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ON THE CHARACTER OF SUPERCOMPACT SPACES 

Jan van Mill and Charles F. Mills! 

1. Introduction, Def"mitions and Conventions 

A collection of subsets ) of a space X is called a 

n-network for x E X provided that every neighborhood of x 

contains a member from). The supertightness p(x,X) of x in 

X is defined to be the least cardinal K for which every 

~-network ) for x consisting of finite subsets of X contains 

a subfamily )1 c J of cardinality 2 K which is a n-network for 

x. In addition, the supertightness p(X) of X is defined by 

p(X) = w-sup{p(x,X) Ix EX}. 

It is clear that t(X) 2 p(X) for every topological space X 

(for the definitions of cardinal functions such as t,w,d,c,X 

see Juhasz [7]); in addition the reader can easily verify 

that p(X) = t(X,Hf(X)), where Hf(X) denotes the hyperspace 

of finite nonempty subsets of X. 

For every compact Hausdorff space X and k E w we say 

that cmpn(X) 2 k provided that there is an open subbase lj for 

X such that every covering of X by elements of lj contains a 

subcovering consisting of at most k elements of U. In addi

tion, cmpn(X) = k if cmpn(X) ~ k and cmpn(X) I k and cmpn(X) 

= 00 in case cmpn(X) ~ k for all k E w. Cmpn(X) is called the 

compactness number of X (cf. Bell & van Mill [3]). It is 

known that for every k E w there is a compact Hausdorff 

space X for which cmpn(X ) = k; also cmpn(8w) = 00 (cf. Bellk k 

lThe first author is supported by the Netherlands Organi
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228	 van Mill and Mills 

& van Mill [3]). Spaces with compactness number less than or 

equal to 2 are just the supercompact spaces as defined by 

de Groot in [6]. Many spaces are supercompact, for example 

all compact metric spaces (cf. Strok & Szymanski [14]; ele

mentary proofs of this fact have recently been discovered by 

van Douwen [4] and Mills [12]). The first examples of non

supercompact compact Hausdorff spaces were found by Bell [1]. 

In section 2 of the present paper we will prove a theorem 

from which the following statement is a corollary: 

If X is supercompact then x(X) 2 d(X) ·p(X). 

The supercompactness of X is essential; we will give an 

example of a space X such that cmpn(X) = 3, d(X) = p(X) = w 

2wand x(X) = • In addition we show that the inequality can

not be sharpened by considering t instead of p. We construct 

an example of a supercompact space X such that d(X) = t(X) = w 

2
w

while x(X) = p(X) = • 

We are indebted to Eric van Douwen for some helpful com

ments. 

2.	 On the Character of Supercompact Hausdorff Spaces 

All topological spaces under discussion are assumed to 

be Tychonoff. 

Let X be a set and let K be a cardinal. We define (as 

usual) 

{A c xllAI d 

{A c X II A I < K} 

{A xllAI d.c < 

Let X be a space, B be a closed subset of X, and Y be 

the space obtained from X by identifying B to one point. Let 
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f: X ~ Y be the identification. For ¢ E {t,p,X} let 

¢(B,X): = ¢(f[B],Y). 

In case X is supercompact, the supercompactness of X 

can also be described in terms of a closed subbase: a space 

is supercompact iff it has a closed subbase with the property 

that any of its Zinked (= every two of its members meet) sub

collections has nonvoid intersection. Such a subbase is 

called binary. Without loss of generality we may assume that 

a binary subbase is closed under arbitrary intersections. 

Let 5 be a binary subbase for x. For A c X define I(A) c X 

by 

I(A): = n{S E 51A c S}. 

Notice that clx(A) c I(A), since each element of 5 is closed, 

that I(I(A)) = I(A) and that I(A) c I(B) if A c B c x. The 

following lemma was proved in van Douwen & van Mill [5]. 

For the sake of completeness we will give its proof also here. 

2.1. Lemma (van Douwen & van Mill [5]). Let 5 be a 

binary subbase for X and Zet p E x. If U is a neighborhood 

of p and if A is a subset of X with p E cl (A) ~ then there is x 

a subset B of A with p E cIX(B) and I(B) c u. 

Proof. Since X is regular, p has a neighborhood V such 

that p E clx(V) c U. Let J be the collection of all finite 

intersections of elements of 5. Choose a finite J c J such 

that clx(V) c uJ c U. Now J is finite, and A n V c uJ, and 

p E clx(A n V) ; hence there is an S E J with P E clx(A n V 

n S) . Let B: A n V n S. Then p E clx(B), and B c A, and 

I (B) eSc uJ cU. 

We now can prove the main result of this section. 
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2.2. Theorem. Let Y be a continuous image of a super-

compact space. Then X(Y) 2. d (Y) .p (Y) · 

Proof. Let 5 be a binary subbase for X which is closed 

under arbitrary intersections and let f: X ~ Y bea continuous 

surjection. Let K: = d(Y) ·p(Y) and fix a dense subset 

D = {d la < K} of Y. Choose y E Y and define 
a 

J: = {uJI J E [Sl<w and 3 neighborhood U of y 

such that f-1(U) c UJ}. 

Notice that for every neighborhood U of y there is an F E J 

such that f-l(y) c F c f-l(U) since 5 is a subbase. For each 

F E J let F: = Ui<n(F)sr, where sr E 5 for all i < n(F). For 

each a < K take d~ E X such that f(d~) = d . a 

Fix a < K and F Ui<n(F)sr E J. For each i < n(F) 

pick a point 

e~ E n FI({d~,s}) n s~.
 
sES
i 

Notice that, since 5 is binary, it is possible to take such 

a { a a 1a point. Let E (F): = eO,···,en(F)J. Then {f (Ea (F) ) IF E J} 

is a collection of finite subsets of Y such that each neigh

borhood of y contains a member of it. Since p(y,Y) ~ K we 

can find a subfamily J c J of cardinality at most K such 
a 

that each neighborhood of y contains a member of {f(Ea(F)) I 

F E J }.
a 

We claim that 

(*) n(Ua<KJa) n Clx{d~la < K} = f-l(y) n clx{d~la < K} 

which proves that X(y,Y) _< K since Iu JI < K·K = K. Toa<K a 

this end, first observe that f-l(y) c In(U < J ). Assume that 
a K a 

(*) is not true; then there is an x E (n(Ua<KJa) n clx{d~1 

-1 
a < K}) - (f (y) n clx{d~la < K}). Then clearly f(x) ~ y 
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and consequently we may take disjoint neighborhoods U and V 

of, respectively, y and f(x). By lemma 2.1 we can find a 

subset DO C {d~la < K} such that x E I(DO) C f-I(V). Pick 

d' E D' arbitrarily. In addition, take F E J such that
0 aa O O 

a 
E O(F) C f-l(U). Since x E n(u J) we have that x E F = 

a<K a 

Ui2n {F)Sr; hence there is an i O 2 n{F) such that x E sr ' 
o 

a O F SF.Then e. EnES I ({d' , s }) n s. c I ({d' , x }) n c I (D 0' )
1 0 S i a O 1 0 a O 1 0O 

n S~ c f-l(V). This is a contradiction, however, since 
1 

0
 

a O -1 1 1
 
e. E f (U) and f- (U) n f- (V) ~. 

1 
0 

2.3. Corollary. Let X be a supercompact space and let 

B be a closed subset of X. Then X(B) ~ d(X) .p(B,X). 

We will now describe the examples announced in the 

introduction. We start with a useful result, the proof of 

which was suggested to us by Eric van Douwen. Our original 

proof was much more complicated. 

2.4. Theorem. Let yX be a compactification of a separa

ble metric space X such that yX - X is homeomorphic to the one 

point compactification of a discrete space. Then p(yX) = w. 

Proof. Write yX - X as D U {oo}j where is the non00 

isolated point. Evidently p(x,yX) = w for all x ~ It00. 

remains to show that p(x,yX) = w. Let B be a countable base 

for X closed under finite union. 

For A,C ~ ~(yX) and S ~ yX we say that C covers A(rel S) 

if for every neighborhood U of with U ~ S the following00 

holds: if there is there is A E A with A ~ U then there is 
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C E Cwi th C ~ U. We say that Ccovers A if Ccovers 

A(rel ~). 

We prove that p(oo,yX) w by proving something formally 

stronger: 

(1) for all J ~ [yX] <w there is J' E [J]~w which covers J. 

SO	 let J ~ [yX]<w. For B E Band nEw define 

J = {F E J: F n X ~ B, IF n D I = n}.B,n
 

[We do not care if 00 E F or not.] Using the fact that B is
 

closed under finite unions, one can easily prove that (1) 

follows from 

(2) for all B E Band n E w there is J' E [J ]2-w 
B,n B,n 

which covers J (reI B) . B,n 

But evidently (2) follows from 

(3) for all nEw, if A ~ [D]n then there is A' E [A]2-w 

which covers A. 

We prove (3) with induction on n. For n = 0 there is nothing 

to prove. Suppose (3) holds for a certain nEw, and let 

A c [D]n+l. Let mbe a maximal disjoint subfamily. If mis 

infinite let A' be any member of [m]w. If mis finite 

= {A E A:	 x E A} (x E uftJ) ) oAx 

For each x E uftJ there is A' E [A ]~w which covers Ax· Now 
x x 

let A' = uXEuftJA~. 

This theorem gives us our first example. 

2.5.	 ExampZe. A compact space X such that cmpn(X) 3, 

wd(X) = p(X) = w while X(X) = 2 • 

Indeed, let X be the one point compactification of the 

Cantor tree ~2 U w2 (cf. Rudin [13]). In van Douwen & 
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van Mill [5] it was shown that this space has compactness 

number 3 (this was also shown independently by M. G. Bell). 

Theorem 2.5 gives us p(X) = w while clearly d(X) = wand 

X(X) = 2
w

• 

We will now describe our ~econd example. 

2.6. Example. A supercompact space Z for which 

d(Z) = t(Z) = wand X(X) = 2w. 

Indeed, let L be the "double arrow line," i.e. the space 

[0,1] x 2 lexicographically ordered. Let A c L2 be the set 

2 2{(x,y)\y ~ x}. Then set Z = L /A, and let TI: L ~ X be the 

projection. Since L is first countable, so is L2 ; we conclude 

2that t(L ) = w. This implies that t(Z) = w since TI is closed. 

Clearly d(Z) = w. Since L
2 

- A contains {«a,l),<a,O») I 
a E [0,1] } as a closed discrete subset of cardinality 2w, 

A is not a Go in L2 so that X(Z) > w. In fact, it is easily 

seen that X(Z) = . It remains only to show that X is super2w 

compact. 

To this end, let A be the set of all clopen rectangles
O 

2in L which do not meet A (a rectangle is	 the product of two 

2intervals). In addition, let Al : = {[a,b] I [a,b] is clopen 

in L}. It is easily verified that {n[B] IB E AO U A } is al 

binary closed subbase for Z. 

The above space Z of example 2.7 has another surprising 

property; it is the continuous image of a normally supercom

pact space while X(Z) i d(Z) -t(Z). Below we will prove that 

for every normally supercompact space X the inequality 

x(X) < d(X) -t(X) holds. Hence, in contrast with Theorem 2.2, 
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this is not true for continuous images of normally super-

compact spaces. 

Recall that a normally supercompact space is a space X 

which possesses a binary subbase 5 which in addition is normal, 

i.e. for all disjoint 5 ,5 E 5 there are TO,T E 5 such that0 1 l 

So c: TO - Tl , 51 c: Tl - TO and TO U Tl X. This is not such 

a strange condition, since in van Mill & Schrijver [10] it 

was shown that if 5 is a binary subbase for X then 5 is 

weakly normal, i.e. for all disjoint 5
0

,5
1 

E 5 there is a 

finite covering mof X by elements of 5 such that each ele

ment of mmeets at most one of So and 51. However, the 

normally supercompact spaces have much stronger properties 

than the supercompact spaces, see van Mill [9]. We also 

want to notice that there is a geometric characterization of 

normally supercompact spaces, see van Mill & Wattel [11]. 

Since it is easily seen that each product of linearly 

orderable compact spaces is normally supercompact we see that 

the space Z of example 2.6 is the continuous image of a 

normally supercompact space. 

2.7. Lemma. Let 5 be a binary normal subbase for X, 

let x E X and let U be a neighborhood of x. Then there is 

a neighborhood V of x such that x E V c: I(V) c: U. 

Proof· Without loss of generality we may assume that 

U is open. Let J E [5]<w such that x !- uJ :=>X - U. For 

each F E J choose F' E 5 such that x E int (F') and F' n F = ~.x 

This is possible since 5 is normal and since {x} = n{s E 51 

xES} and since 5 is binary. Then V: = nFEJintx(F') is 

as required. 
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2.8. Theorem. Let X be a normally supercompact space. 

Then	 x(X) < d(X) ·t(X). 

Proof. Use Lemma 2.8 and the same technique as in Theorem 

2.2. 
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