COMPOSITIO MATHEMATICA

J. VAN MILL A pseudo-interior of λI

Compositio Mathematica, tome 36, nº 1 (1978), p. 75-82. http://www.numdam.org/item?id=CM_1978_36_1_75_0

© Foundation Compositio Mathematica, 1978, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http:// http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ COMPOSITIO MATHEMATICA, Vol. 36, Fasc. 1, 1978, pag. 75–82 Noordhoff International Publishing Printed in the Netherlands

A PSEUDO-INTERIOR OF λI^*

J. van Mill

Abstract

We show that the subspace $\lambda_{\text{comp}}\mathbb{R}$ of $\lambda\mathbb{R}$ is homeomorphic to the pseudo-boundary $B(Q) = \{x \in Q \mid \exists i \in \mathbb{N} : |x_i| = 1\}$ of the Hilbert cube Q. This answers a question of A. Verbeek raised in [9].

1. Introduction

If X is a topological space, then the superextension λX of X denotes the space of all maximal linked systems consisting of closed subsets of X (a system is called *linked* if every two of its members meet; a maximal linked system or mls is a linked system not properly contained in another linked system) topologized by taking $\{\{\mathcal{M} \in \lambda X \mid G \in \mathcal{M}\} \mid G = G^- \subset X\}$ as a closed subbase (De Groot [4]). In case (X, d) is a compact metric space, then λX also is compact metric (Verbeek [9]) and the topology of λX also can be described by the metric

$$\bar{d}(\mathcal{M},\mathcal{N}) = \sup_{S \in \mathcal{M}} \min_{T \in \mathcal{N}} d_{\bar{H}}(S,T);$$

here $d_H(S, T)$ denotes the Hausdorff distance of S and T defined by inf $\{\epsilon > 0 \mid S \subset U_{\epsilon}(T)$ and $T \subset U_{\epsilon}(S)$, where as usual $U_{\epsilon}(T)$ denotes the ϵ -neighborhood of T (Verbeek [9]). Reflecting on this metric, one sees that there must be a connection between λX and the hyperspace of all nonvoid closed subsets 2^X of X. The hyperspace 2^X is homeomorphic to the Hilbert cube Q if and only if X is a nondegenerate Peano continuum (Curtis & Schori [3]) and it was con-

^{*} KEY WORDS & PHRASES: superextension, linked system, Hilbert cube, capset, pseudo-interior.

J. van Mill

jectured by Verbeek [9] that λX is homeomorphic to Q if and only if X is a nondegenerate metrizable continuum. Earlier, De Groot conjectured that λI is homeomorphic to the Hilbert cube, where I denotes the real number interval [-1, 1]. This was shown to be true in [7]. If X is a noncompact metrizable space then λX is not metrizable, although it contains some interesting dense metrizable subspaces such as $\lambda_{comp}X$ (Verbeek [9]). This subspace of λX consists of all maximal linked systems which have a compact defining set, where an *mls* \mathcal{M} is said to be defined on a set M if

for all $S \in \mathcal{M}$ there exists an $S' \in \mathcal{M}$ such that $S' \subset S \cap M$.

It is obvious that $\lambda_{comp} X$ equals λX in case X is compact, for then X is a compact defining set for all $\mathcal{M} \in \lambda X$. In case X is noncompact there are many maximal linked systems which do not have a compact defining set, for example in case $X = \mathbb{R}$, the real line, $|\lambda_{comp}\mathbb{R}| = c$ while $|\lambda \mathbb{R}| = 2^c$. Verbeek [9] showed that $\lambda_{comp} \mathbb{R}$ is a dense, metrizable, contractible, separable, locally connected, strongly infinite dimensional subspace of $\lambda \mathbb{R}$ which is in no point locally compact; he conjectured that $\lambda_{comp}\mathbb{R}$ is homeomorphic to l_2 , the separable Hilbert space. We will show that this is not true. In fact we will show that $\lambda_{comp}\mathbb{R}$ is homeomorphic to the pseudo-boundary B(O) = $\{x \in Q \mid \exists i \in \mathbb{N} : |x_i| = 1\}$ of the Hilbert cube Q. As $\lambda_{comp} \mathbb{R}$ is homeomorphic to $\lambda_{comp}(-1, 1)$, which can be identified with the subspace of λI consisting of all maximal linked systems with a compact defining set in (-1, 1) (Verbeek [9]), we can work in $\lambda I \simeq Q$. We will show that $\lambda_{comp}(-1, 1)$ is a capset of λI (for definitions see section 3) so that $\lambda I \setminus \lambda_{comp}(-1, 1)$ is a pseudo-interior for λI and hence is homeomorphic to l_2 (Anderson [2]).

This paper is organised as follows: in the second section we give a retraction property of superextensions, which is needed to prove that $\lambda_{\text{comp}}(-1, 1)$ is a capset of λI . The third section shows that $\lambda_{\text{comp}}(-1, 1)$ is a capset of λI using a lemma of Kroonenberg [6].

2. A retraction property of superextensions

All topological spaces under discussion are assumed to be normal T_1 ; linked system will always mean linked system consisting of closed subsets of the topological space under consideration. If G is a closed subset of the topological space X, then we define G^+ as $G^+ = \{\mathcal{M} \in \lambda X \mid G \in \mathcal{M}\}$; λX is topologized by taking $\{G^+ \mid G \text{ is closed in } X\}$ as a closed subbase. This subbase has the property that each

A pseudo-interior of λI

linked subsystem of it has a nonvoid intersection so that by Alexander's subbase lemma, λX always is compact. Moreover X can be embedded in it by means of the natural embedding $\underline{i}(x) = \{G \subset X \mid G$ is closed and $x \in G\}$. We will always identify X and $\underline{i}[X]$. Every linked system is contained in at least one maximal linked system by Zorn's lemma. A linked system \mathcal{M} is called a *pre-mls* if it is contained in precisely one mls; this mls is then denoted by \mathcal{M} and we say that \mathcal{M} is a pre-mls for \mathcal{M} . Obviously \mathcal{M} is a *pre-mls* iff for all closed sets S_0 and S_1 such that $\mathcal{M} \cup \{S_i\}$ is linked (i = 0, 1) we have $S_0 \cap S_1 \neq \emptyset$. If S is a closed subset of the compact metric space (X, d) then for each $\epsilon > 0$ we define

$$B_{\epsilon}(S) = \{ x \in X \mid d(x, S) \le \epsilon \}.$$

LEMMA 2.1: Let (X, d) be a compact metric space and let \mathcal{M} be a pre-mls for $\underline{\mathcal{M}} \in \lambda X$. Then for each $\mathcal{N} \in \lambda X$ we have that $\overline{d}(\underline{\mathcal{M}}, \mathcal{N}) = \inf\{a \ge 0 \mid \forall S \in \mathcal{M} : B_a(S) \in \mathcal{N}\}.$

PROOF: Verbeek [9] proved the following

$$\bar{d}(\underline{\mathcal{M}},\mathcal{N}) = \min\{a \ge 0 \mid \forall S \in \underline{\mathcal{M}} : B_a(S) \in \mathcal{N} \text{ and } \forall T \in \mathcal{N} : B_a(T) \in \underline{\mathcal{M}}\}$$
$$= \min\{a \ge 0 \mid \forall S \in \mathcal{M} : B_a(S) \in \mathcal{N}\}$$

and therefore $\inf\{a \ge 0 \mid \forall S \in \mathcal{M} : B_a(S) \in \mathcal{N}\} \le \overline{d}(\mathcal{M}, \mathcal{N})$. Let us assume that $\inf\{a \ge 0 \mid \forall S \in \mathcal{M} : B_a(S) \in \mathcal{N}\} < \overline{d}(\mathcal{M}, \mathcal{N})$. Then there exists an a_0 such that $0 \le a_0 < \overline{d}(\mathcal{M}, \mathcal{N})$ with the property that for all $S \in \mathcal{M}$ we have that $B_{a_0}(S) \in \mathcal{N}$ while there exists a $T \in \mathcal{N}$ such that $B_{a_0}(T) \notin \mathcal{M}$. As \mathcal{M} is a pre-mls for \mathcal{M} there is an $\mathcal{M} \in \mathcal{M}$ such that $B_{a_0}(T) \cap \mathcal{M} = \emptyset$. However $B_{a_0}(\mathcal{M}) \in \mathcal{N}$, so that $B_{a_0}(\mathcal{M}) \cap T \neq \emptyset$. Now, as X is compact, this is a contradiction. \Box

The distance between two maps f and $g: X \to Y$, where (Y, d) is compact metric, is defined by $d(f, g) = \sup_{x \in X} d(f(x), g(x))$. The identity mapping on X is denoted by id_X .

THEOREM 2.2: Let X be a toplogical space and let \mathcal{M} be a linked system in X. Then $\cap \{M^+ \mid M \in \mathcal{M}\}$ is a retract of λX . Moreover, if (X, d) is compact metric then the retraction map r can be chosen in such a way that $\overline{d}(r, id_{\lambda X}) \leq \sup_{M \in \mathcal{M}} d_H(X, M)$.

PROOF: Let \mathcal{M} be a linked system in X. Notice that $\cap \{M^+ \mid M \in \mathcal{M}\} \neq \emptyset$. Choose $\mathcal{N} \in \lambda X$ and define $P\mathcal{N} = \{N \in \mathcal{N} \mid \{N\} \cup \mathcal{M} \text{ is linked}\} \cup \mathcal{M}$.

(a) $P\mathcal{N}$ is a pre-mls.

J. van Mill

It is obvious that $P\mathcal{N}$ is linked; so assume to the contrary that it were not a pre-mls. Then there exist closed sets S_i such that $P\mathcal{N} \cup$ $\{S_i\}$ is linked (i = 0, 1) but $S_0 \cap S_1 = \emptyset$. The normality of X implies that there exist closed sets G_i (i = 0, 1) such that $S_0 \cap G_1 = \emptyset = G_0 \cap S_1$ and $G_0 \cup G_1 = X$. Now, as \mathcal{N} is a maximal linked system one of the sets G_i must belong to \mathcal{N} (if $G_i \notin \mathcal{N}$ (i = 0, 1) then there exist $M_i \in \mathcal{N}$ such that $M_i \cap G_i = \emptyset$ (i = 0, 1) so that $M_0 \cap M_1 = \emptyset$ contradicting the linkedness of \mathcal{N} so that we may assume that $G_0 \in \mathcal{N}$. Now, $S_0 \subset G_0$ implies that $\mathcal{M} \cup \{G_0\}$ is linked and consequently $G_0 \in P\mathcal{N}$. This is a contradiction since $G_0 \cap S_1 = \emptyset$.

(b) Define $r: \lambda X \to \lambda X$ by $r(\mathcal{N}) = P\mathcal{N}$. Then r is continuous.

Let G be a closed set of X and assume that $r^{-1}(G^+) \neq \emptyset$. We will show that $r^{-1}(G^+)$ is closed in λX . Choose $\mathcal{N} \notin r^{-1}(G^+)$. Then $r(\mathcal{N}) \notin G^+$ and consequently $r(\mathcal{N}) \cup \{G\}$ is not linked; therefore $P\mathcal{N} \cup \{G\}$ is not linked. Choose $N \in P\mathcal{N}$ so that $N \cap G = \emptyset$. Now, if $N \in \mathcal{M}$, then $r^{-1}(G^+)$ is void, which is a contradiction. Therefore $N \in \mathcal{N}$. Choose closed sets S_i (i = 0, 1) such that $S_0 \cap N = \emptyset = G \cap S_1$ and $S_0 \cup S_1 = X$. Then $\mathcal{N} \in \lambda X \setminus S_0^+ \subset S_1^+$, while moreover $(\lambda X \setminus S_0^+) \cap$ $r^{-1}(G^+) = \emptyset$. For assume to the contrary that there exists a $\xi \in$ $(\lambda X \setminus S_0^+) \cap r^{-1}(G^+)$. Then $S_1 \in \xi$ and $\mathcal{M} \cup \{N\}$ is linked implies that $\mathcal{M} \cup \{S_1\}$ is linked and consequently $S_1 \in P\xi \subset r(\xi)$. This is a contradiction, since $G \in r(\xi)$ and $S_1 \cap G = \emptyset$.

(c) $r(\lambda X) = \bigcap \{ M^+ \mid M \in \mathcal{M} \}$ and r is a retraction.

Choose $\mathcal{N} \in \lambda X$. Then $\mathcal{M} \subset P\mathcal{N} \subset r(\mathcal{N})$ so that $r(\mathcal{N}) \in \cap \{M^+ \mid M \in \mathcal{M}\}$. Moreover if $\mathcal{N} \in \cap \{M^+ \mid M \in \mathcal{M}\}$ then $P\mathcal{N} = \mathcal{N}$ and therefore $r(\mathcal{N}) = \mathcal{N}$.

(d) If (X, d) is compact metric, then $\overline{d}(r, id_{\lambda X}) \leq \sup_{M \in \mathcal{M}} d_H(X, M)$.

Let $a = \sup_{M \in \mathcal{M}} d_H(X, M)$ and choose $\mathcal{N} \in \lambda X$. Take $N \in \mathcal{PN}$ and consider $B_a(N)$. If $N \in \mathcal{N}$ then also $B_a(N) \in \mathcal{N}$; if $N \notin \mathcal{N}$ then $N \in \mathcal{M}$ and therefore $B_a(N) = X$ which also is an element of \mathcal{N} . It now follows that

$$\bar{d}(\mathcal{N}, r(\mathcal{N})) = \inf \{ a \ge 0 \mid \forall S \in P\mathcal{N} : B_a(S) \in \mathcal{N} \}$$
(lemma 2.2)

$$\leq \sup_{M\in\mathcal{M}} d_H(X,M).\square$$

If Y is a closed subset of X, then λY can be embedded in λX by the natural embedding j_{YX} defined by

$$j_{YX}(\mathcal{M}) := \{ G \subset X \mid G \text{ is closed and } G \cap Y \in \mathcal{M} \}$$

(Verbeek [9]). It should be noticed that $j_{YX}(\mathcal{M})$ is indeed a maximal linked system. We will always identify λY and $j_{YX}(\lambda Y)$.

78

LEMMA 2.3: Let Y be a closed subset of X. Then $\mathcal{M} \in \lambda X$ is an element of λY if and only if $\{M \cap Y \mid M \in \mathcal{M}\}$ is linked.

PROOF: If $\mathcal{M} \in \lambda Y$, then $\{M \cap Y \mid M \in \mathcal{M}\}$ is a maximal linked system in Y and if $\{M \cap Y \mid M \in \mathcal{M}\}$ is linked, then it is easy to see that it is also maximal linked (in Y) and that $j_{YX}(\{M \cap Y \mid M \in \mathcal{M}\}) = \mathcal{M}.\Box$

The importance of Theorem 2.2 now is demonstrated in the proof of the following theorem.

THEOREM 2.4: Let (X, d) be a compact connected metric space and let Y be a nonempty closed proper subset of X. Then for each $\epsilon > 0$ there exists a continuous map $f_{\epsilon} : \lambda X \to \lambda X \setminus \lambda Y$ such that $\overline{d}(f_{\epsilon}, id_{\lambda X}) < \epsilon$.

PROOF: Choose $\epsilon > 0$ and choose two disjoint finite sets G_0 and G_1 such that $d_H(G_i, X) < \epsilon$ (i = 0, 1). Let $p \in X \setminus Y$ and define $F_i = G_i \cup \{p\}$. Let f_{ϵ} be the retraction of λX onto $F_0^+ \cap F_1^+$ as defined in Theorem 2.2. Then $\overline{d}(f_{\epsilon}, id_{\lambda X}) \le \max\{d_H(F_0, X), d_H(F_1, X)\} < \epsilon$ and moreover $f_{\epsilon}(\lambda X) \cap \lambda Y = \emptyset$. For take $\mathcal{N} \in f_{\epsilon}(\lambda X)$; then $F_i \in \mathcal{N}$ (i = 0, 1) and $(F_0 \cap Y) \cap (F_1 \cap Y) = \emptyset$ and consequently, by Lemma 2.3, $\mathcal{N} \notin \lambda Y$.

3. A Pseudo-interior of λI

By the *Hilbert cube* Q we mean the countable infinite product of intervals $[-1, 1]^{\infty}$ with the product topology. The topology is generated by the metric

$$d(x, y) = \sum_{i=1}^{\infty} 2^{-i} |x_i - y_i|.$$

A closed subset A of Q is called a Z-set (Anderson [1]) if for each $\epsilon > 0$ there exists a continuous map $f: Q \to Q \setminus A$ such that $d(f, id_Q) < \epsilon$. In addition, a subset M of Q is called a *capset* for Q (Anderson [2]) if M can be written as $M = \bigcup_{i=1}^{\infty} M_i$, where each M_i is a Z-set in $Q, M_i \subset M_{i+1}$ ($i \in \mathbb{N}$) and such that the following absorption property holds: for each $\epsilon > 0$ and $i \in \mathbb{N}$ and every Z-set $K \subset Q$ there exists a j > i and an embedding $h: K \to M_j$ such that $h \mid K \cap M_i = id_{K \cap M_i}$ and $d(h, id_K) < \epsilon$. It is known that every capset of Q is equivalent to $B(Q) = \{x \in Q \mid \exists i \in \mathbb{N} : |x_i| = 1\}$, the pseudo-boundary of Q, under an autohomeomorphism of Q [2]). The complement of a capset is called a pseudo-interior of Q and is homeomorphic to l_2 , the separable Hilbert space ([2]). We will show that $\lambda_{comp}(-1, 1)$ is a capset of λI ,

using the fact that $\lambda I \simeq Q$ ([7]). It then follows that $\lambda I \setminus \lambda_{comp}(-1, 1)$ is a pseudo-interior for λI . In [6] an alternative characterization of capsets is given and we will make use of that characterization.

LEMMA 3.1 ([6]): Suppose M is a σ -compact subset of Q such that (i) For every $\epsilon > 0$, there exists a map $h: Q \to Q \setminus M$ such that $d(h, id_Q) < \epsilon$.

(ii) *M* contains a family of compact subsets $M_1 \subset M_2 \subset \cdots$ such that each M_i is a copy of *Q* and M_i is a *Z*-set in M_{i+1} ($i \in \mathbb{N}$), and such that for each $\epsilon > 0$ there exists an integer $i \in \mathbb{N}$ and a map $h: Q \to M_i$ with $d(h, id_Q) < \epsilon$.

Then M is a capset for Q.

First we will show that $\lambda_{comp}(-1, 1)$ is σ -compact.

LEMMA 3.2: $\lambda_{comp}(-1, 1) = \bigcup_{n=2}^{\infty} \lambda[-1 + 1/n, 1 - 1/n].$

PROOF: Choose $\mathcal{M} \in \lambda_{comp}(-1, 1)$ and let $M \subset (-1, 1)$ be a compact defining set for \mathcal{M} . Then choose $n_0 \ge 2$ such that $M \subset [-1+1/n_0, 1-1/n_0]$; from Lemma 2.3 it now follows that $\mathcal{M} \in \lambda[-1+1/n_0, 1-1/n_0]$.

Moreover, if $\mathcal{M} \in \lambda[-1+1/n, 1-1/n]$ then for all $M \in \mathcal{M}$ we have that also $M \cap [-1+1/n, 1-1/n]$ belongs to \mathcal{M} , showing that [-1+1/n, 1-1/n] is a defining set for \mathcal{M} . For assume to the contrary that for some $M \in \mathcal{M}$ it were true that $M \cap [-1+1/n, 1-1/n] \notin \mathcal{M}$; then there would exist an $M_0 \in \mathcal{M}$ such that $M_0 \cap [-1+1/n, 1-1/n] \cap M = \emptyset$, contradicting the linkedness of $\{M \cap [-1+1/n, 1-1/n] \mid M \in \mathcal{M}\}$ Lemma 2.3).

LEMMA 3.3: For each $\epsilon > 0$ there exists a map $f_{\epsilon} : \lambda I \rightarrow \lambda I \setminus \lambda_{\text{comp}}(-1, 1)$ such that $\overline{d}(f_{\epsilon}, id_{\lambda I}) < \epsilon$.

PROOF: Choose $\epsilon > 0$. For each $n \ge 2$, let $F_{n,0}$ and $F_{n,1}$ be finite subsets of I such that

(i) $d_H(I, F_{n,i}) < \frac{1}{2}\epsilon$ (i = 0, 1)

- (ii) $F_{n,0} \cap F_{n,1} \cap [-1+1/n, 1-1/n] = \emptyset$
- (iii) $\{-1, 1\} \subset F_{n,0} \cap F_{n,1},$

and let f_{ϵ} be the retraction map, given by Theorem 2.2, of λI onto $\bigcap_{n=2}^{\infty} (F_{n,0}^+ \cap F_{n,1}^+)$. Then $\bar{d}(f_{\epsilon}, id_{\lambda I}) \leq \sup\{d_H(I, F_{n,i}) \mid n \geq 2, i = 0, 1\} \leq \frac{1}{2}\epsilon < \epsilon$, while moreover the image of λI is disjoint from $\lambda_{\text{comp}}(-1, 1)$. For choose $\mathcal{N} \in f_{\epsilon}(\lambda I)$ and $n \ge 2$; then $F_{n,i} \in \mathcal{N}$ (i = 0, 1) and $F_{n,0} \cap F_{n,1} \cap [-1+1/n, 1-1/n] = \emptyset$. Therefore \mathcal{N} is not an element of $\lambda[-1+1/n, 1-1/n]$ by Lemma 2.3. Consequently $\mathcal{N} \not\in \lambda_{\text{comp}}(-1, 1)$ (Lemma 3.2).

THEOREM 3.4: $\lambda_{comp}(-1, 1)$ is a capset for λI .

PROOF: Choose $\epsilon > 0$ and let $n \ge 2$ such that $1/n < \epsilon$. Define a retraction $r: [-1, 1] \rightarrow [-1 + 1/n, 1 - 1/n]$ by

$$r(x) = \begin{cases} -1 + 1/n & \text{if } -1 \le x \le -1 + 1/n \\ x & \text{if } -1 + 1/n \le x \le 1 - 1/n \\ 1 - 1/n & \text{if } 1 - 1/n \le x \le 1 \end{cases}$$

This map can be extended to a map $\bar{r}: \lambda I \to \lambda [-1 + 1/n, 1 - 1/n]$ in the following manner

$$\overline{r}(\mathcal{M}) = \{G \subset [-1+1/n, 1-1/n] \mid G \text{ is closed and } r^{-1}(G) \in \mathcal{M}\}$$

(Verbeek [9]). Let $j: \lambda[-1+1/n, 1-1/n] \rightarrow \lambda I$ be the natural embedding defined by $j(\mathcal{M}) = \mathcal{M} = \{G \subset I \mid G \text{ is closed and } G \cap [-1+1/n, 1-1/n] \in \mathcal{M}\}$. The composition $g = j \circ \overline{r}: \lambda I \rightarrow \lambda I$ can be described by

$$g(\mathcal{M}) = \{G \subset I \mid G \text{ is closed and } r^{-1}(G \cap [-1+1/n, 1-1/n]) \in \mathcal{M}\}.$$

We will show that g moves the points less than ϵ . It is clear that $g(\lambda I) = \lambda [-1+1/n, 1-1/n]$. Choose $\mathcal{M} \in \lambda I$ and assume that $\overline{d}(\mathcal{M}, g(\mathcal{M})) > 1/n$. Then there exists an $M \in \mathcal{M}$ such that $B_{1/n}(M) \notin g(\mathcal{M})$ (Lemma 2.1). Consequently there exists a $G \in g(\mathcal{M})$ such that $r^{-1}(G \cap [-1+1/n, 1-1/n]) \in \mathcal{M}$ and $B_{1/n}(M) \cap G = \emptyset$. Now take a $p \in M \cap r^{-1}(G \cap [-1+1/n, 1-1/n])$. Then $d(r(p), p) \leq 1/n$ and hence $r(p) \in G \cap [-1+1/n, 1-1/n] \cap B_{1/n}(M) \subset G \cap B_{1/n}(M)$, which is a contradiction. It now follows that $\overline{d}(g, id_{\lambda I}) \leq 1/n < \epsilon$.

It is obvious that $\lambda[-1+1/n, 1-1/n] \subset \lambda[-1+1/n+1, 1-1/n+1]$ $(n \ge 2)$, so that by Theorem 2.4, Lemma 3.2, Lemma 3.3 and the fact that $\lambda[-1+1/n, 1-1/n] \approx \lambda I \approx Q$ the family { $\lambda[-1+1/n, 1-1/n] = \lambda I \approx Q$ the family { $\lambda[-1+1/n, 1-1/n] = \lambda I \approx Q$ } satisfies all conditions of Lemma 3.1. Therefore $\lambda_{comp}(-1, 1)$ is a capset for $\lambda I.\square$

COROLLARY 3.5: $\lambda_{\text{comp}}\mathbb{R}$ is homeomorphic to $B(Q) = \{x \in Q \mid \exists i \in \mathbb{N} : |x_i| = 1\}$. $\lambda I \setminus \lambda_{\text{comp}}(-1, 1)$ is homeomorphic to l_2 .

The space $\lambda \mathbb{R}$ now turns out to be a very strange space. It is a connected, locally connected (super)compact Hausdorff space of cardinality 2^c and weight c, which possesses a dense subset

J. van Mill

homeomorphic to B(Q). The closure of \mathbb{R} in $\lambda \mathbb{R}$ is $\beta \mathbb{R}$, its Čech-Stone compactification (Verbeek [9]).

REFERENCES

- [1] R.D. ANDERSON: On topological infinite deficiency. Mich. Math. J., 14 (1967) 365-383.
- [2] R.D. ANDERSON: On sigma-compact subsets of infinite dimensional spaces. *Trans. Amer. Math. Soc.* (to appear).
- [3] D.W. CURTIS and R.M. SCHORI 2^x and C(X) are homeomorphic to the Hilbert cube. Bull. Amer. Math. Soc., 80 (1974) 927–931.
- [4] J. DE GROOT, Superextensions and supercompactness. Proc. I. Intern. Symp. on extension theory of topological structures and its applications (VEB Deutscher Verlag Wiss., Berlin 1967), 89-90.
- [5] J. DE GROOT, G.A. JENSEN and A. VERBEEK, Superextensions, Report Mathematical Centre ZW 1968-017, Amsterdam, 1968.
- [6] N. KROONENBERG, Pseudo-interiors of hyperspaces (to appear).
- [7] J. VAN MILL, The superextension of the closed unit interval is homeomorphic to the Hilbert cube, rapport 48, Department of Mathematics, Free University, Amsterdam (1976) (to appear in Fund. Math.).
- [8] R. SCHORI and J.E. WEST, 2ⁱ is homeomorphic to the Hilbert cube, Bull. Amer. Math. Soc., 78 (1972) 402–406.
- [9] A. VERBEEK, Superextensions of topological spaces, Mathematical Centre tracts, 41, Mathematisch Centrum, Amsterdam (1972).

(Oblatum 3-VIII-1976)

Department of Mathematics Free University De Boelelaan 1081 Amsterdam – The Netherlands