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1. Introduction, conventions and some definitions

All topological spaces, under discussion, are assumed to be T,, and “‘subbase’ will
always mean a subbase for the closed sets.

Often, an important class of topological spaces can be characterized by the fact
that each element of the class possesses a subbase of a special kind. For example
compact spaces (Alexander’s subbase lemma), completely regular spaces (De Groot
and Aarts [13]), second countable spaces (bv definition), metrizable spaces (Bing, cf.
[8]), (products of) orderable spaces (Van Dalen and Wattel [6]; Van Dalen [5]; De
Groot aad Schnare [14]). Such characterizations we shall call subbase charac-
terizations.

A class of spaces defined by the existence of a subbase of a special type is the class
of supercompact spaces (De Groot [10]); this class consists of all spaces possessing a
so-called binary subbase, that is a subbase & such that if o= & with [ ¥, =0 then
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184 J. van Mill, A. Schrijver /| Subbase characterizations

there exist So, §1€ Fo such that SN S, =0. It is clear that by the lem:ma of
Alexander every supercompact space is compact. There are many intei:sting
subclasses of the class of supercompact spaces, such as all compact metric spaces
(Strok and Szymasnski[16]; cf. Theorem 2.6 of the present paper), compact ordzrable
spaces (De Groot and Schnare [14]; cf. Theorem 5.2), compact tree-like spaces
(Theorem 4.3), compact lattice spaces (Theorem 3.2) and products of these spaces.
Not ali compact Hausdorff spaces are supercompact as was shown by Bell [2] (see
also Van Douwen and Van Mill [7]).

In this paper we will give subbase characterizations of the above classes of
topological spaces. The characterization of compact metric spaces and compact
orderable spaces are due to De Groot [11] and De Groot and Schnare [14 .

Anidea of De Groot was to represent a supercompact space with binary subbase &
by the graph with vertex set & and an edge between & and §; in & if and only if
SoN S # A. De Groot [:2] proved that the space is completely determined by this
graph. In our approach we will represent a supercompact space with binary subbase
& by the graph with vertex set & and an edge between Sp and 8, in & if and only if
SeN S, = #. This not essentially different approach secms to have some acdvantages
(e.g. connectedness and bipartiteness of this latter graph imply interesting properties
of the space). This graph representation is often helpful to determine = subbase
characterization.

This paper is organized as follows. In Section 2 we give a character:zation of
supercompactness by mzans of ‘‘interval structures’ and show the relatio: between
supercompact spaces and graphs. Sections 3, 4 and 5 deal with latti.e spaces,
tree-like spaces and orderable spaces, respectively. As an application of Se::tion 2 we
show that some of the results can be extended to products of these space s.

2. Supercompact spaces and graphs

We shall first define the notion of interval structure and we characte: ize super-
compactness by means of this concept. Second, a correspondence between graphs
and supercompact spaces is demonstrated.

Definition. Let X be a setand let 7 : X x X -» P(X). Write I(x, y)=I((x, v)). Then I
is called an interval structure on X if:
(i) x,yel(x,y)(x yeX),
(i) I(x,y)=1I(y,x) (x,yeX),
(iii) if u, v e I(x, y), then I(u, v)<I(x, y) (u,v,x,ye X),
(iv) I(x,y)NI(x,z)NI(y, 2)# 0 (x,y, ze X).

Axioms (i), (ii) and (iii) together can be replaced by the following axiom.:

wvellx,y) it Iuv)cI(x,y) (uv,x yeX).



J. van Mill, A. Schrijver /| Subbase characterizations 185

A subset B of X is called I-convex if for all x, y € B we have I(x, v;=B.If (X, <)isa

lattice, then I'(x, y) ={z € X |x A y <z <x v y}defines an interval structure on X (sce
Section 3).

Theorem 2.1. Let X be a topological space. Then: X is supercompact if and only if X is

compact and possesses a (closed) subbase & and an interval structure I such that each
S e &is I-convex.

Proof. Let X be a supercompact space and let & be a binary subbase for X. Define
I'XxX->2P2(X)by

I(x,y)=N{Se&|x,yeS}, (x,yeX).

Then it is easy to show that I is an interval structure on X and that each S€ & is
I-convex.

Conversely, let X be a compact space with a closed subbase & consisting of
I-convex sets, where I is an interval structure on X. We will show that & is binary.

Let ¥ < & such that()¥'= @. Then, since X is compact, there exists a finite subset
Fo< P such that (Fo=0. Hence it is enough to prove the following: if
8$1,8,,...,8€%and §;N -+ NS, =0 then there exist i, j (1 </, j<k) such that
S: N S,' ={.

We proceed by induction with respect to k. If k =1 or 2 it is trivial. Suppose that

k =3 and that for each k' <k the statemeit is true. Define:

T1= SzﬂSzﬂS4ﬂ"'ﬂSk,

T,=8:N S$3N8:N - NSy,

T3=anS2n S4ﬂﬂSk
If one of the T;’s is empty, then the induction hypothesis applies. Suppose thercfore
T;#0(i=1,2,3),and take x& Ty, ye T, and z € Ts. Then

X, yeS;ﬂSJ) v ﬂSk,

x,2€8:2N08,N -+ NS

y,zeSlﬂS4ﬂ e ﬂSk

and thus
I(x, y)cssﬂS4f1 s nSk,

I(x, Z)C52ﬂS4n e nSk,
I(y, Z)C51n54n v ﬂSk.
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But
B#I(x, WNI(x,2)NI{y,2)

P

=§N8MN - NS

This contradicts our hypothesis. [

For some related ideas see Gilmore [9].

Now we turn our attention to the announced correspondence between graphs and
supercompact spaces.

A graph G is a pair (V, E), in which V is a set, called the set of vertices,and E isa
collection of unordered pairs of elements of V, thatis E = {{v, w}|v, we V, v # w}.
Pairs in E are called edges. Usually a graph is represented by a set of points in a space
with lines between two points if these two points form an edge. A subset V' of V' is
called independent if for all v, we V' we have {v, w}& E. A maximal indeperdent
subset of V is an independent subset not contained in any other independent subset.
Zorn’s lemma tells us that every independent subset of V is contained in some
maximal independent subset. We write

#(G) = {V'< V| V' is maximal independent};
and foreachve V:

B, ={V'e4(G)|lveV'}
and

B(G) = {B,|ve VL

The graph space T(G) of G is the topological space with #(G) as underlying point set
and with 2(G) as a (closed) subbase.

If & is a collection of sets then the non-intersection graph G(&) of & is the graph
with vertex-set ¥ and with edges the collection of all pairs {S;, S5} such that
$1M S, = 0. The following observation was made by De Groot [12]:

Theorem 2.2. A space X is supercompact iff X is the graph space of a graph, in
particular:
(i) if X has a binary subbase & then X is homeomorphic to the graph space of G(.¥);

(ii) for a graph G, the graph space T(G) is supercompact, with B(G) as a binary
subbase.

Let G; be a graph (j € J); the sum T ;s G; of these graphs is the graph with vartex set
a disjoint unoin of the vertex sets of the G; (j € J) and edge set the corresponding

union of the edge scts. These sums of graphs and products of topological spaces are
related in the following theorem.

Theorem 2.3. Let J be a set and for each j € J let G; be a graph. Then TR sG))is
homeomorphic to [1;c; T(G)).
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Proof. Straightforward. [

We shall now give subbase characterizations of some obvious classes of topological
spaces; in Sections 3, 4 and 5 subbase characterizations of special classes of spaces
are given. With each subbase characterization we also give a characterization in
terms of graphs.

Proposition 2.4. The following assertions are equivalent:
(i) X is a second countable supercompact space;
(i) X possesses a countable binary subbase ;
(iii) X is homeomorphic to the graph space of a countable graph.
(A graph is called countable if its vertex set is countable.)

Proof. Note that each subbase of a second countable space contains a countable
subcollection which also is a subbase. [

A subbase & for X is called weakly normal if for each Sy, $1€ & with: 5, S, =0
there exists a finite covering # of X by elements of & such that each ¢icment of #
meets at most one of Sy and S;. A graph (V] E) is called weakly normal if for each
{v, w}e E there are vy,..., Uk, W1,..., W € V (k, !=0) such that:

{09 01}, sy '{U, Uk}, {W, Wl}, cevy {W, WI}GE

and if

Olyeves Uk Wwho oo, wieV
with

{vi, v1} ..., {vr, VEL {1, Wik ... {w, Wi E E,
then

- ! !’ I
{V1seees Vks W1yo oo, Wi}

is not independent.

Theorem 2.5. Let X be a supercompact space with binary subbase & and let X be the
graph space of the graph G. The following assertions are equivalent:
(i) X is a Hausdorff space ;
(ii) &is a weakly normal subbase;
(iii) G is a weakly normal graph.

Proof. (i)= (ii). Take S;, S,€ & with §;NS>=0. As X is normal (compact Haus-
dorff) there exist closed sets C and D with

CNS$ =0=S,ND and CUD=X
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Since X is compact and C and D are intersections of finite unions of sets in &, we can
take C and D to be finite intersections of finite unions of sets in ¥, or, what is the
same, finite unions of finite intersections of sets in &.

Since CN S, =@ each of the finite intersections composing C has an empty
intersection with $;. Now & is binary and therefore we can replace these finite
intersections by single sets of . Hence we may suppose that C is a finite union of
elements of &. Similarly we can take D as a finite union of elements of &.

(i1)=> (i). This is a consequence of a theorem of De Groot and Aarts [13].

(i) (iii). The simple proof is left to the reader. 0O

This theorem riow implies the following remarkable fact, which was first observed
by De Groot [1].

Theorem 2.6. 7he followirg assertions are equivalent:
(1) X is compact metric:
(ii) X kas a countable weakly normal binary subbase;
(iil) X is homeomorphic to the graph space of a countable weakly normal graph.

Proof. This is a consequence of the deep result of Strok and Szymariski [16] that
every compact metric space is supercompact. 71

Using this theorem we can derive a rather remarkable characterization of the
Cantor discontinuum C. We call a graph (V, E) locally finite if for all v € V the set
{we V|{v, w}e E} is finite.

Theorem 2.7. The following assertions are equivalent:

(i) X is homeomorphic to the Cantor discontinuum;

(1) X is homeomorphic to te graph space of a countable locally finite graph with
infinitely many edges.

Proof. {i;=>(ii). By Theorem 2.3 X is homeomorphic to the graph space of the
following graph (cf. De Groot [12)):

0 00
0 00
Fig. 1.

(ii)=> (i). We are going to show that X is a compact metric totally disconnected
space without isolated points, whence it will follow that X is homeomorphic to the
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Cantor discontinuum. Let G be a countable locally finite graph with infinitely many
edges. We will first show that the closed subbase B(G) of T(G) consists of clopen
sets.

Take v € V. Since G is locally finite, there are wy, w,, ..., w, € V such that

{wi, ..., wl={we V|{v, w}e E}.

Now for all i=1,2,..., n the set B,, is closed, hence |_}=, B., is closed too. it is
obvious that

x\U B,,=B,,
i=1

and hence B, is open.

Since it now follows that T(G) is Hausdorff (T(G) being T and totally dis-
connected), compact and second countable, T(G) is compact metric.

Finally we show that T(G) has no isolated points. For suppose thereisa V'€ $(G)
such that {V'}=(\1; B,. That is, if V"€ #(G) and {v), v2,..., vn}< V" then
V'=V". Let W be the set

{weV|{v,wleE forsomeie{l,2,...,m}}.
Since G is locally finite, W is finite. Now the set
E'={{v,w}e Elwe W,ve V}

also is finite. Since E is infinite there is an edge {a, b} E\E'. It is easy to see that
ag W and bg W, hence {v1,...,0m a} and {v;, ..., Um, b} both are independent
sets of vertices, and hence both are contained in a maximal independent set, say in Vg
and V} sespectively. As {vy,...,vn}< VY and {vy,..., v} < V7 it follows that
Vi=V{=V';hence a, be V'.But{a, b} € E, hence V' is not independent which is a
contradiction. [

The following corollary was suggested to us by the refere=.

Corollary 2.8. X is homemorphic to 2" for some infinite k < X is homeomorphic to the
graph space of a locally finite graph with infinitely many edges.

Proot. To show &, note that the graph breaks up intc the sum (in the sense of
Theorem 2.2) of graphs G, each with countably many edges. If G, has infinitely
many edges, its graph space is homeomorphic to the Cantor set (Theorem 2.7); if
finitely many, its graph space is a finite discrete space. By the axiom of choice we
can lump these graphs together so that each one of the resulting graphs has X, edges,
hence the graph space is homeomorphic to a product of Cantor sets. [

Finally we call attention to the fact that there is a natural relation between
superextensions and graphs (cf. De Groot [12]).
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3. Lattices and bipartiie graphs

In this section we give a correspondence between spaces induced by a lattice and
graph spaces obtained ‘rom bipartite graphs. Let (X, <) be a lattice w:th universal
bounts 0 and 1. If a and b are elements of X then [a, b] will denote the set

[a,b]l={xe X|a<x<b}.

The interval space of X is the topological space X the topology of which is generated
by the subbase

F={0,x]]x e X}U{lx, 1]l|x e X}.
Spaces obtained in this way are called lattice spaces. According to a theorem of Frink

(cf. Birkhoft [3]) the interva! space of a lattice (X, <) is compact iff (X, <) is complete.

Thecorem 3.1. Every compact latticz is supercompact.

Proof. Let (X, <)be acompiete lattice and define an interval structure (cf. Section 2)
I on X by

Ix,y)=[xay,xvyl

This is easily seen to be an interval structure while moreover the subbase & for X
defined above consists of I-convex sets; consequently X is super compact by
Theorem 2.1. 0O

A graph (V, E)is called bipartite if V can be partitioned in two sets V, and V; such
that each cdge consists of an element of V, and an element of V. A well-known and
easily proved theorem in graph theory, see e.g. Wilson [19]; tells us that a graph
(V, E) is bipartite if and only if each circuit is even, that is, whenever

{Uh UZ}’ {Uf!y UE»}, sy {vk—h vk}» {vk’ vl}

are edges in E, then & is even (this characterization uses a weak form of the axiom cf
choice).

We cail a collection & of subsets of a set X bipartite if the non-inters :ction grapa
G () is bipartite.

Theorem 3.2. The following assertions are equivalent:
(i) X is homeomorphic to a compact lattice space;
(ii) X possesces a binary bipartite subbase;
(iii) X is homeomorphic to the graph space of a bipartite greph.

Proof. (i)=>(ii). Let (X, <) be a complete lattice; the subbase
F={0,x]| xe X}U{lx, 11| xe X}

is bipartite and binary.
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(i) => (i). Let X be a topolog:cal space with a birary bipartite subbase &; let
P =FoU P, such that FoN L1 =0 and S # 0 #( ¥ (this is possible since & is
binary and bipartite). Define an order “<’ on X by

x<y iff yeS wheneverxeSec%,.

The relation “<" is reflexive and transitive; ‘< is anti-symmetric too. For suppose
that x # y and x <y <x. Since X is T, there exists an § € ¥such that x € S and y¢ S.
However, this implies that there also exists a 7 € & such that ye T and TN S =0,
since & is binary. From this it follows that either S€ ¥ or T e ;. If S€ ¥ then y € §,
since x <y, which is a contradiction. If T € &, t*~n x € T, since y <x, which aisois a
contradiction.

We will show that ‘< defines a complete lattice by preving that for each X' X
there is a z € X such that z =sup X'.

Let X'< X. Define

Fo=1{Se F|X' =8}
and
F1={Te%|SNT#0 forall SecFo}.

Now (¥, NP #0, since (Fo #B#( \F1 and also SN T #0 for all § € Fo and
T € &, (notice that & is binary!). Choose z € (¥, N[ \¥;. This point z is an upper
bound for X', for let x€X' and let xe T€%,; then Te¥; and hence zeT.
Therefore x <z for all x € X'.

Suppose now that x <z’ for all x € X’ and that z% z'. Then there existsa T € &)
with the properties z € T and z'¢ T. As & is binary aad bipartite, there is an S € %
suchthat SN T=0@and z' € S. Now, X' < S, since otherwise there must be an xo€ X’
and a T' € &, with the properties xo€ T’ and 7' § = 0. Then, since xo < z' we have
that z'e T, which contradicts the fact that SN T'=@. Therefore X'< S, which
implies that S € $5. But z¢ S, which cannot be the case since z €[ \¥o N[ ¥1.

Finally the topology induced by the lattice-ordering < coincides with the original
topology of the space X. Indeed, for x € X we have that

[x,1]1=MN{Se% | xS},

as can easily be seen.
Furthermore

[0, x]={Se%|x €S},

for suppose that y <x and that yz S for some S € %, with x € §. Then there exists a
Te%; such that SNT =3 and ye T. Hence x € T, contradicting the fact that
SNT=0.

Alsoif Te %, let

Fo={SeFo|SNT =0}
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Then TN(¥, #8, since & is binary. Choose z € T N{ ) Fo. We will show that
[z,1]=T.

If z<y,theny e Tsincez € T.If y € T'and z X y, then there exists an § € ¥ such that
y€S and z £ S. However, S N T #0 and consequently S € ¥ and z € S, which is a
contradiction.

Conversely, if S €% let

P ={Te%|SNT#0}.
Then S N\ &} #0, since & is binary. Choose z € SN{ \¥}. We will show that
[0, z]=S.

If y=z and yg S then ye T for some Te %, with SN T =@. Hence z¢ T, which
contradicts the fact that y<z. If y € § and v z then there is some T € &, such that
yeTand z¢ T. Then SN T #0 and T € &;. Hence z & T, contradicting the fact that
ze¢ T.

(i1)=> (iii}. Let X be a space with a binary bipartite subbase #. By definition G(&¥) is
bipartite and, by theorem 2.2, X is homeomorphic to the graph space of G(¥).

(iii) 5> (ii). Let G be a bipartite graph. It is easy to see that the binary subbase Z(G)
for the graph space of G is bipartite. 0

4. Tree-like spaces and weakly comparable graphs

We now turn our attention to compact tree-like spaces, which are characterizad
with the help of weakly coraparable subbases and graphs.

A tree-like space is a connected space in which every two distinct points x and y cin
be seperatea by a third point z, i.e. x and y lie in different components of X\{:-}.
Obviously every connected orderable space is tree-like; however, the class of
tree-like space is much bigger, see e.g. Kok [15].

A collection .# of subsets of a set X is called normal if for every Sy, S € ¥ with
80N 81 =@ there exist To, T1 € ¥ with SoN T, =0 = T,N S and ToU Ty = X. Clearly
a normal collection is weakly normal, cf. Section 1. In addition & is called weakly
comparable if for all Sy, S, S>e & satisfying SoNS;=0=85,N S, it follows that
8, <= 8§ 0r §,< S5 or $1N S2 =0 (the notion comparable will be defined in Section 5).

A collection & of subsets of a set X is called connected (strongly connected) if there
is no partition of X in two (finitely many) elements of &.

Lemiua 4.1. Let & be a weakly comparable collection of subsets of the set X. Then the
follow:ng properties are equivulent:

(i) Lis normal and connected

(ii) & is weakly normal and strongly connected.
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Proof. (i)=> (ii). Let ¥ be weakly comparable, normal and connected. Clearly & is
weakly normal. Suppose & is not strongly connected and let k be the minimul
number such that there are pairwise disjoint sets S, . . . , S¢ in ¥ with union X, Since
&isconnected, k =3. As §; N S, = @ there exist, by the normality of #, T, and T, in &
such that SN T>=@=T1NS; and T, U T, = X. Now S intersects either T, or T>.
We may suppose S3MT;#@. Hence since S;MNT1=@=8,NS3 by the weak
comparability of &, S Ty =@ or T, = S5 or S3 < T7,. Since the first two cases cannot
occur, it follows that $; < T. In the same way one proves that for each j=4, ...,k
either S; = T or §; N T = 0. Hence there exists a smaller number of pairwise dnswmt
sets in & covering X.

(i)=>(i). Let & be a weakly normal, strongly connected, weakly comparable
collection of subsets of X. We need only show that & is normal. To prove this let
To, Ty € & such that 7, T, =@. Let k be the minimal number such that there are
$1, ..., 8 in P covering X and such that each S; meets at most one of 7, and T;. By

the minimality of k£ ‘we may suppose that no two of these subsets S;, ..., S; are
contained in each other. If kK =2 we are ready.
Suppose therefore k =3. We prove that the sets S, . .. ., S are pairwise disjoint.

Without loss of generality we prove only that §; M S, =0. Suppose that ;N S, #0.
By the weak comparabiity they are neither both disjoint from T, nor are they both
disjoint from T,. We may suppose therefore S;NTo#B#S,NT,. Since now
SiNT,=0=T,NT, it follows that either $;= Ty or To<S,. If S;< T, then
ToN S, >8NS, #0, which cannot be the case since TN S>=0. i follows that
To< 8 and similarly T, = §,. We may suppose that S5 Ty =@. Since also S.N To =
@ we have SN S, =0. From this it follows that $- N T, == @ and since also $; N T, =9,
we have $3M1 S, =0. Now from the weak comparability it follows from SN S, =0 =
$3N S, that $,N S, =@, which is a contradiction.

Since there are no pairwise disjoint sets Sy, . . ., $; in & with union X, it cannot be
the case that k =3. Hence & is normal. O

A graph (V, E) is called normal if for each edge {v, w}e E there are edges {v, v'}
and {w, w'}in E such that whenever {v', v"} and {w', w"} are edges then also {v", w"}is
an edge (see Figure 2).

v” 0 0 w"
v 0 0w
0 — ()

v w

Fig. 2.
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Clearly each normal graph is a weakly normal graph (see Section 1).

A graph (V,E) is called weakly comparable if for each ‘‘path”
{vo, v1}, {v1, v}, {2, v3}, {v3, vs} Of edges either {vy,vs}eE or {ve, v3}€E or
{v1, va} € E (see Fig. 3).

___________

# < s
0——0——0—0

Vg Uy Uy U3 Vs

Fig. 3.

Agraph (% E)is called contiguous (Bruijning [4]) if for each edge {v, w} € E there
exist edges {v, v'} and {w, w'} such that {v', w'} ¢ E.

A graoh (V, E)is connected if for each two vertices v, w € V there is a path of edges
{v, v1}, {1, v2}, . . ., {vr, W}

Finally, we call a collection & of subsets of a set X graph-con=ected if the
corresponding ncn-intersection graph G() is connected.

Lemma 4.2. Let & be a binary collection of subsets of the set X with non-intersection
graph G(&). Then
(i) &is normal iff G(¥) is normal;
(ii) & is weakly comparable iff G(&) is weakly comparable;
(iii) & is connected iff G() is contiguous.

Proof. Note that §;U ---US =X (5;€%,ie{l,2,...,k)}) if and only if in G(¥)
foreach S), ..., Si with {§, Si}is an edge of G(¥) it follows that {S], S5, ..., Si}is
not independent. O

If X is a tree-like space then a subset A of X is called a segment if A is a component
of X\{xo} for certain x, € X. Kok [15] has shown that every segment in a tree-like space
is open. In particular every tree-like space is Hausdorff.

Theorem 4.3. Let X be a topological space. Then the following properties are
equivalent:

(i) X is compact tree-like.
(ii) X possesses a binary normal connected (closed) subbase I such that for all
To, Tie T we have that To< Ty or Ty Toor ToNTi=PBor TobU T, = X,

(iii) X is homeomorphic to the gruph space of a connected normal contiguous weakly
comparable graph.

Proof. (i)= (ii). Let X be compact tree-like and let % denote the collection of
segments of X. Since every two distinct points of X are contained in disjoint
segments, the compactness of X implies that % is an open subbase for the topology of
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X. We will show that for all Uy, Uy ¥ either UoUU;=X or UyNU,;=0 or
Uo< U, or Uy U,. To prove this, take Up, U, € U and suppose that U, is a
component of X\{x;} (i €{0, 1}). Without loss of generality we may assume that
xo# x1. Suppose that X\{x;}=U;+ U} (i€{0, 1} (this means U;NU* =¢ and
X\{x:}= U: U U¥). We have to consider two cases:

(a) suppose first that x; € U,. We again distinguish two suhcases:

(@) xo€ U.. It then follows that clx(U¥ )= U¥ U{xo}< Uy, since cly(UZ) is
connected. This implies UyU U, = X.

(@®) xoe U¥. The clx(Uy) = U, since clx(U;) is connected. Therefure U; <
Us.

(b) suppose that x, € U§. We distinguish two subcases:

(™) xo € U,. This implies that clx (Uy) < Uy, since clx(L%) is connected. Hence
o< Ui,
(b%) xoe U¥. Now we have clx(Uy) = U7, since clx(Up) is connected.

Therefore Up< Ui and consequently Uy N Uy = 0.

Now define 7 ={X\U|U e%}. Then 7 is a clos: 3 subbase such that for all
To, Tye T either ToU Ty =X or ToN Ty =@or To< T, or Ty < To. In particular 7 is
weakly compzrable. To show that J is binary it suffices to show that each covering of
X by elemen:s of % contains a subcover of two elements of 4. Indezd, let o be an
open cover of X by elements of %. By the compactness of X there already are finitely
many elements of &f covciing X, say

ULLUUU---UU,=X (Ued, ie{l,2,...,n).

In addition, we may assume that @ U;2 U; for i#j. We claim that for each
Uie{U,, Us, ..., U,}thereexistsa U;e {U;, U, ..., U,}suchthat U; N U; = @, for
assume to the contrary for some fixed / it were true that U; N\ LJ; =@ for all j # .. As
{Uy, U, ..., U,}is acovering of X it would follow that X is not connected, which is
a contradiction. Therefore U; U U; = X. Consequently & is a binary subbase.

As X is Hausdorff, by Theorem 2.5, 7 is weakly normal, which implies that  is
normal by Lemma 4.1, since trivially J is strongly connected (notice thit 5~ consists
of closed sets).

(ii)=> (i). Since J is a binary subbase we kave. that X is compact. Tharefore we
need only prove that X is tree-like. First we wili show that X is connected. Suppose
that X is not connected. Then there are clesed disjoint sets G and H such that
GUH=X and G#0#H. G and H are intzrsections of finite unions of subbase
elements. Since G and H are closed, G and /H are even finite intersections of finite
unoins of subbase elements, or, what is the same, finite unions of intersections. Let m
be the minimal number such that there are G,, .. ., G, such that

(a) Gy,...,Gn, are non-void and intersections of subbase ¢lements;

B) GiU---UGn=X;

(y) thereisanI<{1,2,..., m} such that

U G,' #ﬂ#u Gj and LJ G.‘ ﬂU szﬂ-

iel jeI iel jed
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We first prove that G;" G, =0 if i # j. Suppose that G; N G; # for i # j. We claim
that G;UG;=( {T€J|G:UG; < T}. For take x# G; U G;. Then, since G; and G;
are intersections of subbase elements there are Tp and T} in J such that G; < Ty,
Xg To, G,-C T1 and x¢g Ti. Now since Ton T, G,‘ ﬂGj;éﬂ and T()U T1 #X
(xg ToU T4 it follows that either To< Ty or T; < To. Therefore x& T for some
T € 9 with G; U G; < T. It now follows that m is not the minimal number of sets with
the zbove property, which is a contradiction.

Second, we prove that each G; is an element of J. Suppose that some G;& J.
Let j #i. Then since G; is an intersection of subbase elements and J is binary,
there is a TeJ such that GicT and TNG;=0. The sequence
Gy, ...,Gi_1, T, Gis1, - .., Gn is also a sequence with the above properties (a), (8)
and (y). So again TNG, =0 if X #i, hence G;=cT< X \Uk «iGx, which implies
that G; = T and therefore G; € 7. Hence there is a collection G4, . . . , G\, of pairwise
disjoint subbase elements covering X and as  is weakly comparable, and hence by
Lemma 4.1 is strongly connected, this is a contradiction. This proves that X is
connected.

We will now show that every two distinct points can be separated by a third point.
Let x, y € X such that x # y. As X is a T;-space we have that {z}=("{TeT|ze T}
for all z € X and consequently, since J is binary, there exist Ty, T1€ J such that
x € Ty, y € Ty and TN Ty =0. The normality of J implies the existence of T, T €
J such that ToUTi=X and ToNT;=0=ToNT,. Define A=
{Te T|TU Ts = X}. Since X is connected we have that of U{T} is a linked system
and consequently T'5 N (" \sf #0. We claim that this intersection consists of one point.
Assume to the contrary that zo, z; € T N[ )& with z¢ # z,. In the same way as above
there exist Sy, S;€J such that zoe So\S: and z,€ $;\So and SoUS; =X. Since
zo2S; we have that S, 29 and consequently To US; #X. Hence To<S; or
S:< T for $;NT; =0 is impossible since z; € $;MN To. However, this implies that
S, < T, since zo £ S). With the same technique one proves that So < T ; but thisis a
contradiction since Ty # X. Let {zo} = T, N[\ Then z, is a separation point of x
and y, since T} and [\« are closed subsets of X such that Ty U(«)=X and
x € To and y €[ /. This proves that X is compact tree-like.

(i) = (iii). Let X be a space possessing a binary normal connected subbase 7 such
that for all Ty, T,=J we have that either Toc= T, or Ty Ty or ToN T, =0 or
T..J T; = X. We may suppose that ) ¢ 7 and X ¢ 7. Then the non-intersection graph
G(7)isnormal. G(7) is weakly comparable since 7 is weakly comparable, as is easy
to show. G(7) is contiguous since J is connected. So we need only to prove that
G(T) is connected. Let Ty, T; € 7, then either

(a) ToN Ty = 0; hence there is an edge in G(J) between T, and T; or

(b) ToUT;=X:hencethereare Ty and T in T suchthat TyNTo =T, NT; =
T1 NT,=0, forming a path in G(J) connecting T, and T;; or

(¢} To<=T;; hence thereisa T, € 7 such that ToN T, =@ = T N T}, giving again a
path connecting T, and T; or

(d) .T; = Ty; this case is similar to casz (c).
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(ii))=> (i1). Let X be the graph space of a connected normal contiguous weakly
connected graph G =(V, E). We will prove that the subbase B(G) for ihe graph
space satisfies the conditions of (ii). B(G) clearly is binary, normal and connected.
Suppose that v, w € G; we must show that either B,< B,, B, <B,, B, B, =0 or
B, UB,, = X. Pick a path of minimal number & of edges irom v to w. By connected-
ness and weak comparability we have that k =1, 2 or 3.

Case i. k=1,ie.{v,w}eE so that B,N B, =0:

Case 2. k=2, say {v,v'}eE and {v', w}e E. It now follows that {v, w}g E
(otherwise k = 1) and therefore B, < B,, or B,, < B,, for if not, there would be edges
{v, v"}, {w, w"}e E such that {v, w'}2¢ E and {w, v'}2 E, contradicting the weak
comparability of G;

Case 3. k=3, say {v, vi},{v1, va}, {v2, w}€ E. By Case 2 we have B,<B,, or
B,, < B,. In the former case B, N B,, = (but then k = 1), so we have B,,< B, and
similarly B,, < B,,. Now suppose that B, U B,, # X ; then we conclude that B, U B,, U
B,,UB,, # X and consequently we may pick a maximal independent set M such that
v, U1, U2, w& M. By maximality there is a t;e€ M with {¢;, v}€ E. Since {v, v2} 2 E
(otherwise k = 2) and {v, w} ¢ E (otherwsie k = 1), we have, by weak comparability,
that {t,, v>} € E. But then, by Case 2, B,, < B,, (then B, N B,, =¥} or B,, < B,,. But the
latter case contradicts M € B,\B,,. U

Corollary 4.4. Each compact tree-like space is supercompact. [

Corollary 4.5. Let X be a topological space. Then the following properties are
equivalent:
(i) X'is a product of compact tree-like space.
(ii) X possesses a binary normal connected weakly comparable closed subbase.
(iii) X is homeomorphic to the graph space of a normal contiguous weakly compar-
able graph.

Proof. Notice that each graph is the sum of its components. Then apply Theorem 2.3
and Theorem 4.3. []

An interesting application of this corollary is the following. In [11], De Groot
proved a topological characterization of the n-cell 7", and of the Hilbert cube 7~ by
means of a binary subbase of a special kind (cf. Theorem 5.5). Anderson [1] has
proved that the product of a countably infinite number of dendra is homeomorphic to
the Hilbert cube, where a dendron is defined to be a nondegenerate, uniquely arcwise
connected Peano continuum. It is well known, however, that a dedron is simply a
compact metric tree-like space (cf. Whyburn [18]). Since the dimension of a dendron
is 1, using our characterization of products of compact tree-like spaces, we arc able 10
give a new characterization of the Hilbert cube, thus generalizing the result of De
Groot, mentioned above, for the case of the Hilbert cube.
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Theorem 4.6. A topological space X is homeomorphic to the Hilbert cube I *if and
only if X has th.e following properties:

(i) X is infinite aimensional;

(ii) X possesses a countable binary, connected normal weakly comparable subbase.

Proof. The necessity follows from Corollary 4.5, since the Hilbert cube is a product
of compact tree-like spaces. The sufficiency follows from the fact that by Corollary
4.5 X is homeomorphic to a countable product of dendra. As X is infinite
dimensional this must be a countable infinite product. Hence X is homeomorphic to
the Hilbert cube. [

5. Ordered spaces and comparable subbases

Finally we treat the relations between ordered spaces and comparable subbases
and graphs. Note that an ordered space is the interval space of a totally ordered set
(cf. Section 3). Hence clearly every ordered space is a lattice space while moreover a
connected ordered space is tree-like.

Let X be a set and let & be a collection of subsets of X. The collection & is callec
comparable (De Groot [11]) if for all Sy, S, S2€ & with SoN 8, =0=8,N S, it
foliows that either §; = S, or §, < §,. A graph (V, E) is called comparable if for each
path {vo, v1}, {v1, v2}, {v2, v3}, {v3, v4} Of edges it follows that either {vo, v3}€ E or
{v1, va}€ E (cf. Fig. 4).

- . = -

OI ()I 0 \0 \0
L) v, v, vy vy
Fig. 4.

Lemma 5.1. (i) A graph G is comparable iff G is weakly comparable and bipartite.
(i) Each comparable graph is normal.

(iii) A collection ¥ of subsets of a set X is comparable iff it is weakly comparble and
bipurtite.
(iv) A comparable collection & of subsets of a set X is normal if it satisfies the

following condition: foreach x € X and each & € & with x & S there exists an So € & with
x€ 8o and SoN S =0.

Prooi. The simple proof is lefc to the reader. 0O

Theorem 5.2. Let X be a topological space. The following assettions are equivaient:
(i) X is compact orderable;
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(ii) X possesses a binary graph-connected comparable subbase
(iii) X is homeomorphic to the graph space of a connected comparable graph.

Proof. (i)= (ii). Let (X, <) be a complete totally-ordered set, with universal bounds
0 and 1. Clearly the subbase

F={0,1]|xe X, 0<sx<1}U{lx,1]|xe X, 0<x <1}

is binary, graph-connected and comparable.

(ii)=>(i). Let X be a space with a binary graph-connected comparable subbase &.
Since X is bipartite (Lemma 5.1), & induces a lattice ordering < on X, such as in the
proof of Theorem 3.2 (ii) = (i). We only have to prove that this order is a total order.
Suppose that < is not total, that is for some x, ye X we have x¥y and y%x.
Consequently there are S, T € &, such that:

xe8, ygS,yeT and xgT.
Since & is graph-connected and bipartite there are S, ..., Sk such that
SnS1=S:032= v ==Sk_1ﬂSk =Skﬂ T=0

with k odd. Suppose that & is the smallest number for which such a path in G(¥)
exists. If k =3 then $1 NS, =0=S,NS3and hence $; = Sz 0r S §,. If §; = S; then

Sﬂ$2‘1=SlﬂS4=S4ﬂss= ct =SkﬂT=ﬂ,

which gives a shorter path from S to T.

The case §3< S, can be treated similarly.

Hence k =1 and consequently SN S; =@=S,MT. Since & is comparable, S< T
or T < $. This means that either x € T or y € S, which both are contradictions.

(ii)=> (iii). Let X be a space with a binary graph-connected comparable subbase .
Then X is homeomorphic to the graph space of the graph G (%), while moreover it is
easy to se¢ that G(¥) is connected and comparable.

(iii) = (ii). Let X be the graph space of a connected comparable eraph G = (V, E).
2(G) is graph-connected since G is connected. B(G) is comparable, for suppose
that B,,, B,,, B,,€ #(G) and

B'-’l nB.,|2 =g:sznBU3

and B,, ¢ B,, and B, < B,,.

Hence {v1, v2}€ E and {v;, v3}€ E; and there are V' and V"< ${G) such that
V'e B,,\B,, and V"€ B,,\B,,.

Asvig V'thereisavse V' such that {vs, vs}e E. Asv, € V" thereisa voe V" such
that {vo, v1} € E. Now

{vo, v1}, {v1, v2}, {v2, v3}, {v3, ta}€ E

and also {vo, v3} € E (for vo, v3€ V") and {v1, v.} & E (for vy, vs€ V'). This contradicts
the comparability of the graph G.
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Hence the graph space T(G) of G has a binary comparable graph-connected

subbase B(G).
This completes the proof of the theorem. 0

Coroliary 5.3 (De Groot & Schnare [14]). Let X be a topological sapce. Then the
following statements are equivalent:
{a) X is a product of compact orderable spaces;
(i) X possesses a binary comparable subbase;
(iii) X is homeomorphic to the graph space of a comparable graph.

Proof. Apply Theorem 3.2 and Theorem 2.3. [

Corollary 5.4. Let X be a topological space. Then the following statements are
equivalent.
(i) X is connected compact orderable
(i) X possesses a connected graph-connected comparable subbase ;
(iii) X is homeomeorphic to the graph space of a connected contiguous comparable
graph.

Proof. Apply Theorem 5.2 and Theorem 4.3. 0

Corollary 5.5. Let X be a topological space. Then the foliowing statements are
equivalent:
(i) X is a product of connected compact orderable spaces;
(il X possesses a connected comparable subbase
(iii) X is homeomorphic to the graph space of a contiguous comparnble graph.

Proof. Combine Corollary 5.5 and Theorem 2.3. [

Adding countability conditions on the subbases and giaphs one easily obtains
characterizations of (products of) (connected) compact subsets of the real line (cf. De
Groot [12], Bruijning [4]).
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Note added in proof

Recently Van Douwen and Mills independently gave elementary proofs of the
supercompactness of compa: - tric spaces. In addition, Mills has shown that every
compact tepological gros,» ., ercompact.
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