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1. INTRODUCTION

Let X be a compact connected Hausdorff space. We say that X is a dendron
provided that for every two distinct points x,y € X there exists a point
z € X which separates x from y, i.e. X\{z} = U u V vhere U and V are disjoint
open subsets of X such that x € U and y € V. Dendrons are natural general-
izations of linearly orderable continua. In the last decade several results
concerning dendrons have been proved and the aim of this paper is to collect
some of these results and to present them in such a way that the underlying

ideas which led to these results will be recognized.
2. CONNECTIVITY PROPERTIES

In this section we collect some basic facts which will be important
throughout the remaining part of this paper. The letter D will always denote
a given dendron.

LEMMA 2.1. Take x € D. If C is a component of D\{x}, then C is open.

PROOF. Assume that A and B are disjoint open sets of D and that AuB = D\{x}.
We claim that A u {x} is connected. Suppose not, then there exists a pair of
clopen subsets U and V in A v {x} such that Un V=P and Uu V =Au {x}.

If x ¢ U, then U is an open subset of the open set A and hence open in D. U
is closed inset Au.{x} and hence closed inD. If x # V the same arguments hold. This
contradicts the connectivity of D and we conclude that A u {x} is connected.

Next we assume that some quasi-component Q (i.e. the intersection of a
maximal collection of clopen subsets) of D\{x} is not open. Then Q contains
a point q which is in the closure of D\(Qu {x}). Assume that z separates q
and x. If z ¢ Q then there is a pair of disjoint open subsets A and B such
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that ze A and qe B and AuB = D\{x}. However, we have seen that Bu {x} is
connected and so we conclude that ze Q. From the same argument we find that

Cu {x} is connected for every clopen subset C<D\{x} which misses Q. Therefore

u{cu {x} | C clopen in D\{x} and C n Q = #} = D\Q

is connected. However, q is a member of the closure of D\Q and hence {q} u
D\Q is connected and contains both q and x. Therefore z does not separate q
and x. This contradiction shows that Q is open.

Finally, Q is connected, since if Q] and Q2 would be a partition of Q
into two clopen parts, then each of those members would be clopen in D\{x}
and Q would not be a quasi-component. So the collection of quasi-components
coincides with the collection of components and the components of D\{x} are

open. [

COROLLARY 2.2. The colleetion
um) = {Uv < Dl 3x € D such that U is a component of D\{x}}

8 an open subbase for the topology of D.

PROOF. If x,v € D are distinct, then, since D is a dendron there are dis-
joint U,V € U(D) with x € U and y € V. By compactness this easily implies
that U(D) is an open subbase. [

Elements of U(D) rae called cutpoint components. Define
J() = {D\U| U ¢ U®D)}.

Observe that J(D) is a subbase for the closed subsets of D.
LEMMA 2.3. J(D) consists of connected sets.
PROOF. Follows directly from the proof of Lemma 2.1. [

A collection L of subsets of a set X is called cross—free provided that

for all LO,L1 e L it is true that LD c LI or L; e Lyor Lyn L = P or
L,.ulL

0 e X.

LEMMA 2.4, U(D) Zg cross—free.



PROOF. Assume that U; and U, are cutpoint components of b\{x]} (resp.

D\{xz}). If x, = x, then U, and U, are clearly either disjoint or equal, and

both those possibilities are permitted by the definition of cross—-free col-

lections. If X, # %, then we distinguish three subcases:

(a) x| € U2 and X, € Ul' Now each cutpoint component C of D\{xl} which does
not contain X, is a connected subset of D and hence, by connectivity

. S0 U, u U

(Lemma 2.1), is contained in U = D,

2 2 1
(®) x, ¢ U,. This means that U, is a connected subset of D\{x]} and hence
either is contained in or disjoint from the cutpoint component U, of

D\{xl}.

(c) X, ¢ Ul' This case is similar to the previous one. [
COROLLARY 2,5. J(D) Ze eross—free. O

A collection of subsets L of a setXis called normal provided that for

€ L there are S,,S, € L with

all disjoint LG’L] 0°°1

1 and S0 u S1 = X.

0 and Ll' A collection of sub-

sets L of a set X is called connected if there is no partition of X by two

The sets S, and 8, are called a screening of L

non-empty members of L.

LEMMA 2.6. Every cross-free closed subbase J for a comnected Hausdorff space
X 28 normal and hence J(D) is normal.

PROOF. Take two disjoint non-empty members T and T, from J. Since TO is

closed and X is connected there exists a point to € TO n (X\To)h and simi-
larly we find a point tpeTn (X\T])_. Since X is Hausdorff we can find
two basic closed sets B0 and BI such that BO u B] = X, g ¢ Bl and t é BO'
Moreover,

BO= FOUF u...uFm and B, = F

1 1= Tt YEo Voo VE,,

for a suitably chosen finite subcollection FG""’Fn of J. Without loss of
generality we may assume that no F. is contained in some Fj' Assume that

ty € Fi n Fj. Then t ¢ Fi U Fj and since J is cross-free we conclude that
either EF, < Fj or Fj c Fi' This means that we can have at most one F, say

F oo which contains t, and onme F, say F s which contains .



If some F contains neither t0 nor t] but has an intersection with F0

then we can choose t, € Fn FO and the same argument shows then that F c FO
and hence F is superfluous. So we have FD’ Fn’ and a collection of F's dis-
joint from Fy and F - If there is a point ty e F vhich is not contained in
Fo 0
partition of the space in three disjoint closed subsets, namely FO, Frl and
OUFn=X.
Finally we show that Fn n T0 = f. Since tg € TO\Fn amd £, € Fn\TO’ and

u Fn then a similar argument shows that F. n Fn is empty and we have a

U{Fi| 0 <i<n}. This is a contradiction and we obtain that F

since t. is neither in the interior of T, nor in the closure of Fn we obtain

0 0
that T, U r # X. We conclude that T. n B P and similarly that TynFq= )]

0
which means that J is normal. [

0

A collection of subsets L of a set X is called binary provided that for
all M c L with "M = ¢ there are M,N ¢ M with M n N = 0.

LEMMA 2.7. If X 78 a compact connected Hausdorff space and its closed sub-
base J is eross—free then J ie binary. Consequently, J(D) 18 binary.

PROOF. Suppose not. Assume that M is a subfamily of J in which every two
members have a non-empty intersection. We have that X is compact and so

NM = P implies that there is a finite subcollection of M containing a mini-
mal number of sets Ml,...,Mn which has an empty intersection. Now if i # j
then M. n P% # @ and M, is not contained in FH. So M; u Mj = X. In particu-
lar, Mi u Hn = for X for 0 < 1 < n and hence Mn u [N
M on Cn

o<in Mi] = X. Moreover,

Ok e M.] = p which implies that M is clopen, contradicting that X

is connected. [

If X,y € X and if J is a subbase for X then put
IJ(x,y) = N{T ¢ J! x,y € T}.

For notational simplicity, IJ(D)(x,y) will be denoted by I(x,y).

LEMMA 2.8. If C c D Zs an intersection of elements of J(D), then the func—

tion ro: D> C defined by

{rc(x)} = N I(x,c) nC
ceC

18 a retraction.
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PROOF. From the binarity of J(D), Lemma 2.7, it follows that

E= N I(x,e) nC# 0.
ceC

0°€; € E. Find TO’TI e J(D) with

€ Tl\T0 and TU u T1 =D, If x ¢ TD then

Suppose that there are two distinct points e

e. € TO\T], e

0 1

E= N I(x,e) nCc I(x,eo) &'T

E]
ceC 0

which is impossible since e ¢ T.. Similarly we find that x ¢ Tl' This con-

0

tradiction shows that L is well-defined. Obviously, rC(x) = x for all x € C.

The only remaining part is to show that . is continuous. Let x € D and
suppose that rc(x) ¢ An C, for some A in J(D) which intersects C. Since J(D)
is binary there is a ¢ € C such that I(x,c) n A = f, and we can find a B >
I(x,c) such that B € J(D) and B n A = P. Now we can find two sets Sl and 52
in J(D) such that S] u S2 =D, S] nA=f and S2 nD=p (Lemma 2.6). For
every point p of the open set D\S2 we obtain that rc(p) ¢ A because I(p,c) c

$; which misses A. This proves continuity. [

The retraction of Lemma 2.8 is called the canonical retraction of D on-
to C.

COROLLARY 2.9. If C c D <8 an intersection of elements of J(D), then C is
connected. [

COROLLARY 2.10. D s loeally connected.

PROOF. Take x € D and let U be an open neighbourhood of x, Since, by Corol-
lary 2.2, J(D) is a closed subbase for D, we can find finitely many T5T)s.--
...,Tn e J(D) with x ¢ lﬁgsn T, > D\U. Since J(D) is binary (Lemma 2.7) for
each i £ n we can find Ti e J(D) with x € Ti and Ti nT, = P (observe that
{x} = n{T ¢ J(D) [x € T}). By the normality of J(D), (Lemma 2.6) we can find
for each i £ n an element T; ¢ J(D) with Ti G TE, X € int(TE) and T;f\Ti = p.

Put

n T .
I<ign

H
]

Then T is a neighbourhood of x which is contained in U and which, by Corol-

lary 2.9, is connected. [



For all x,y € D define
S(x,y) = {p € D| p separates x from y} v {x,y}.

We claim that S(x,y) = I(x,y), where I(x,y) is defined as above. We establish

that eclaim in our next two lemmas.

LEMMA 2.11.
S(x,y)  I(x,y).

PROOF. Take p € S(x,y)\{x,y}. Then D\{p} = U u V, where U and V are disjoint
open subsets of D with x € U and y € V. Since I(x,y) is connected (Corollary

2.9) and since x € LI(x,y) n U, v € I(x,y) n V, this implies that p e I(x,y).0

LEMMA 2.12.
I(x’Y) c S(X,Y).

PROOF. Let p € I(x,y)\S(x,y). Suppose that q ¢ S(x,y) and that Ux(q) (resp.
Uy(q)) are the cutpoint components of x (resp. y) in D\{q}. If p ¢ Ux(q) u
Uy(q) then there is a cutpoint component Up(q) and x and y are both in
D\Up(q) , which means that p ¢ I(x,y). Therefore every q € S(x,y) either se-
parates x and p or y and p and S(x,y) < S(x,p) u S(y,p).

Conversely, if q € S(x,p) then no cutpoint component of D\{q} contains
both x and y, since in that case D\Up(q) contains both x and y in contradic-
tion with p € I(x,y). So q € S(x,y) and S(x,p) < S(x,y). Similarly S(p,y) <
S(x,y). Therefore

S(x,y) = S(x,p) u S(p,¥).
Define

A = u U (q) and A = u U_(q)
qeS(x,p) Y ges(y,p) 7

Then Ax and Ay are both open. Define

Ap = D\(Ax u A‘y u {ph).
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We claim that AP is open. Let a € Ap and separate a and p with a point s.
Then s ¢ (S(x,p) u S(y,p)). If Ua(s) n Ax # P then 3r € S(x,p) such that:

U,(8) nU () # 0, p#£U(s)uU(n),
ace Ua(s)\Ux(r), X € Ux(r)\Ua(s),
which contradicts Lemma 2.4. Therefore Ua(s) naA = 0D, and Ua(S) n Ay = p.

ae
to open parts, i.e. p is a cutpoint which separates x and y. This contradicts

U Ua(s) = Ap so we obtain that Ax’ Ay and A are a partition of D\{p} in-

the assumption that p ¢ S(x,y) which proves the lemma. [J
COROLLARY 2.13. If x,y € D, then I(x,y) = S(x,y). O
COROLLARY 2.14. If C c D Zs a subcontinuum, then C = N{T ¢ J(D) | C < T}.

PROOF. Take x ¢ C and ¢ € C arbitrarily. Since I(x,c) is connected and x ¢ C
there has to be a point y € I(x,c)\C different from x. By Corollary 2.13, y

separates ¢ from x. Let U be the component of D\{y} containing x. Since C is
connected and U is open, D\(Uu {y}) is open. Since y ¢ C we may conclude that

CnU=@. Consequently, T = D\U ¢ J(D) contains C but misses x. [J

COROLLARY 2.15.

(1) S(x,y) =N{CcD|x,y e CandCis a continuum}.

(2) Each subcontimuum C ¢ D 78 a vetract of D under the retraction r
defined by

C: D=+C

{rc(x)} = N S(x,c) n C.
ceC

(3) The intersection of an arbitrary. family of subcontinua of D is either
empty or is a continmuum.

PROOF. Combine Corollary 2.14 and, respectively, Corollary 2.13 and Lemma
2.8. 0

The retraction L is called the canonieal retraction of D onto C.
LEMMA 2.16. If a,b,c € D then S(a,b) n S(a,c) n S(b,c) s a singleton.

PROOF. By Corollary 2.13 and the binarity of J(D) (Lemma 2.7), we have



E = S(a,b) n S(b,c) n S(a,c) # 0.

Assume that there are distinct x,y € E. Find S,T € J(D) with x € S\T, y € T\S
and Tu S = D. At least two points of {a,b,c} must be contained in S or T.

So, without loss of gemerality, a,b € S. Then
E < S(a,b) = I(a,b) < 8,

which is a contradiction since y € E\S. []

LEMMA 2.17. If x,y € D are distinet, p € L1(x,y) and q € T(x,y)\I(x,p), then
q € I(p,y).

PROQOF. Clearly q # x and if q = y then there is nothing to prove. So assume
that q # y. Write D\{q} = U u V vhere U and V are disjoint and open, x € U
and y € V. Since q ¢ I(x,p) and since I(x,p) is connected (Lemma 2.8) we con-
clude that I(x,p) < U. Therefore, by the connectivity of I(p,y) this implies
that q € I(p,y). O

COROLLARY 2.18. If x,y € D are distinct, then S(x,y) 78 a linearly ordered
continuum with order defined by p < q ©ff p separates x from q.

PROOF. From Corollary 2.13 the relation < can also be defined by p < q iff
p e I(x,q). If p < q and g £ p then p € I(x,q), consequently

p € I(x,p) n I(p,q) n I(x,q).

Similarly

q e I(x,p) n I(p,q) n I(x,q).

This implies that p = q (Lemma 2.16). Now we show that < is a partial order.
If p<qand q £ r then p € I(X,q) and q € I(x,r). Therefore p ¢ I(x,q) <
I(x,r) or equivalently, p £ r. Let us now show that < is linear. Take p,q €
I(x,y) such that p £ q and q ¢ p. Then p ¢ I(x,q), hence p € I(q,y) (Lemma
2.17). Similarly, q € I(p,y). Therefore

p € I(p,q) n I(p,y) n I(q,y)

and



q € I(p,q) n I(p,y) n I(q,¥y),

consequently by Lemma 2.16, p = q which is a contradiction.

Let us now show that < generates the topology of I(x,y). Clearly

{q € I(x,y) | q < p} = 1(x,p)
and by Lemma 2.17,
{q € I(x,9) [ p < q} = 1(p,Yy).

Therefore the initial segments are closed in I(x,y). By the compactness of

I(x,y) this implies that < generates the topology of I(x,y). O

NOTES. (for Section 2). Lemma 2.1 (that cutpoint components are open) is due
to KOK [9]; see also WARD [23].

The fact that the intersection of an arbitrary family of subcontinua of
D is a subcontinuum and that each set of the form S(x,y) is orderable by the
order of 2.18 is well-known. See HOCKING & YOUNG [8], MOORE [16], and WHYBURN
[27]. The approach developed in this section is implicit in VAN MILL &
SCHRIJVER [11], VAN MILL & VAN DE VEL [12] and VAN MILL [10]. The Corollaries
2.10 and 2.14 and some other results are related to the results of GURIN [7],
PROIZVOLOV [18], and WARD [23].

3. THE THEOREM OF CORNETTE AND BROUWER

In this section we will show that each dendron is a continuous image
of an ordered continuum. We will assume that the reader is familiar with the
theory of inverse systems and inverse limits.

Let L and M be ordered continua. A continuous surjection f: L -+ M is
called order preserving if £(x) < f(y) for all x,y ¢ L with x < y.

LEMMA 3.1. Let (La,fus,ae A) be an inverse system of ordered continua such
that each fu

tiruum,

18 order preserving. Then lim(Lu,f aeA) P8 an ordered con—
-+

B

aB’®

PROOF. For each o € A let Tyt L > L, be the projection. Define an order <

on L by putting
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x <y iff Vo e A: ﬁu(x) < ﬂd(y).

It is clear that < is a linear order on L which generates the topology of L.
It is well-known that the inverse limit of an inverse system consisting of

continua is a continuum. Hence L is an ordered continuum. [J

LEMMA 3.2. Let D be a dendron and let x be an ordinal. For each o < x let
Dy'&D be a subcontinuum such that B < o implies that D, © D+ If Tyt
D, * DB denotes the canonical retraction, then

1lm(DG,raB,a <k)

ig homeomorphic to the closure of Y D, .

PROOF., Let D denote the closure of U D and for each a < x let ¥ : D =D
S — K o<k o o K o
be the canonical retraction. It is easy to see that for each a < B < k the
diagram below commutes, which implies, by compactness, that the function

y: D+ lim(Da,r a<K)

af?

defined by ¢(x)a = ra(x) is a continuous surjection. It therefore suffices

to show that { is one to one. To this end, take distinct x,y € DK. Let V and
W be disjoint and connected neighbourhoods of, respectively, x and y (Corol-
lary 2.10). It is clear that for some ¢ < k we have that V n DOl £ D# Da nw.

Take a point s € V. n Da and a point t € W n Da' Since V is a continuum,
I(x,8) ¢V
which implies that

{r(x)} = N I(x,d) nD c I(x,8) <V
deDﬂ @
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(Corollary 2.15). We conclude that rd(x) € V and, similarly, ra(y) € W. Con-
sequently, ra(x) # ra(y). Therefore Y(x) # ¥(y) and ¥ is one—to-omne. [

We now come to the main result of this section.

THEOREM 3.3. Let D be a dendron. Then D is a continuous image of an ordered

continuum.
PROOF. Let «k = |D| and let

{dal @ <k and o is a successorl,
enumerate D.

By transfinite induction, for every a < k we will construct a subcon-

tinuum Du © D and an ordered continuum La and for each B < a an order pre-

serving map £ _: L -+ L_ and a continuous surjection m_: L_ -+ D such that
o’ o B a’ Ta a
for each B < o the diagram below commutes. Here rmB denotes the canonical
retraction.
£
LB < aB Lu
TfB 'l'l'a
D, &—
B " Da
apf

In addition we will comstruct the Da's in such a way that d, €D, for
each successor a < k. The construction is a triviality.
Let Dy =L, = {do} and let m, be the identity. Suppose that we have con-

structed everything for all g < a. If o is a limit put

D =(U D) d L = lim(L_,f
# (B<a B) i o ip( B BH’B( &)

and define all maps in the obvious way (applying the Lemmas 3.1 and 3.2). If

o is a successor and if du €D then we don't do anything, i.e. put D, =

a-1
D 3 3 i -
] etec. So suppose that d“ ¢ Du—l' Let r Da—*Da_1 be the canonical re

traction and put

Dy = D, ; v I(d ,r(d)).



Observe that Da- n I(da’r(da)) = {r(da);. Take a point y € La~ with

1
replace {y} be an "interval" which maps onto I(du’

1
Ty @) =1@). In L _,

r(da)) in such a way that the endpoints of this interval are mapped onto
r(du) (one can take for example two copies of I(du’r(da)) with the points
corresponding to da identified).

Let La be the resulting space and let w: La B be a map with the pro-

perty that
ﬂa(x) = ﬁu_](x) if x € La_]\{the endpoints of the added intervall.

In addition, let £ 4 La - La 1 be the map which collapses the added in-
3 =
terval to the point y. It is clear that everything defined in this way is as
required. Now put

L =1lim(L ,f _,a<k).
T

aB?
By Lemma 3.1, L is an ordered continuum which, by the diagram, maps onto D.[]
COROLLARY 3.4. Every dendron is hereditarily normal.

NOTES. (for Section 3). Theorem 3.3 was first shown by CORNETTE [3] and in-
dependently, but later, by A.E. BROUWER [1], Our proof is a simplification
of their ideas; see also PEARSON [17] and WARD [26].

A Souslin dendron is a dendron D which satisfies the countable chain
condition, is not separable, and which moreover has the property that each
countable subset is contained in a metrizable subcontinuum of D. If the above
program is carried out with some extra care, it can be shown that each
Souslin dendron is a continuuous image of a Souslin continuum. In addition,
each Souslin continuum can be mapped onto a Souslin dendron. Notice that a
Souslin continuum (= a linearly orderable CCC non-separable continuum) is
not a Souslin dendron. For details see VAN MILL & WATTEL [13].

Lemma 3.1 is due to CAPEL [2], and Corollary 3.4 is due to GURIN [7],
see also PROIZVOLOV [19].

4, THE FIXED POINT PROPERTY

In this section we show that every dendron has the fixed point property.

LEMMA 4.1. Let L be an ordered continmuum. Then L has the fimed point property.



PROOF. Let f: L -+ L be any self map and put
U={xel|x<f(x)}, and V={xelL|f(x <x}

respectively. Then U and V are clearly open. Suppose that f has no fixed
point. Then U u V = L and hence, since U n V = P, by connectivity, either
U=pPor V=@. If U = @, then f(min(L)) < min(L), and if V = 0 then max(L) <
f(max(L)), which is impossible. [J

Let D be a dendron. A point x € D is called an endpoint if D\{x} is con-
nected. A finite dendron is a dendron with only a finite number of endpoints.

Note that a finite dendron is nothing but a finite commected acyeclic graph.
LEMMA 4.2. Let D be a finite dendron. Then D has the fixed point property.

PROOF. Let E denote the set of endpoints of D. We induct on |E|. If |E| < 2
then use Lemma 4.1. So assume that the lemma is true for n and assume that

|E| = n+l; list E as {el""’en+l}' Put
D' = U{I(ei,ej)| i,j e {1,2,...,n}}.

Then D' is a subcontinuum of D and hence D' is a dendron (Corollary 2.15(1)).

Also D' has precisely n endpoints. Let r.,: D = D' be the canonical retrac-

D
tion (Corollary 2.15(2)) and put x = r. ,(en+]). Observe that

Vo= i _
I(en+],x) n D' = {x} and that I(en+l,x) uD'=D.

By Corollary 2.18, I(en+],x) is an ordered continuum. Let f: D =+ D be any
self-map. Assume that f has no fixed points. If f(x) € D' then define
g: D' = D' by

g(t) = £(t) if £(t) € D'

g(t) = x if £(t) ¢ D'

(we just collapse the interval I(en+l,x) to the point x). By induction hypo-
thesis, g has a fixed point. This point cannot be x and hence must be a fix-—
ed point of £. If £(x) € I(en+],x) then we collapse D' to the point x and

proceed in the same way. This gives us the required contradiction. []



We now come to the main result of this section.
THEOREM 4.3. Let D be a dendron. Then D has the fimed point property.

PROOF. Let £: D + D be any self-map. If f has no fixed point then, by com-
pactness and by the local connectedness of D (Corollary 2.10), there is a
finite cover U of D by non-empty subcontinua such that for every U e U we
have that

Un £(U) = P.

Let F ¢ X be finite such that for all U € U both Fn U and F n £(U) are non-
empty. Define

D' = U{I(x,y) | x,y € F}.
Observe that D' is a finite dendron. Define g: D' = D' by

g(x) = rD.(f(x)),

where r_,: D - D' is the canonical retraction (Corollary 2.15(2)). We claim

D'’
that g has no fixed points which contradicts Lemma 4.2. Take x € D'. There
is a U € U containing x. Then £(x) € £(U). Since £(U) is a continuum that

intersects D' (observe that F < D'), by Corollary 2.15(2),
r (E(x) e £(0),

consequently, g(x) # x since U n £(U) = 0. O

NOTES. (for Section 4). Lemma 4.1 is well-known. Theorem 4.3 was first shown
by SCHERRER [20] and generalized by WALLACE [22], see also WARD [24], [25].

5. A CHARACTERIZATION OF DENDRONS

In this section we show that a Hausdorff continuum X is a dendron if

and only if X possesses a cross—free closed subbase.

LEMMA 5.1. Let X be a T, space and let J be a binary closed subbase for X.
Then for any distinet x,y € X there are disjoint TO,T] e Jwith x € T and
v £ T..



PROOF. Observe that, since X is T, and since J is a closed subbase, for

1
every point z € X it is true that

{z} = N{T ¢ J] z € T}.

Consequently, the desired result follows directly from the binarity of J. [I
We now come to the main result in this sectiom.

THEOREM 5.2. Let X be a Hausdorff continuum. Then X ig a dendron iff X pos—

sesses a cross—free closed subbase.

PROOF. For the implication '"dendron = 3 cross-free closed subbase" see Sec-
tion 2. So let X be a Hausdorff continuum and let J be a cross—-free closed

subbase for X. Let x,y € X such that x # y. Let x € T, and vy ¢ T] such that

0
TO’T] € J and Tgn T, = P, (cf. 5.1). According to Lemma 2.6 we can find
SO’S] € J such that SO U Sl = X, and S0 n T] =p= Sl n TO.
Define

A={TeJ|Tus,= X}

0
Since X is connected we have that A u {SD} has the property that every two
of its elements meet and consequently, by binarity of J (Lemma 2.7), (NA) n
S0 # f. We claim that this intersection consists of one point.

Assume to the contrary that 22 € (NA) n §y such that z # Z- In the
o€ RO\RI and z; € RI\RO
€ NA we have that R, ¢ A and conse-

same way as above there are RO’RI € J such that z
and Ry U R; = X. Since 24 ¢ R, and z,

P v S0 # X. Hence Sg <R or Ry < S0 because R, nS,= p is impos-

sible since z, € R] n SO' However, this implies that R, < S0 since z, ¢ R,.

With the same technique one shows that RO c So; but this is a contradiction

5 = (NA) n S then 2,
¥y, since S, and NA are closed subsets of X such that (NA) u S

quently R

because SO # X. Let z is a separation point of x and

0~ X and
XxeSjyand ye NA. This proves that X is a dendron. []

NOTES. (for Section 5). Theorem 5.3 is due to VAN MILL & SCHRIJVER [11] and
is related to a characterization of ordered spaces in VAN DALEN & WATTEL
ra1.
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6. A CHARACTERIZATION OF SUBSPACES OF DENDRONS

In this section we will use the results of the previous sectioms to
show that a Hausdorff space X can be embedded in a dendron iff X has a cross-
free closed subbase. We first show how to modify a given cross—free closed
subbase to one with certain additional pleasant properties. Then we use this
modified subbase to obtain embeddings into dendroms.

A closed subbase S for a space X is called a T]—subbass provided that
for all x ¢ X and S € S not containing x there exists an element T ¢ S with

xe Tand Tn S = P.

LEMMA 6.1. Let X be a Hausdorff space with a cross—free closed subbase S.
Then there ie a cross—free closed subbase for X which in addition is normal
and T,.

PROOF. First of all we extend S to a larger subbase 8% by taking:
t
S*=Su {{p}t|pex}

(i.e. we add all singletons to the subbase). In this case St is still cross-—
free because {p} n {q} = @ for all p # q and either {p} n S = P or {p} = 8
for each S € S. Clearly the subbase St is a T, collection.

Next we add for each clopen S € St also its complement and obtain
st=sty {X\s|se St and s is clopen}.

Also S™ is a T1 collection which is cross—free since if S,R € St then
implies X\S > X\R and (X\S) U R
implies X\S < X\R and (X\S) n R
§ implies (X\S) u (X\R)
X implies (X\S) n (X\R)

X,
o,
X and R © X\S,
P and X\S < R.

1

=TT B
o N

vt vr v o=

i

We now show that S" is not only cross-free but is in addition normal.

Let R and S be two disjoint members of 8™, If S is clopen then also X\S
is in S™ and we obtain a screening between S and R by S and X\S, and the
same holds for R. If neither S nor R is clopen then we can find a point reR
and a point s € § such that r ¢ CEX(X\R) and s € Cﬁx(X\S).



Next we will derive a screening of {s} and {r} by means of two subbase
members. Since X is Hausdorff we can find two basic closed subsets Bs and Br
such that Bs u Br =X, rd BS and s ¢ Br‘ Br is a finite union of subbase
members F_.,...,F_, and B_is a finite union of F ,,...,F

rl m s sl sm

Define F = {F_.} u{F_.} and F_ = {F .| s ¢ F_.}, then for F_. and

si T s s] sj si
F . € F_ we have that
5] s

seF.nF. and v d F . uF._.
si sj si sj

hence either F;cF_or st c Fsi and so there exists a largest member

FS = UFs e F. In thesgame way there is a maximal Fr in F which contains r.
We now have two cases. If Fs u Fr = X then we have obtained our screening
with two members of S.

In the other case we can find a point x in X\(FsljFr). Let F_ be the

maximal member of F containing x. Since
r ¢ F U FS; s € FS\Fx and x € Fx\Fs
we have

F nF_= p and similarly Fx n Fr = f and F_n Fr = pf.
Consequently, we obtain a partition of the space into three disjoint closed
parts: Fs’ Fr and U{FXI x ¢ Fs u Fr}. (The last collection is closed since
it is the union of a finite collection because F is finite.) This means that
Fs is clopen and X FS is in S™.

Anyway we obtain a screening of s and r by means of two subbase members,
call them F; and F;. Now S does not contain a neighbourhood of s and F; is
closed and does not contain s and hence S u F; # X. Moreover, s ¢ S\F; and
T e F;\S and therefore F; nS=¢ and similarly F; n R = @. Since F;U F; =X

we have R ¢ F; and § < F; and we obtained a screening of R and S. [J

REMARK 6.2. In the previous lemma the Hausdorff property cannot be omitted
since in an infinite space with the cofinite topology the collection of all

singletons is a cross—-free T, subbase, but it cannot have a T, normal subbase

1 1

since a space with a T, normal subbase is completely regular (cf. [51).

1

A collection 8 of subsets of a set X is called strongly connected pro-

vided that X cannot be partitioned into finitely many non-empty elements of S.



LEMMA 6.3. Let X be a set and let S be cross—free and connected. Then S is
strongly connected.

PROOF. From 6.1 it follows that S is normal and T, - Assume that there exists
a number n with the property that there is a minimal collection 51,52,...,Sn
of mutually disjoint sets such that lsgsn Si = X, but for every number small-
er than n there is no such partition of X with members of S. Since Sl and

Sn are disjoint there are two subsets T, and T4 in S such that I, n Sn =p

and Tn nsS, =@ and Tn u T1 = X. Let 1 < j < n then either Sj n Tl # 0 or

1
Sj nT #90, say Sj n T, # §. Then Sj U T, # X because S_ is disjoint from
both, and therefore sj © T Let J = {j | sj € T,}. Then iltJJ S; U T,

a disjoint cover of X with less than n members. This contradiction shows our

= X, is

lemma. O

COROLLARY 6.4. Let X be a compact Hausdorff space and let S be a cross—free
connected subbase for X. Then X is comnected (and consequently, X is a den—
dron) .

PROOF. Suppose that X is equal to G U H with Gn H = § and G and H are closed.
Then H is an intersection of a collection of closed base members {Ba}aeA for
some index set A. Since ﬂBa n G =P and since X is compact there is a finite
subcollection of Bu's which misses G and therefore G and H are both finite
intersections of finite unions of members of S. We could also write G and H

as finite unions of finite intersections of subbasic closed sets. Let m be

the minimal number such that there are G .,Gm such that:

12"
(a) Gl""’Gm are non-void intersections of finitely many subbase members;
(b) Gu...uG =X;

(¢) There is a number k < m such that

U Gi #P0+ U Gy

1gi<k k<i<m

and

(v Gi) n(Uu Gi) = 0.

1<i<k k<i<m
We claim that G; n Gj =pfori#j, (w.l.o.g. G]._,Gj c G). Suppose not. Take
a point x ¢ Gi u Gj' Then there are subbase members Si and S. such that
G; < Si ~and Gj C'Sj but x ¢ Si u Sj' Now Si n Sj # P and 5; U Sj # X, so

either Si < Sj or Sj c Si and in both cases the largest of the two contains



G. U G.. Therefore

i J
G. uG, =n{sS e S|G, uG, cS8}.
i i i J

But now we can decrease the number m by taking a finite intersection of this
collection which misses H, instead of both G and Gj' Next we prove that
each Gi is a member of S. Suppose that Gi ¢ S, and let m # i. Then there is
a member T € S such that T n Gm = @ and Gi c T. The sequence Gl""’Gi—]’T
Gi+1""’Gm is also a sequence which satisfies (a), (b) and (c¢) and we con-
clude that T n Gj = P whenever | £ j < mwith j # 1 and Gi cT, so Gi = T.
We found a finite collection of pairwise disjoint members of S which cover

X. This contradicts Lemma 6.3. [

Let S be a subbase for a space X. The superextension A(X,S) has an un-
derlying set, the set of all maximal linked systems in S with topology gen-
erated by taking the collection

={s|s e S},
where
o MM e A(X,S) and S e M},

as a (closed) subbase. The following facts are well-known and easy to prove:

- 8T is binary (as a consequence, A(X,S8) is compact);

- if S is normal then A(X,S) is Hausdorff;

- if S is a T, collection then the function i: X + A(X,S) defined by i(x) =
{SeS|xes}isan embeddlng,

- S is comnected iff S’ is connected.

For details, see [21]. Superextensions were introduced by DE GROOT [6].

LEMMA 6.5. Let X be a space and let S be a closed subbase of X with the fol-
lowing properties:

(a) S is a T, collection;

(b) S is normal;

(c) S is cross—free.

Then X can be embedded in a dendron T.



PROOF. If 8 is a connected subbase then A(X,8) is a compact space with a
cross—free connected subbase S+, and now it follows from 6.4 and 5.2 that
A(X,8) is a dendron which contains X.

If S is not connected, then we extend X to a space Y and S to a subbase
S in such a way that S is a connected subbase for Y, and since A(Y,S") con
tains X as a subspace we have that X is a subspace of a dendron.

Let {<Ha’Ka>] o € A} enumerate all the pairs <H,K> € S*S such that K =
X\H (in such a way that <H,K> and <K,H> do not both occur). Let H = {Ha|
@ € A} and K {Ku| o € A}, Define

e
]

X u (IxA), where I is the open unit interval (0,1).

For a € A we define

Ay(@) = {B € A\{a} | Hy cH or K, c i},

B

and

Al(u) {B € A\{u][ HB > Ha or K, o Ha}'

8
Thus A = Ao(a) u Al(u} u {a}. For o € A define

H: =H u (Ixa5(@), K: =K U (IxA (@).
Then for r € I we define

H:r = H U ((0,r)x{a}) and K:r = K; u ([r,1) x {a}).
For each § € S\(HuK), 1let

A(S) ={a e A|H cS or K c S};

[+3 o

then let

T =8 u (IxA(S)).

Finally, set



It is easily verified that S 1is a connected cross—free subbase satisfying

(a) and (b). O
We now come to the main result of this section.

THEOREM 6.6. A Hausdorff space X can be embedded in a dendron iff X possess—
es a cross—free closed subbase.

PROCF . Corollary 2.5 states that a dendron has a cross-free closed subbase,
if we restrict ourselves to a subspace X then the collection of all restric-
tions of subbase members is still cross-free. Conversely, if X possesses a
cross—free closed subbase, then Lemma 6.1 states that X possesses a cross—
free closed subbase which is both normal and T,. From Lemma 6.5 it follows
that X can be embedded in a dendron. [J

NOTES. (for Section 6). Lemma 6.3 and Corollary 6.4 are due to VAN MILL &
SCHRIJVER [11]. All other results in this section can be found in VAN MILL &
WATTEL [141].

In [15] the authors showed that for compact X the following statements
are equivalent:
(1) X is orderable;
(2) X has a weak selection;
(X has a weak selection iff there is a map s: X2 -+ X such that s(x,y) =

s(y,x) € {x,y} for all x,y € X.)

This result suggests the natural question whether for dendrons there is
a similar characterization, i.e. is there a natural number n ¢ IN and alge-
braic conditions on a map s: X® > X such that a continuum X is a dendron if
and only if X has such a map? For this question Ward has given a satisfactory
solution in [24], in which he states:

A compact Hausdorff space is a dendron if and only if there exists a
continuous function m: X x X + X such that
(i) m is idempotent, i.e. m(x,x) = x;
(ii) m is associative;
(iii) m is commutative, i.e. m(x,y) = m(y,x);
(iv) m is monotone;

(v) if m(a,x) = a and m(b,x) = b, then m(a,b) ¢ {a,b}.
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