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A PSEUDO-INTERIOR OF AI*

J. van Mill

Abstract

We show that the subspace A.ompR of AR is homeomorphic to the
pseudo-boundary B(Q)={x € Q ' 3i EN:|x)| = 1} of the Hilbert cube
Q. This answers a question of A. Verbeek raised in [9].

1. Introduction

If X is a topological space, then the superextension AX of X
denotes the space of all maximal linked systems consisting of closed
subsets of X (a system is called linked if every two of its members
meet; a maximal linked system or mls is a linked system not properly
contained in another linked system) topologized by taking {{# €
AX |G€./”}IG =G~ C X} as a closed subbase (De Groot [4]). In
case (X, d) is a compact metric space, then AX also is compact metric
(Verbeek [9]) and the topology of AX also can be described by the
metric

d, N) = sup min dp (S, T);

here dy (S, T) denotes the Hausdorff distance of S and T defined by
inf{e >0| SC UAT) and T C U(S)}, where as usual U.(T) denotes
the e-neighborhood of T (Verbeek [9]). Reflecting on this metric, one
sees that there must be a connection between AX and the hyperspace
of all nonvoid closed subsets 2¥ of X. The hyperspace 2% is
homeomorphic to the Hilbert cube Q if and only if X is a non-
degenerate Peano continuum (Curtis & Schori [3]) and it was con-
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jectured by Verbeek [9] that AX is homeomorphic to Q if and only if
X is a nondegenerate metrizable continuum. Earlier, De Groot con-
jectured that Al is homeomorphic to the Hilbert cube, where I
denotes the real number interval [— 1, 1]. This was shown to be true in
[7]. If X is a noncompact metrizable space then AX is not metrizable,
although it contains some interesting dense metrizable subspaces such
as AcompX (Verbeek [9]). This subspace of AX consists of all maximal
linked systems which have a compact defining set, where an mls  is
said to be defined on a set M if

for all S € M there exists an S’ € M such that S'C SN M.

It is obvious that A.mp,X equals AX in case X is compact, for then X
is a compact defining set for all # € AX. In case X is noncompact
there are many maximal linked systems which do not have a compact
defining set, for example in case X = R, the real line, [A.ompR| = ¢ while
[AR[ =2°. Verbeek [9] showed that A.mR is a dense, metrizable,
contractible, separable, locally connected, strongly infinite dimen-
sional subspace of AR which is in no point locally compact; he
conjectured that A.mpR is homeomorphic to I, the separable Hilbert
space. We will show that this is not true. In fact we will show that
AwompR 1S homeomorphic to the pseudo-boundary B(Q)=
{x€Q|FieN:|x|=1} of the Hilbert cube Q. As AcmpR is
homeomorphic to Acmp(—1, 1), which can be identified with the sub-
space of AI consisting of all maximal linked systems with a compact
defining set in (—1, 1) (Verbeek [9]), we can work in Al = Q. We will
show that Acomp(—1, 1) is a capset of Al (for definitions see section 3)
so that AI\A.mp(—1,1) is a pseudo-interior for Al and hence is
homeomorphic to [, (Anderson [2]).

This paper is organised as follows: in the second section we give a
retraction property of superextensions, which is needed to prove that
Aecomp(—1, 1) is a capset of AL The third section shows that Acomp(—1, 1)
is a capset of Al using a lemma of Kroonenberg [6].

2. A retraction property of superextensions

All topological spaces under discussion are assumed to be normal
Ty; linked system will always mean linked system consisting of closed
subsets of the topological space under consideration. If G is a closed
subset of the topological space X, then we define G* as G'=
{MeIX | G € M}; AX is topologized by taking {G* | G is closed in
X} as a closed subbase. This subbase has the property that each
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linked subsystem of it has a nonvoid intersection so that by Alex-
ander’s subbase lemma, AX always is compact. Moreover X can be
embedded in it by means of the natural embedding i(x) ={G C X I G
is closed and x € G}. We will always identify X and i{X]. Every
linked system is contained in at least one maximal linked system by
Zorn’s lemma. A linked system £ is called a pre-mls if it is contained
in precisely one mls; this mls is then denoted by # and we say that .4
is a pre-mls for M. Obviously 4 is a pre-mls iff for all closed sets S,
and S, such that M U{S;} is linked (i =0, 1) we have SoN S, #@. If S
is a closed subset of the compact metric space (X, d) then for each
€ >0 we define

Bd(S)={x € X | d(x,S)<¢€}.

LEMMA 2.1: Let (X, d) be a compact metric space and let M be a
pre-mls for ME AX. Then for each N € AX we have that dM, N) =
inf{la = 0| VS € M:B,(S)E N}

ProoF: Verbeek [9] proved the following

d(M, N)=min{a =0|VS EM:B,(S)EN and VT € N: B(T) € M}
=min{a = 0| VS € M: B,(S) E N}

and therefore inf{a=0|VS€E M:B.(S)EN}=d(M, N). Let us
assume that inf{a =0|VS E€.#:B,(S)EN}<d(M N). Then there
exists an ag such that 0=a,< J(ﬂ, N') with the property that for all
S € # we have that B,(S) €N while there exists a T € 4 such that
B.(T)Z M. As M is a pre-mls for # there is an M € M such that
B.,(T)N'M =§. However B,(M)€E N, so that B,(M)N T #@. Now,
as X is compact, this is a contradiction. (]

The distance between two maps f and g: X - Y, where (Y, d) is

compact metric, is defined by d(f, g) = sup,ex d(f(x), g(x)). The iden-
tity mapping on X is denoted by idy.

THEOREM 2.2: Let X be a toplogical space and let M be a linked
system in X. Then N{M* | M e M} is a retract of AX. Moreover, if
(X, d) is compact metric then the retraction map r can be chosen in
such a way that d(r, idyx) < sup yeq du(X, M).

PROOF: Let /# be a linked system in X. Notice that N"{M*|M €
M}#@. Choose N E€AX and define PN ={NEN|[{N}UM is
linked} U .

(a) PN is a pre-mls.
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It is obvious that PA is linked; so assume to the contrary that it
were not a pre-mls. Then there exist closed sets S; such that PN U
{S:} is linked (i = 0, 1) but SN S, = @. The normality of X implies that
there exist closed sets G; (i =0, 1) such that S;N G, =0= G,N S, and
GoU G, = X. Now, as & is a maximal linked system one of the sets G;
must belong to ¥(f G; € ¥ (i =0, 1) then there exist M; € A such that
M, NG =8 ((i=0,1) so that MyN M, =@ contradicting the linkedness
of X) so that we may assume that Gy € N. Now, S;C G, implies that
M U{G} is linked and consequently G, € PA. This is a contradiction
since GoN S, = 9.

(b) Define r:AX - AX by r(¥)= PA. Then r is continuous.

Let G be a closed set of X and assume that r '(G*) # 8. We will
show that r '(G*) is closed in AX. Choose N& r'(G*). Then
r(N) £ G* and consequently r(¥)U {G} is not linked; therefore PN U
{G} is not linked. Choose N € PN so that N NG =@. Now, if N € A,
then r"'(G%) is void, which is a contradiction. Therefore N € .
Choose closed sets S; (i =0,1) such that SSONN=6=G NS, and
SoUS,=X. Then N €EAX\S;CS{, while moreover (AX\S3)N
r''(G")=@. For assume to the contrary that there exists a £€E
(AX\S$)Nr '(G*). Then S, € ¢ and M U{N} is linked implies that
M U{S} is linked and consequently S, € P£C r(¢). This is a con-
tradiction, since G € r(¢) and S,N G = 0.

) rAaXx)y=nN{M* | M € 4} and r is a retraction.

Choose N €EAX. Then MCPNCrWN) so that r(N)eE
N{M"* | M € M}. Moreover if ¥ € N{M" | M € M} then PN = A and
therefore r(N) = N.

(d) If (X, d) is compact metric, then d(r, idyx) =< sup yex du (X, M).

Let a = supyey dy(X, M) and choose ¥ €AX. Take N € PX and
consider B,(N).If N € ¥ then also B,(N)E N';if N € ¥ then N € #
and therefore B,(N)= X which also is an element of &. It now
follows that

dWN, r(¥) =inf{a=0|VS E PN : B,(S)E N}
(lemma 2.2)

= sup dy(X, M).O
Mes
If Y is a closed subset of X, then AY can be embedded in AX by the
natural embedding jyx defined by
jyx(M):={G C X | G is closed and G N Y € M}

(Verbeek [9]). It should be noticed that jyx(#) is indeed a maximal
linked system. We will always identify AY and jyx(AY).
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LEMMA 2.3: Let Y be a closed subset of X. Then M € AX is an
element of AY if and only if (M N'Y | M € M} is linked.

ProoFf: If # €AY, then (M NY | M € M} is a maximal linked sys-
temin Y andif (M NY | M € M} is linked, then it is easy to see that
it is also maximal linked (in Y) and that jyx(M NY I MeMd}) =40

The importance of Theorem 2.2 now is demonstrated in the proof
of the following theorem.

THEOREM 2.4: Let (X, d) be a compact connected metric space and
let Y be a nonempty closed proper subset of X. Then for each € >0
there exists a continuous map f.:AX - AX\AY such that d(f., id,x) <e.

PRrRoOOF: Choose € >0 and choose two disjoint finite sets G, and G,
such that dy(G, X)<e (i=0,1). Let p€ X\Y and define F,=
G; U{p}. Let f. be the retraction of AX onto F; N F; as defined in
Theorem 2.2. Then d(f., idyx) < max{dy(Fo, X), dy(F,, X)}<e€ and
moreover f{(AX)NAY =@. For take ¥ € f.(AX); then FEN (i =
0,1) and (F,NY)NF;NY)=@ and consequently, by Lemma 2.3,
NEZAY R

3. A Pseudo-interior of AT

By the Hilbert cube Q we mean the countable infinite product of
intervals [—1,1]" with the product topology. The topology is
generated by the metric

d(x,y)= 2_:1 27 |xi = yil-

A closed subset A of Q is called a Z-set (Anderson [1]) if for each
€ >0 there exists a continuous map f:Q — Q\A such that d(f, idg) <
€. In addition, a subset M of Q is called a capset for Q (Anderson [2])
if M can be written as M = U,ilMi, where each M; is a Z-set in
Q, M; C M, (i EN) and such that the following absorption property
holds: for each € >0 and i EN and every Z-set K C Q there exists a
j>1i and an embedding h: K — M; such that h IK N M; = idknm, and
d(h,idg)<e. It is known that every capset of Q is equivalent to
B(Q)={xeQ I 3i EN:|x;| =1}, the pseudo-boundary of Q, under an
autohomeomorphism of Q [2]). The complement of a capset is called
a pseudo-interior of Q and is homeomorphic to [,, the separable
Hilbert space ([2]). We will show that A.my(—1,1) is a capset of Al
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using the fact that AT = Q ([7]). It then follows that AT\Any(—1, 1) is a
pseudo-interior for Al In [6] an alternative characterization of capsets
is given and we will make use of that characterization.

LEMMA 3.1 ([6]): Suppose M is a o-compact subset of Q such that

(i) For every € >0, there exists a map h:Q— Q\M such that
d(h,idg) <e.

(i) M contains a family of compact subsets M, C M,C - - - such
that each M; is a copy of Q and M; is a Z-set in M,,, (i EN), and such
that for each € >0 there exists an integer i EN and a map h:Q - M;
with d(h, idp) < e.

Then M is a capset for Q.

First we will show that Amy(—1,1) is o-compact.

LEMMA 3.2: Aomp(—1,1) = U::2 Al-1+1/n,1—1/n].

PrROOF: Choose M € Acomp(—1,1) and let M C (-1, 1) be a compact
defining set for . Then choose ny=2 such that MC
[=1+1/ng, 1 —1/ne]; from Lemma 2.3 it now follows that 4 €
Al=14+1/ny, 1—1/n].

Moreover, if #£ EX[—1+1/n, 1 —1/n] then for all M € # we have
that also M N[-1+1/n, 1 — 1/n] belongs to ., showing that [—1 + 1/n,
1—1/n] is a defining set for #. For assume to the contrary that for
some M € M it were true that M N[— 1+ 1/n, 1 —1/n] & M ; then there
would exist an My€E M such that MoN[—1+1/n, 1—-1/n1NM =4,
contradicting the linkedness of {M N[-1+1/n, 1—1/n] IM € M}
Lemma 2.3).1

LEMMA 3.3: For each €>0 there exists a map f:Al—
M\Acomp(—1, 1) such that d(f., idy;) < e.

ProoF: Choose € >0. For each n=2, let F,, and F,, be finite
subsets of I such that
(i) du(l, F,;))<3e (i=0,1)
(i) FooNF, N[-1+1/n,1—-1/n]1=0
(iii) {-1,)C F,oNF,,,

and let f. be the retraction map, given by Theorem 2.2, of AI onto
Mooa (FioN Fi). Then d(fe idy) <sup{du(, F,) | n=2, i=0,1}=
1€ < €, while moreover the image of Al is disjoint from Acomp(—1,1).
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For choose N € f.(AI) and n=2; then F,;€EN (i=0,1) and F,,N
F, N[-1+1/n, 1-1/n]1=0. Therefore N is not an element of
A[=1+1/n, 1—1/n] by Lemma 2.3. Consequently N & Acomp(—1, 1)
(Lemma 3.2).00

THEOREM 3.4: Acomp(—1, 1) is a capset for AL

ProoF: Choose € >0 and let n =2 such that 1/n <e. Define a
retraction r:[—1, 1]->[-1+1/n, 1—1/n] by

X if —1+1l/n=x=<1-1/n

—1+1/n f-1=x=-1+1/n
r(x) =
1-1/n fl-1l/n=x=<1

This map can be extended to a map 7:AI > A[—1+ 1/n, 1—1/n] in the
following manner

F(#) ={G C[-1+1/n,1=1/n]| G is closed and r '(G) € M}

(Verbeek [9]). Let j:A[—-1+1/n,1—1/n]— AI be the natural embed-
ding defined by j(#)=M={GCI|G is closed and G N[-1+ 1/n,
1—1/n) € M}. The composition g = jeF: Al - AI can be described by

gM)={G CI|G is closed and r (G N[-1+ 1/n,1—1/n]) € M}.

We will show that ¢ moves the points less than €. It is clear that
g(Al)=A[-1+1/n, 1—1/n]. Choose M E Al and assume that
d(M,g(M)>1/n. Then there exists an M E .M such that
B,,(M)#Z g(M) (Lemma 2.1). Consequently there exists a G € g(M)
such that r''(GN[-1+1/n, 1-1/n)) € M and B,;,(M)N G =@. Now
takeap EMNr ' (GN[-1+1/n, 1-1/n]). Then d(r(p), p)=1/n and
hence r(p)eGN[-1+1/n, 1-1/n]1N By,,(M)C G N By,,(M), which
is a contradiction. It now follows that d(g, id,;) < 1/n <e.

It is obvious that A[-1+1/n, 1—1/n]CA[-1+1/n+1, 1—-1/n+1]
(n = 2), so that by Theorem 2.4, Lemma 3.2, Lemma 3.3 and the fact
that A[—1+1/n, 1—-1/n]l=AI=Q the family {A[-1+1/n, 1-—
1/n]| n =2} satisfies all conditions of Lemma 3.1. Therefore
Acomp(—1, 1) is a capset for AL

COROLLARY 3.5 AcompR is homeomorphic to B(Q) =
{xeQ | JieN:|x| =1} AN\Aomp(—1, 1) is homeomorphic to ;.

The space AR now turns out to be a very strange space. It is a
connected, locally connected (super)compact Hausdorff space of
cardinality 2° and weight ¢, which possesses a dense subset
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homeomorphic to B(Q). The closure of R in AR is BR, its Cech-Stone
compactification (Verbeek [9]).
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