J. E. West. Open Problems in Infinite Dimensional Topology. In J. van Mill and G. M. Reed, editors, Open Problems in Topology, pages 523–597, North-Holland Publishing Company, Amsterdam, 1990.

Faculteit Wiskunde en Informatica Vrije Universiteit De Boelelaan 1081a 1081 HV Amsterdam The Netherlands (email: vanmillcs.vu.nl)