REPRINT

General Topology and its Relations
to Modern Analysis and Algebra IV

Proceedings of the Fourth
Prague Topological Symposium, 1976
RECENT RESULTS ON SUPEREXTENSIONS

J. VAN MILL
Amsterdam

1. INTRODUCTION

If \((X,d)\) is a compact metric space, then \(\mathcal{L}X\) denotes the space of all maximal linked systems of closed subsets of \(X\) (a system of closed subsets of \(X\) is called a linked system if every two of its members meet; a \textit{maximal linked system} or MLS is a linked system not properly contained in another linked system) topologized by the metric

\[
\tilde{d}(M,N) = \sup_{S \in M, T \in N} \min d_S(T)
\]

(VERBEKE [14]). A closed subbase for \(\mathcal{L}X\), which generates the same topology as \(\tilde{d}\), is the collection

\[
\{(m,\mathcal{L}X, m) \mid m \subseteq 2^X\}.
\]

By induction, it is easy to show that each linked system \(L \subseteq 2^X\) is contained in at least one maximal linked system \(L' \subseteq 2^X\). This implies that the closed subbase, described above, is both \textit{binary} (any of its linked subsystems has a nonvoid intersection) and \textit{normal} (two disjoint subbase elements are separated by disjoint complements of subbase sets).

The spaces \(\mathcal{L}X\) are called \textit{superextensions} (DE GROOT [9]); in this paper we announce some recent results on superextensions.

2. RECENT RESULTS ON SUPEREXTENSIONS

VERBEKE [14] has shown that \(\mathcal{L}X\) is a Peano continuum if and only if \(X\) is a metrizable continuum; he raised the question of whether \(\mathcal{L}X\) is an AR if and only if \(X\) is a metrizable continuum. Theorem 2.1 answers this question, cf. VAN MILL [10].
2.1. **THEOREM:** Let X be a metrizable continuum that possesses a closed subbase which is both binary and normal. Then X is an AR.

By a result of VERBEERK [14], the space X in theorem 2.1 is a Peano continuum, and consequently 2^X is an AR, by the theorem of WOJDSLANSKI [16] (even $2^X \cong Q$, the Hilbert cube, if X is nondegenerate, cf. CURTIS & SCHORI [7]). We prove that there is a retraction $r : 2^X \rightarrow X$, which shows that X is an AR too. Notice that the normality of the subbase is essential, since each compact metric space possesses a binary closed subbase (cf. STROK & SZYMANSKI [13]).

DE GROOT [9] conjectured that λI, the superextension of the closed unit interval $I = [-1,1]$ is homeomorphic to the Hilbert cube Q. This turned out to be the case, cf. VAN MILL [10].

2.2. **THEOREM:** λI is homeomorphic to the Hilbert cube.

We represent λI as an inverse limit $\lim (X_i, f_i)$ of an inverse sequence (X_i, f_i) of Hilbert cubes such that the bonding maps are cellular. Then, by results of CHAPMAN [5], [6] and BROWN [3] it follows that $\lambda I \cong Q$. The spaces $X_i (i \in N)$ are first shown to be compact Q-manifolds; theorem 2.1 implies that they are contractible. Therefore $X_i \cong Q(i \in N)$, since a compact contractible Q-manifold is a Hilbert cube (cf. CHAPMAN [4]).

If X is a compact metric space, then for each $A \subset X$ define

$$A^* := \{ M \in X \mid \exists M \in M : M \cap A \}.$$

It is easy to show that $(I^* \cap X \setminus 2^X)$ is an open subbase for the topology of λX. We have the following theorem, cf. VAN MILL [12].

2.3. **THEOREM:** Let X be a compact metric space for which λX is homeomorphic to the Hilbert cube Q. Then for all open $V_i \subset X (i \in \omega, n \in N)$ the closure (in λX) of $U_0 \cap \cdots \cap U_i$ either is void or is a Hilbert cube.

To prove theorem 2.3, we use a compactification result of WEST [15] and the recent result of EDWARDS [8], that every AR is a Hilbert cube factor;
that is a space whose product with the Hilbert cube is homeomorphic to the Hilbert cube.

If \(f: X \rightarrow Y \) (\(X \) and \(Y \) are compact metric) is continuous, then there is a natural extension \(\lambda(f) : \lambda X \rightarrow \lambda X \) of \(f \) (cf. VERBEKE [14]) defined by

\[
\lambda(f)(M) := [f(M)]_{\text{lex}} M
\]

(\(\lambda(f) \)) can considered to be an extension of \(f \) since there are natural embeddings \(i_X : X \rightarrow \lambda X \) and \(i_Y : Y \rightarrow \lambda Y \) such that the diagram

\[
\begin{array}{ccc}
\lambda X & \rightarrow & \lambda Y \\
\downarrow i_X & & \downarrow i_Y \\
X & \rightarrow & Y \\
\rightarrow & f & \rightarrow
\end{array}
\]

commutes. We have the following remarkable result:

2.4. THEOREM: Let \(X \) and \(Y \) be metricable continua and let \(f: X \rightarrow Y \) be a continuous surjection. Then \(\lambda(f) : \lambda X \rightarrow \lambda Y \) is cellular.

2.5. COROLLARY: Let \(X = \lim_{\rightarrow} (X_1, f_1) \) where each \(f_1 : X_1 \rightarrow X_1 \) is surjective and \(\lambda X_1 \approx Q('ic N) \). Then \(\lambda X \approx Q \).

Corollary 2.5 implies that the superextension of a space such as

\[Y = \{(0, y) \mid -1 < y < 1\} \cup \{(x, \sin \frac{1}{x}) \mid 0 < x \leq 1\} \]

is homeomorphic to the Hilbert cube.

If \(Y \) is a closed subset of \(X \) then there is a natural embedding

\[j_{XX} : \lambda Y \rightarrow \lambda X \text{ defined by} \]

\[
j_{XX}(M) := \{A \in 2^X \mid A \cap Y = M\}
\]

(cf. VERBEKE [14]). We will always identify \(\lambda Y \) and \(j_{XX}(\lambda Y) \).

A closed subset \(M \) of a metric space \((X, d)\) is called a \(\kappa \)-set (cf. ANDERSON [1]) provided that for each \(\epsilon > 0 \) there is a continuous \(f_{\epsilon} : X \rightarrow \chi \setminus M \) such that \(d(f_{\epsilon}, \text{Id}) < \epsilon \).
2.6. **Theorem**: Let X be a metrizable continuum and let $A \subset X$. Then

(i) A° is a Z-set in \mathcal{X} if and only if A has an \mathcal{X}-null interior in X;
(ii) $\emptyset \neq A \neq X$ then λA is a Z-set in \mathcal{X}.

This theorem can be used to construct capsets of λI. A subset $A \subset Q$ is called a capset (cf. Anderson [2]) if there is an autohomeomorphism $\phi : Q \to Q$ such that $\phi(A) = B(Q) = \{ x \in Q | \exists i \in N: |x_i| = 1 \}$. An $M \in \lambda X$ is said to be defined on $A \subset X$ if $M \cap A = M$ for all $M \in \lambda$ (Verbeek [14]). Define

$$W := \{ M \in \lambda I | M \text{ is defined on some } M \in 2^I \setminus \{ i \} \}.$$

2.7. **Theorem**: W is a capset of λI.

The proof is in two steps. First we prove, using theorem 2.2 and theorem 2.6, that

$$V := \{ M \in \lambda I | M \text{ is defined on some closed set } M \subset (-1,1) \}$$

is a capset of λI. By theorem 2.6, W is a countable union of Z-sets of λI. This implies that W is a capset of λI, since the union of a capset and a countable union of Z-sets is again a capset (cf. Anderson [2]).

The space $V \subset \lambda I$ defined above was conjectured by Verbeek [14] to be homeomorphic to L_2, the separable Hilbert space. This is not true however, since $V \not= B(Q)$ (cf. Van Mill [11]).

References

Department of Mathematics
Free University
De Boelelaan 1081
Amsterdam.