A NOTE ON WALLMAN COMPACTIFICATIONS

J. van MILL

ABSTRACT

It is shown that a compact tree-like space of weight less than or equal to 2^\aleph_0 is regular Wallman. The same is true for the Čech-Stone compactification of a peripherally compact tree-like space which possesses at most 2^\aleph_0 closed subsets.

1. INTRODUCTION

Every Tychonoff space X admits Hausdorff compactifications, obtainable as the ultra-filter space of some normal base on X. These compactifications are called Wallman compactifications. Until now the question, raised in [2] and [3], whether all Hausdorff compactifications are Wallman compactifications remains unanswered, although many well known compactifications turned out to be Wallman compactifications ([1],[4],[9],[10]).

In this note we will show that a compact tree-like space of weight less than or equal to 2^\aleph_0 and the Čech-Stone compactification of a peripherally compact tree-like space, which possesses at most 2^\aleph_0 closed subsets, are regular Wallman (in the sense of STEINER [10]; such a space is a Wallman compactification of each dense subspace).

2. REGULAR WALLMAN SPACES

Let X be a topological space and let S be a collection of subsets of X. We will write $v.S$ for the family of finite unions of ele-
ments of S and ΛS for the family of finite intersections of elements of S. The family $\Lambda \cdot \Lambda S = \Lambda \cdot S$ is closed both under finite intersections and finite unions; it is called the ring generated by S. We say that S is separating if for each closed subset $F \subset X$ and for each $x \in X \setminus F$ there exists $S_0, S_1 \in S$ such that $x \in S_0$, $F \subset S_1$ and $S_0 \cap S_1 = \emptyset$. A compact space is called regular Wallman if it possesses a separating ring of regular closed sets. It is known that each regular Wallman space is Wallman compactification of each dense subspace (Steiner [10]).

A connected space is called tree-like whenever every two points of X have a separation point. It is clear that all connected orderable spaces are tree-like, however, the class of tree-like spaces is much bigger. See, e.g., KOK [6]. Let X be a peripherally compact tree-like space. Let $a, b \in X$ ($a \neq b$) and define $S(a, b) = \{x \in X \mid x$ separates a and $b\} \cup \{a, b\}$. It is well known that $S(a, b)$ is an orderable connected subspace of X with two end points ([8],[6]) and, therefore, $S(a, b)$ is compact ([5]). In [8], V.V. Proizvolov proved that any two disjoint closed sets A and B of X are separated by a closed discrete set $C = \{x_i \mid i \in I\}$. The set C is not uniquely determined. In fact, each x_i is a point arbitrarily chosen from $S(a_i, b_i) \setminus \{a_i, b_i\}$ for certain $a_i, b_i \in X$ ($i \in I$). Hence it follows that for each x_i there are at least 2^{N_0} different choices.

This observation will be used in the proof of the following theorem.

Theorem 2.1. Let X be a peripherally compact tree-like space. Suppose X has at most 2^{N_0} closed subsets. Then $\mathcal{F}X$ is regular Wallman.

Proof. Let \mathcal{B} be the collection of closed subsets of X. Define

$$A = \{(B_0, B_1) \mid B_0, B_1 \in \mathcal{B} \text{ and } B_0 \cap B_1 = \emptyset\}.$$

Note that $\text{card}(A) \leq 2^{N_0}$. Assume that A is most economically well-ordered and denote the order by "\prec". Let (B_0, B_1) be the first element of A. Choose an open set U of X, with discrete boundary, such that
B_0 \subset U and \bar{U} \cap B_1 = \emptyset. Define U(B_0^*,B_1^*) = U. Let (B_0^*,B_1^*) \in A and suppose that all U(B_0^*,B_1^*) are constructed for all (B_0^*,B_1^*) < (B_0^*,B_1^*). Note that
\[
\text{card}\left(\{U(B_0^*,B_1^*) \mid (B_0^*,B_1^*) < (B_0^*,B_1^*)\}\right) < 2^{\aleph_0},
\]
since "<" is most economical. Define
\[
H = \forall \forall \forall \left\{U(B_0^*,B_1^*) \mid (B_0^*,B_1^*) < (B_0^*,B_1^*)\right\}.
\]

It is clear that \(H\) consists of open sets with discrete boundary. Let \(C = \{x_i \mid i \in I\}\) be a discrete set separating \(B_0^*\) and \(B_1^*\), and, for each \(i \in I\), let \(S(a_i,b_i)\) be selected in such a way that \(x_i \in S(a_i,b_i) \setminus \{a_i,b_i\}\) while, moreover, for any choice of \(y_i \in S(a_i,b_i)\) (\(i \in I\)) the set \(D = \{y_i \mid i \in I\}\) is again a closed discrete set separating \(B_0^*\) and \(B_1^*\) (cf. the remark preceding this theorem). Since \(S(a_i,b_i)\) is compact we have that
\[
\text{card}\left(\exists H \cap S(a_i,b_i)\right) < \aleph_0 \quad \text{for all } H \in H,
\]
and, consequently,
\[
\text{card}\left(\bigcup_{H \in H} [\exists H \cap S(a_i,b_i)]\right) < 2^{\aleph_0}.
\]
For each \(i \in I\) choose \(x'_i \in S(a_i,b_i) \setminus \{a_i,b_i\}\) such that
\[
x'_i \notin \bigcup_{H \in H} [\exists H \cap S(a_i,b_i)].
\]
It is clear that such a choice is possible. Define \(C' = \{x'_i \mid i \in I\}\) and let \(U\) be an open subset of \(X\) such that \(B_0^* \subset \bar{U} \subset (U \cup C')\) and \((U \cup C') \cap B_1^* = \emptyset\). Define
\[
U(B_0^*,B_1^*) = U.
\]
Finally define
WALLMAN COMPACTIFICATIONS

\[V = \bigwedge_{V} \left\{ U(B_0, B_1) \mid (B_0, B_1) \in A \right\}. \]

As the intersection of two regular closed sets, with disjoint boundaries, is again regular closed it immediately follows that
\(\{ \bar{V} \mid V \in V \} \) is a ring consisting of regular closed subsets of \(X \) while, moreover, it separates the closed subsets of \(X \). Since \(X \) is normal, \(\beta X \) is regular Wallman (MISRA [7], theorem 3.4).

This theorem only proves that \(\beta X \) is regular Wallman, even in case \(X \) is peripherally compact tree-like, for a rather small class of spaces. It includes, for instance, the fact that \(\beta \mathbb{R} \) is regular Wallman. It is clear that with the same technique it follows that

Corollary 2.2. A compact tree-like space of weight less than or equal to \(2^\alpha \) is regular Wallman.

This suggests the following question.

Question 2.3. Is any compact tree-like space regular Wallman?

(Received, February 2, 1976) Department of Mathematics, Free University, Amsterdam.