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NOT EVERY Ki-EMBEDDED SUBSPACE IS K0-EMBEDDED 

JAN van MILL 

0. I n t r o d u c t i o n . All topological spaces under discussion are assumed to be 
Tychonoff. 

For any topological space X let T(X) denote the topology of X. If X C Y 
then a function K : T{X) —» r(Y) is called an extender provided t h a t 
K(U) C\ X = U for all U Ç T(X). In addit ion, X is said to be Kn-embedded in 
Y (cf. [3]) provided there is an extender K : r{X) -^ T(Y) such t h a t 

if n = 0 then *(0) = 0 and K(V) H K ( W ) = K ( F H IF) for all 

F, We r(Z); 

if » > 0 then K(VO) H . . . H * (7 n ) = 0 whenever F , H Vj = 0 for 

0 < i < j g » and 70f . . . , Vn G r ( X ) . 

T h e extender K is called a ^ - f u n c t i o n (cf. [3]). 
Eric van Douwen has asked whether there is a space X with a subspace Z 

which is i^i-embedded but not i£0-embedded. T h e aim of this note is to answer 
this question. 

Example 0.1. There is a separable first countable compact space X which 
has a closed subspace Z which is i^i-embedded bu t not i£0-embedded. 

Let n be a positive integer and let X C Y. An extender K : r(X) —> r(Y) is 
called an Mn-function (cf. [2]) if n!=o *(£/*) = 0 for all t/< G T(X) (i ^ w) 
satisfying Pil=o £A = 0- The subspace X is said to be Mn-embedded in K 

T h e following example answers another natural question. 

Example 0.2. For every n è 1 there is a compact space A^ which has a 
closed subspace Z„ which is ikfw-embedded in Xn bu t which is not M r e m b e d d e d 
in Xn for all i > n. 

T h e spaces A n in Example 0.2 unfor tunately are not first countable. 

1. Hyperspace - l ike e x t e n s i o n s . If A is a set and K is any cardinal , define 
(as usual) 

[A]<: = {B CA\ \B\ = K} 

[A]*<: = {BCA\ \B\ ^K} 

[A]«: = {BCA\ \B\ <K}. 
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Let X be a topological space and let n è 3 be fixed. Define 

Mn(X) : = [X]& - [X}\ 

In addition, for all A C X define 

(A)n : = {F G Mn(X)\ \F - A\ S 1} - {{*}| * € X - A] 

and 

( 4 ) n : = {Ft Mn(X)\\F^A\ ^ 2 ) U ( | x ) | x U | 

respectively. 

LEMMA 1.1. Let X be a topological space and let n ^ 3 be fixed. Then 

(a) (A)nC (A)nforallA C X; 
(b) /or any two A, B C X, if A C B then (A)n C (B)n and (A)n C (£)*; 
(c)ifAVJB = X then (A )n U ( 5 ) n = M n ( Z ) ; 
(d) if A, B C X and A r\ B = 0 then (A )n C\ (B)n = 0. 

The simple proof of this lemma is left to the reader. 

We now take the collection 

i(U)n\ Uer(X)}U\(U)n\ Uer(X)\ 

as an open subbase for a topology on Mn(X). By Lemma 1.1 the collection 

{(Z)n\ Z is a zero-set of X) KJ {(Z)n\ Z is a zero-set of X) 

is a closed subbase for Mn(X) which satisfies the conditions of subbase nor
mali ty and subbase regularity (in the sense of [5]). This implies t ha t Mn(X) 
is Tychonoff, cf. [5]. 

I t is easily seen tha t the function i : X —» Mn(X) defined by i(x) : = {x} 
is a topological embedding. We will identify X and i[X]. 

LEMMA 1.2. Let X be a topological space and let n ^ 3 be fixed. Then 
(a) X w closed in Mn(X); 
(b) X is first countable if and only if Mn(X) is first countable; 
(c) X is separable if and only if Mn(X) is separable; 
(d) X is compact if and only if Mn(X) is compact. 

Proof. The easy proofs of (a), (b) and (c) are left to the reader. To prove (d) 
first notice tha t if Mn(X) is compact then by (a) X is compact . Now assume 
tha t X is compact. Define Mi(X) = X. By induction on n (n ^ 2) we will 
show tha t Mn(X) is compact. Clearly M2(X) is compact. Now assume t h a t 
Mn-i(X) is compact. By the lemma of Alexander we need only show tha t a 
cover of type 

(*) {<[/,)„! u, e r(x) (i e 7)| w {(v,u v, e T(x) (j e J)\ 
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has a finite subcover. Since Mn-i(X) C Mn(X) and since by induction hypo
thesis Mn-\(X) is compact , we may choose a finite F C / and a finite G d J 
such tha t 

Mn^(X) C U ^ <#<>» ^ U * G (VX-

Define 

Z = [x = (xu . . . , *„> € X»| V » G F : | {*,, . . . , * „ } - £/4| > 1} 

n {* e x«| \/j e G-.\ {*, *„} - F,| > i}. 
I t is clear tha t Z is a closed subspace of the compact space Xn. Suppose tha t 
there is an x = (xi, . . . , xn) Ç Z such tha t i7 = {xi, . . . , xn\ has cardinali ty 
less than or equal to 2. Then 

HC\ (Ui,F UtU UKG VJ) = 0 

and since 

U i € F £ W U ^ G Vj = X 

this is a contradiction. We conclude tha t the func t ion / : Z —» Mn(X) defined by 

/ ( ( x i , . . . , xn)) \ X i , . . . , Xre j 

is well-defined. An easy check shows t h a t / is continuous. H e n c e / [ Z ] is com
pact . Obviously 

Mn(X) - (UHF (U^yJU^o ( F , ) J Cf[Z]. 

We conclude t ha t (*) has a finite subcovering. 

2. T h e e x a m p l e s . We first fix some notat ion. If A and B are sets, AB is 
the set of functions from A to 5 . We are interested in a2, for ordinals a ^ co. 
An element of a 2 can be seen as an «-sequence of 0's and l ' s . As usual we denote 
Un<« n2 by &2. For each / G -2 let 

/ ( / ) = {/ \ n\n£ co}, 

the set of initial sequences of/. I t is clear t ha t 

(1) if / , g G w2 are distinct, then / ( / ) H / (g ) is finite. 

Hence, { / ( / ) | / (z w2j is an almost disjoint collection of subsets of the countable 
set s2. 

The collection { / ( / ) | / G w2} has an impor tan t proper ty : 

(*) for every uncountable subset G of œ2 there is a g £ G and an infinite H C 
G — {g} such that 1(h) P\ I(h') C 1(g) for any two distinct, h,h' £ H. 

This was shown in [4]. 
T h e set T = &2 VJ w2 is a tree, part ial ly ordered by inclusion, the so-called 

Cantor tree, cf. [6]. The tree T is topologized in the following way: points of 
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#2 are isolated, and a basic neighborhood of / Ç "2 contains / and all but 
finitely many points of / ( / ) . 

We can now construct Example 0.1. 

2.1. Construction of Example 0.1. Let y T be a first countable compactification 
of T. Such a compactiflcation is described in [4]. L e t X = M$(yT) (cf. Section 1) 
and let Z = yT. Then X is separable and first countable (cf. Lemma 1.2). 

T h a t Z is i^i-embedded in X is trivial; it is easily seen tha t K : r(Z) —> r(X) 
defined by K(U) = (c7)3 is a i£i-function. 

Let us now show tha t Z is not i£0-embedded in X. The proof is an adapta t ion 
of a proof in [4]. 

T o the contrary, assume tha t K : r(Z) —> T(X) is a i£0-function. For each 
/ 6 "2 let L7(/) = * ( / ( / ) U {/}). Then [/(/) is a neighborhood of/ in X . Since 

{(vh\ft ve r(z)} 

is a neighborhood base of / in X (the reader should verify this) we can take 
V(f) G T(Z) such tha t 

/ e V(f) C <F(/)>3 C U(f) = K(I(J) U {/}). 

Since { F ( / ) 0 # 2 | / G w2} has cardinality 2" there is an uncountable G C w2 
and a point p (z &2 such tha t 

/> G f W F ( g ) n s 2 . 

By (*) above there is a g G G and an infinite H C.G — {g) such tha t 
/(A) H /(A') C 1(g) for any two distinct h, h' G # . Since V(h) H ^2 is 
infinite for all h £ H we conclude tha t 

\V(h) - U(g)U{g})\ht H] 

is a disjoint collection of nonempty subsets of Z. 
Since 1(g) \J {g} is clopen in Z so is W = Z — (1(g) U {g}). For every 

w (E WMet 0 (w) C Ŵ  be open such tha t 

w G 0(w) C <0(w)>8Cic(tV r) . 

By the compactness of W there is a finite i7 C W such tha t 

W C U , € F 0 ( x ) C I W <0(x)) 3 C K(W). 

Since T7 is finite there is an x £ F and there are distinct h, h' £ H such tha t 
O(tf) intersects both V(h) and 7(A') . Take p(h) G 0 ( x ) H 7(A) and p(h!) £ 
0(x) r\ V(h'). Notice t ha t p(h) je p(hf). Define 5 = {£, p(h), p(h')}. Then 

5 G (0(x))zr\ <F(A)>3n (F(^))3C K wn K ( /w u {A)) 
nK(i(h') \J \h'\). 
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Now, since 

K(W) nK(i(h) u {h}) r\K(i{hf) \j {h'}) CK(WH (/(A) U {/*}) 

n(i(h')uih'})) = *(0) = 0 , 
this is a contradiction. 

For the construction of Example 0.2 we need a theorem in [1]. Let N denote 
the set of na tura l numbers . 

T H E O R E M 2.2. (cf. [1]). Let n è 2. Let J C & (N) and let g : 0> (N)-+[</]<» 

such that for all A £ SP(N) we have A = U g(A). Then there is a collection 
tf G [SP(N)]n and for each H 6 tf there is a GH £ g (H) such that 

(i) njf = 0; 
(ii) /or all Se Ç [{G*| TT e J?\\n-X we have that C\ 38 *• 0. 

This gives us Example 0.2. 

2.3. Construction of Example 0.2. Let /3iV be the Cech-Stone compactification 
of N. Let n ^ 1 be fixed. Let F = 0iV U [0iV]n+2, regarded as a subspace of 
Mn+2(pN). Let X = 0 F a n d Z = 07V. 

We first show tha t pN is ATn-embedded in X. Indeed, define 

K : T(PN) -+T(X) 

by 

K(U): = X - c \ x ( Y - ((U)n+2n F ) ) . 

We claim tha t K defined in this way is an Afre-function. Indeed, take open sets 
Uo, . . . , Un e r (/37V) such t ha t n*=o Ut = 0. We claim tha t 

n"«o<£/<>»+2n Y = 0. 

Indeed, to the contrary, assume there is an F £ Pll=o (Ui)n+2 r\ Y. For each 
i e {0, 1, . . . , n) let Fi : = F H ^ Then | F , | è w + 1 and since \F\ = n + 2 
there is a point x £ 01=o ^V Then x d Pll=o £T* which is a contradict ion. 
Hence 

fYU<£A->n+2n r = 0. 

However, since F is dense in X, this implies t ha t Dl=o K ( £ ^ ) = 0. 
We now show tha t /37V is not M n + i -embedded in X. I t can easily be seen t ha t 

this implies t ha t /3N is not AT r e m bedded in X for all i ^ n + 1. T h e proof is 
inspired by a construction in [1]. 

Let p : T(/3N) —» r ( X ) be any extender. For all 4̂ C TV we have t ha t 

A CcW(^) C P ( C W ( 4 ) ) . 

Since c\pN(A) is compact , with the same technique as used in 2.1, there is a 
finite %(A) C r(/3iV) such t ha t 

cW(^) C U ( f W C p ( c l w ( i ) ) . 
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Define a function g : &>(N) -> [0>(N)]<" by 

g(A) = \Fr\N\Fe %(A)}. 

Notice that A = ^J g(A) for all A C N. By Theorem 2.2 there are 
Ao, . . . , An+i C Af and for each 0 -^ i < n -\- \ there is a G4 € g(A t) such that 

(a) fYS+<U* = 0; 

(b) nT=To G< H n " i ! + i Gt* 0 for all O ^ m ^ n + 1. 

For all 0 ^ w ^ w + 1 take 
%m € Oï=0 G » f\ C\i=m+i Gt. 

Since Olio 4̂ t — 0 we have that H = {Xi\0 ^ i ^ n + 1} has cardinality 
n + 2 and hence is a point of F. For all 0 ^ i ^ TZ + 1 take 7<\ G g (̂ 4 *) such 
that Ftr\N = d. Then 

Since P l l i cl^O^*) = 0 we find that p is not an ATre+i-function. 
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