SUPEREXTENSIONS WHICH ARE HILBERT CUBES

by

J. VAN MILL (Amsterdam) and A. SCHRIJVER (Amsterdam)

Abstract

It is shown that each separable metric, not totally disconnected, topological space admits a superextension homeomorphic to the Hilbert cube. Moreover, for simple spaces, such as the closed unit interval or the n-spheres S^n, we give easily described subbases for which the corresponding superextension is homeomorphic to the Hilbert cube.

1. Introduction

In [6], DE GROOT defined a space X to be supercompact provided that it possesses a binary closed subbase, i.e., a closed subbase \mathcal{S} with the property that if $\mathcal{S}^c \subset \mathcal{S}$ and $\cap \mathcal{S}^c = \emptyset$ then there exist $S_0, S_1 \in \mathcal{S}$ such that $S_0 \cap S_1 = \emptyset$. Clearly, according to the lemma of ALEXANDER, every supercompact space is compact. The class of supercompact spaces contains the compact orderable spaces, compact tree-like spaces (BROUWER & SCHRIJVER [4], VAN MILL [10]) and compact metric spaces (STROK & SZYMAŃSKI [14]). Moreover, there are compact Hausdorff spaces which are not supercompact (BELL [2], VAN MILL [12]). There is a connection between supercompact spaces and graphs (see e.g., DE GROOT [7], BRULIJNING [5], SCHRIJVER [13]); moreover, supercompact spaces can be characterized by means of so-called interval structures (BROUWER & SCHRIJVER [4]).

Let X be a T_1-space and \mathcal{S} a closed T_1-subbase for X (a closed subbase \mathcal{S} for X is called T_1 if for all $S \in \mathcal{S}$ and $x \in X$ with $x \notin S$, there exists an $S_0 \in \mathcal{S}$ with $x \in S_0$ and $S_0 \cap S = \emptyset$). The superextension $\lambda_\mathcal{S}(X)$ of X relative the subbase \mathcal{S} is the set of all maximal linked systems $\mathfrak{M} \subset \mathcal{S}$ (a subsystem of \mathcal{S} is called linked if every two of its members meet; a maximal linked system or MLS is a linked system not properly contained in another linked system) topologized by taking $\{(\mathfrak{M} \in \lambda_\mathcal{S}(X) | S \in \mathfrak{M}) | S \in \mathcal{S}\}$ as a closed subbase. Clearly, this subbase is binary, hence $\lambda_\mathcal{S}(X)$ is supercompact, while moreover X can be embedded in $\lambda_\mathcal{S}(X)$ by the natural embedding $i : X \rightarrow \lambda_\mathcal{S}(X)$ defined by $i(X) := \{S \in \mathcal{S} | x \in S\}$. VERBEEEK's monograph [15] is a good place to find the basic theorems about superextensions. In this paper we will show that for many spaces there are superextensions homeomorphic to the Hilbert cube Q; moreover for simple spaces such as the unit interval or the n-spheres S_n we will present easily described subbases for which the corresponding super-

Key words and phrases. Superextension, Hilbert cube, Z-set, convex.
extension is homeomorphic to Q. Here, a classical theorem of Keller [8],
which says that each infinite-dimensional compact convex subset of the separable
Hilbert space is homeomorphic to Q (for a more up-to-date proof of this fact,
see also Bessaga & Pełczyński [3]), is of great help.

2. Some examples

In this section we will give some examples. If X is an ordered space,
then the Dedekind completion of X will be denoted by \overline{X}. Roughly speaking,
\overline{X} can be obtained from X by filling up every gap. We define \overline{X} to be that
ordered space which can be obtained from X by filling up every gap with two
points, except for possible endgaps, which we supply with one point. The compact space \overline{X}
thus obtained, clearly contains X as a dense subspace. Define

$$\mathcal{G}_1 = \{A \subseteq X | \exists x \in X : A = (\leftarrow, x] \text{ or } A = [x, \rightarrow)\}$$

and

$$\mathcal{F}_1 = \{A \subseteq X | A \text{ is a closed half-interval}\}$$

(as usual, a half-interval is a subset $A \subseteq X$ such that either for all $a, b \in X$:
if $b \leq a \in A$ then $b \in A$, or for all $a, b \in X$: if $b \geq a \in A$ then $b \in A$) and

$$\mathcal{F}_2 = \{A \subseteq X | \exists A_0, A_1 \in \mathcal{F}_1 : A = A_0 \cup A_1 \text{ or } A = A_0 \cap A_1\},$$

respectively.

Notice that \mathcal{G}_1 equals \mathcal{F}_1 in case X is compact or connected. It is easy to
see that $\lambda_{\mathcal{G}_1}(X) \cong \overline{X}$ and that $\lambda_{\mathcal{F}_1}(X) \cong \overline{X}$.

What about $\lambda_{\mathcal{F}_2}(X)$?

Example (i). If $X = I$, then $\lambda_{\mathcal{G}_1}(X) = \lambda_{\mathcal{F}_1}(X) \cong I$. On the other hand
$\lambda_{\mathcal{F}_2}(X)$ is homeomorphic to the Hilbert cube Q (see Section 4).

Example (ii). If $X = Q$, then $\lambda_{\mathcal{G}_1}(X) \cong I$ and $\lambda_{\mathcal{F}_2}(X)$ is a non-metrizable
separable compact ordered space, which has much in common with the well-
known Alexandroff double of the closed unit interval. In this case, $\lambda_{\mathcal{F}_2}(X)$ is
a compact totally disconnected perfect space of weight 2^{2^n}. (The total discon-
ectedness of $\lambda_{\mathcal{F}_2}(X)$ follows from the following observation: for every $T_0,
T_1 \in \mathcal{F}_2$ with $T_0 \cap T_1 = \emptyset$ there exists a $T'_0 \in \mathcal{F}_2$ such that $T_0 \subseteq T'_0$ and
$T'_0 \cap T_1 = \emptyset$ and $X \setminus T'_0 \in \mathcal{F}_2$. For every finite linked system $\{X \setminus T_i | T_i \in \mathcal{F}_2,
i \in \{1, 2, \ldots, n\}\}$ it is easy to construct two distinct mls's \mathcal{L}_0 and \mathcal{L}_1 belonging
to $\bigcap_{i=1}^n \{\mathcal{M} \in \lambda_{\mathcal{F}_2}(X) | T_i \notin \mathcal{M}\}$ showing that $\lambda_{\mathcal{F}_2}(X)$ is perfect. Finally $\lambda_{\mathcal{F}_2}$ can
be embedded in $\lambda_{\mathcal{F}_1}(X)$; hence weight $(\lambda_{\mathcal{F}_2}(X)) = 2^{2^n}$.
Example (iii). If $X = \mathbb{R} \setminus \mathbb{Q}$, then $\lambda_{\mathbb{Q}}(X) \simeq I$, while $\lambda_{\mathbb{Q}_1}(X) \simeq \lambda_{\mathbb{Q}_2}(X) \simeq C$, the Cantor discontinuum, for it is easy to see that $\lambda_{\mathbb{Q}_1}(X)$ and $\lambda_{\mathbb{Q}_2}(X)$ both are totally disconnected compact metric perfect spaces.

Finally define

$$\mathcal{G}_2 = \{ A \subset X | \exists A_0, A_1 \in \mathcal{G}_1: A = A_0 \cup A_1 \text{ or } A = A_0 \cap A_1 \}.$$

Notice that \mathcal{G}_2 equals T_2 in case X is compact or connected.

Example (i). If $X = I$, then $\lambda_{\mathbb{Q}_1}(X) \simeq Q$ (Section 4).

Example (ii). If $X = \mathbb{Q}$, then $\lambda_{\mathbb{Q}_1}(X) \simeq Q$.

Example (iii). If $X = \mathbb{R} \setminus \mathbb{Q}$, then $\lambda_{\mathbb{Q}_2}(X) \simeq Q$.

The fact that $\lambda_{\mathbb{Q}_2}(\mathbb{Q}) \simeq \lambda_{\mathbb{Q}_2}(\mathbb{R} \setminus \mathbb{Q}) \simeq Q$ can be derived from the result $\lambda_{\mathbb{Q}_2}(I) \simeq Q$. To see this, define

$$\mathcal{G}_3 = \{ A \subset I | A \in \mathcal{G}_2 \text{ and } A \text{ has rational endpoints} \}$$

and

$$\mathcal{G}_2^* = \{ A \subset I | A \in \mathcal{G}_2 \text{ and } A \text{ has irrational endpoints} \}.$$

By Theorem 5 and Theorem 7 of [11] (cf. Theorem 3.1 below), it follows that

$$\lambda_{\mathbb{Q}_2}(I) \simeq \lambda_{\mathbb{Q}_2}(I) \simeq \lambda_{\mathbb{Q}_2}(\mathbb{Q})$$

and

$$\lambda_{\mathbb{Q}_2}(I) \simeq \lambda_{\mathbb{Q}_2}(I) \simeq \lambda_{\mathbb{Q}_2}(\mathbb{R} \setminus \mathbb{Q}).$$

3. Superextensions which are Hilbert cubes

In this section we will show that for each separable metric, not totally disconnected topological space X, there exists a normal closed T_1-subbase \mathcal{S} such that $\lambda_\mathcal{S}(X)$ is homeomorphic to the Hilbert cube Q. First we will give some preliminary definitions and recapitulate some well-known results from the literature, which are needed in the remainder of this section. A closed subset B of Q is called a Z-set ([1]) if for any non-empty homotopically trivial open subset O of Q, the set $O \setminus B$ is again non-empty and homotopically trivial. Examples of Z-sets are compact subsets of $(0, 1)^\mathbb{N}$ and closed subsets of Q which project onto a point in infinitely many coordinates. In fact, Z-sets can be characterized by the property that for every Z-set B there exists an autohomeomorphism Φ of Q which maps B onto a set which projects onto a point in infinitely many coordinates ([1]). Obviously the property of being a Z-set is a topological invariant. Moreover, it is easy to show that a closed countable union of Z-sets is again a Z-set (cf. Kroonenberg [9]). The importance of Z-sets is illustrated by the following theorem due to Anderson [1].
THEOREM. Any homeomorphism between two Z-sets in \(Q \) can be extended to an autohomeomorphism of \(Q \).

We will apply this theorem to show that every separable metric, not totally disconnected topological space \(X \) can be embedded in \(Q \) in such a way that \(Q \) has the structure of a superextension of \(X \), i.e., every point of \(Q \) represents an mls in a suitable closed subbase for \(X \). The canonical binary subbase for \(Q \) is

\[
\mathcal{S} = \{ A \subset Q | A = \Pi^{-1}_n [0, x] \text{ or } A = \Pi^{-1}_n [x, 1], \text{ with } n \in \mathbb{N} \text{ and } x \in I \}
\]

and consequently, if we embed \(X \) in \(Q \) in such a way that for every two elements \(T_0, T_1 \in \mathcal{S} \) with \(T_0 \cap T_1 \neq \emptyset \) we have that \(T_0 \cap T_1 \cap X \neq \emptyset \), then \(Q \) is a superextension of \(X \); this is a consequence of the following theorem ([11], Theorem 5).

Theorem 3.1. Let \(X \) be a subspace of the topological \(T_1 \)-space \(Y \). Then \(Y \) is homeomorphic to a superextension of \(X \) if and only if \(Y \) possesses a binary closed subbase \(\mathcal{S} \) such that for all \(T_0, T_1 \in \mathcal{S} \) with \(T_0 \cap T_1 \neq \emptyset \) we have that \(T_0 \cap T_1 \cap X \neq \emptyset \).

In particular, in Theorem 3.1 \(Y \cong \lambda_{\mathcal{S}}(X) \), where \(\mathcal{S} \cap X = \{ T \cap X | T \in \mathcal{S} \} \).

Theorem 3.2. For every separable metric, not totally disconnected topological space \(X \) there exists a normal closed \(T_1 \)-subbase \(\mathcal{S} \) such that \(\lambda_{\mathcal{S}}(X) \) is homeomorphic to the Hilbert cube \(Q \).

Proof. Assume that \(X \) is embedded in \(Q(= I^\mathbb{N}) \) and let \(C \) be a non-trivial component of \(X \). Choose a convergent sequence \(B \) in \(C \). Furthermore, define a sequence \(\{ y_n \}_{n=0}^\infty \) in \(Q \) by

\[
(y_n)_i = \begin{cases}
1 & \text{if } i \neq n \\
0 & \text{if } i = n,
\end{cases}
\]

for \(i = 1, 2, \ldots, \).

It is clear that

\[
\lim_{n \to \infty} y_n = y_0.
\]

Moreover define \(z \in Q \) by \(z_i = 0 \) (\(i = 1, 2, \ldots, \)). Then

\[
E = \{ y_n | n \in \mathbb{N} \} \cup \{ z \} \cup \{ y_0 \}
\]

is a convergent sequence and therefore is homeomorphic to \(B \). Since \(B \) and \(E \) both are closed countable unions of Z-sets in \(Q \), they themselves are Z-sets. Choose a homeomorphism \(\Phi : B \to E \) and extend this homeomorphism to an autohomeomorphism of \(Q \). This procedure shows that we may assume that
X is embedded in Q in such a way that $E \subset C$. Let $T_0, T_1 \in \mathcal{F}$ such that $T_0 \cap T_1 \neq \emptyset$, where \mathcal{F} is the canonical binary closed subbase for Q. We need only consider the following 4 cases:

Case 1: $T_0 = \Pi_{n_0}^{-1}[0, x]$; $T_1 = \Pi_{n_1}^{-1}[y, 1]$ ($x \geq y$). Since $z \in T_0$ and $y \in T_1$ and C is connected, it follows that $\emptyset \neq T_0 \cap T_1 \cap C \subset T_0 \cap T_1 \cap X$.

Case 2: $T_0 = \Pi_{n_0}^{-1}[0, x]$; $T_1 = \Pi_{n_1}^{-1}[y, 1]$ ($n_0 \neq n_1$). Then $y_{n_0} \in T_0 \cap T_1 \cap X$.

Case 3: $T_0 = \Pi_{n_0}^{-1}[0, x]$; $T_1 = \Pi_{n_1}^{-1}[0, y]$. Then $z \in T_0 \cap T_1 \cap X$.

Case 4: $T_0 = \Pi_{n_0}^{-1}[x, 1]$; $T_1 = \Pi_{n_1}^{-1}[y, 1]$. Then $y_{0} \in T_0 \cap T_1 \cap X$.

This completes the proof of the theorem.

4. A superextension of the closed unit interval

In the present section we will prove that $\lambda_{\mathcal{G}_2}(I)$ is homeomorphic to the Hilbert cube, where $\mathcal{G}_2 = \{(x, y) \mid x, y \in I\} \cup \{(0, x) \cup \{y, 1\} \mid x, y \in I\}$. For this purpose we introduce

$$\mathcal{F} = \{f : I \to I \mid f(0) = 0 \text{ and if } x, y \in I \text{ and } x \leq y \text{ then } 0 \leq f(y) - f(x) \leq y - x\}.$$

Hence each $f \in \mathcal{F}$ is continuous and monotone non-decreasing. On \mathcal{F} we define a topology by considering \mathcal{F} as a subspace of $C[I, I]$ with the point-open topology. We obtain the same topology on \mathcal{F} by ordering \mathcal{F} partially as follows:

$$f \leq g \text{ iff for each } x \in I : f(x) \leq g(x), \ (f, g \in \mathcal{F}),$$

and then taking as a closed subbase for \mathcal{F} the collection of all subsets of the form $\{f \in \mathcal{F} \mid f \leq f_0\}$ or $\{f \in \mathcal{F} \mid f \geq f_0\}$, where f_0 runs through \mathcal{F}. We first prove that $\mathcal{F} \cong Q$ and next that $\lambda_{\mathcal{G}_2}(I) \cong \mathcal{F}$; we conclude that $\lambda_{\mathcal{G}_2}(I) \cong Q$.

Notice that by KELLER's theorem each compact metrizable convex infinite-dimensional subspace X of I^I is homeomorphic to the Hilbert cube Q, since, by the fact that X is metrizable, X can be embedded as a convex subspace of I^∞; finally I^∞ can be affinely embedded in l_2. This observation will be used in the proof of Theorem 4.1 and Theorem 5.1.

Theorem 4.1. $\mathcal{F} \cong Q$.

Proof. We show that \mathcal{F} is a compact, infinite-dimensional, convex subspace of I^I, with countable base; hence, by KELLER's theorem, \mathcal{F} is homeomorphic to the Hilbert cube Q.

2
is clearly a convex subspace of I^1; it is also clear that (\mathcal{F}, \leq), as defined above, is a complete lattice, whence \mathcal{F} is compact. \mathcal{F} has a countable subbase, since the collection of all subsets of the forms \(\{ f \in \mathcal{F} | f(x) \leq y \} \) and \(\{ f \in \mathcal{F} | f(x) \leq y \} \) where $x, y \in \mathcal{Q} \cap I$, forms a countable closed subbase for \mathcal{F}.

Finally, \mathcal{F} is infinite-dimensional, because Q can be embedded in \mathcal{F}. For, let $a = (a_1, a_2, a_3, \ldots) \in I^\mathbb{N}$. Let $G(a)$ be the smallest function f in \mathcal{F} (in the ordering \leq of \mathcal{F}) such that for each $i = 1, 2, 3, \ldots$ the following holds:

$$f \left(\frac{3}{2^{i+1}} \right) \geq \frac{1}{2^{i+1}} + \frac{1}{2^{i+1}} a_i .$$

It can be seen easily that G defines a topological embedding of Q in \mathcal{F}.

Theorem 4.2. $\lambda_{\mathcal{Q}}(I) \hookrightarrow \mathcal{F}$.

Proof. Define a function $K: \lambda_{\mathcal{Q}}(I) \to I$ by:

$$K(\mathcal{M}) = \inf \{ x \in I | [0, x] \in \mathcal{M}, (\mathcal{M} \in \lambda_{\mathcal{Q}}(I)),$$

and a function $H: \lambda_{\mathcal{Q}}(I) \to \mathcal{F}$ by:

$$H(\mathcal{M})(i) = \inf \{ x \in I | [0, x] \cup [y, 1] \in \mathcal{M}, x + y = K(\mathcal{M}) + i \},$$

$$H(\mathcal{M})(i) \in \mathcal{M} \in \lambda_{\mathcal{Q}}(I).$$

We prove that H is an homeomorphism between $\lambda_{\mathcal{Q}}(I)$ and \mathcal{F}.

First we observe that:

$$K(\mathcal{M}) \leq x \text{ iff } [0, x] \in \mathcal{M};$$

$$K(\mathcal{M}) \geq x \text{ iff } [x, 1] \in \mathcal{M};$$

$$K(\mathcal{M}) = x \text{ iff } [0, x] \in \mathcal{M} \text{ and } [x, 1] \in \mathcal{M};$$

$$H(\mathcal{M})(i) \leq x \text{ iff } [0, x] \cup [K(\mathcal{M}) + i - x, 1] \in \mathcal{M};$$

$$H(\mathcal{M})(i) \geq x \text{ iff } [x, K(\mathcal{M}) + i - x] \in \mathcal{M};$$

$$H(\mathcal{M})(i) = x \text{ iff } [0, x] \cup [K(\mathcal{M}) + i - x, 1] \in \mathcal{M} \text{ and }$$

$$[x, K(\mathcal{M}) + i - x] \in \mathcal{M};$$

these facts follows easily from the fact that \mathcal{M} is a maximal linked system in \mathcal{Q}_2. Also we have $K(\mathcal{M}) = H(\mathcal{M})(1)$.

Next we show that $H(\mathcal{M}) \in \mathcal{F}$, for each maximal linked system \mathcal{M}. In fact (i) $H(\mathcal{M})(0) = 0$, for $[0, 0] \cup [K(\mathcal{M}), 1] \in \mathcal{M}$ and $[0, K(\mathcal{M})] \in \mathcal{M}$; (ii) if $i \leq j, H(\mathcal{M})(i) = x, H(\mathcal{M})(j) = y$, then $x \leq y$, for $[x, K(\mathcal{M}) + j - x] \supset \subset [x, K(\mathcal{M}) + i - x] \in \mathcal{M}$, hence $[x, K(\mathcal{M}) + j - x] \in \mathcal{M}$ and $y = H(\mathcal{M})(j) \geq x;
also \(y - x \leq j - i \), for \([y - j + i, K(\mathbb{M}) + i - (y - j + i)] \supset [y, K(\mathbb{M}) + j - y] \sim \mathbb{M} \), hence \(x = H(\mathbb{M})(i) \geq y - j + i \).

\(H \) is a one-to-one function, for suppose \(\mathbb{M}_1, \mathbb{M}_2 \in \lambda_{\mathcal{G}}(I) \), \(\mathbb{M}_1 \neq \mathbb{M}_2 \) and \(H(\mathbb{M}_1) = H(\mathbb{M}_2) \). Let \(a = K(\mathbb{M}_1) = H(\mathbb{M}_1)(1) = H(\mathbb{M}_2)(1) = K(\mathbb{M}_2) \), i.e., \([0, a] \in \mathbb{M}_1 \cap \mathbb{M}_2 \) and \([a, 1] \in \mathbb{M}_1 \cap \mathbb{M}_2 \). Since \(\mathbb{M}_1 \neq \mathbb{M}_2 \) we may suppose that there are \(x' \) and \(y' \) such that \([0, x'] \cup [y', 1] \in \mathbb{M}_1 \setminus \mathbb{M}_2 \). Since \([0, a] \in \mathbb{M}_2 \) and \([a, 1] \in \mathbb{M}_2 \), we have \(x' < a < y' \). Let \(i = x' + y' - a \in [x', y'] \subset I \).

Then since \([0, x'] \cup [a + i - x', 1] = [0, x'] \cup [y', 1] \subseteq \mathbb{M}_1 \setminus \mathbb{M}_2 \), we find that \(H(\mathbb{M}_1)(i) \leq x' < H(\mathbb{M}_2)(i) \) and this is a contradiction. \(H \) is also a surjection. Take \(f \in \mathcal{S} \) and let:

\[\mathcal{L} = \{ [f(i), f(1) + i - f(i)] \mid i \in I \} \cup \{ [0, f(i)] \cup [f(1) + i - f(i), 1] \mid i \in I \} \]

Then by definition of \(\mathcal{S} \), it is easy to see that \(\mathcal{L} \) is a linked system in \(\mathcal{G}_2 \). \(\mathcal{L} \) is contained in some maximal linked system \(\mathbb{M} \) of \(\mathcal{G}_2 \), and for this \(\mathbb{M} \) it holds that \(K(\mathbb{M}) = f(1) \) while for each \(i \in I : H(\mathbb{M})(i) = f(i) \); i.e., \(H(\mathbb{M}) = f \). Finally we prove that \(H \) is continuous. Let \(i, x \in I \). Then

\[\{ \mathbb{M} \in \lambda_{\mathcal{G}}(I) \mid H(\mathbb{M})(i) \leq x \} = \bigcap_{y \in I} \{ \mathbb{M} \in \lambda_{\mathcal{G}}(I) \mid [0, x] \cup [y, 1] \subseteq \mathbb{M} \} \quad \text{or} \quad [0, x + y - i] \subseteq \mathbb{M} \}

and hence this set is closed. For, let \(\mathbb{M} \in \lambda_{\mathcal{G}}(I) \) such that \(H(\mathbb{M})(i) \leq x \); this last inequality means that \([0, x] \cup [K(\mathbb{M}) + i - x, 1] \subseteq \mathbb{M} \). If \(y \geq K(\mathbb{M}) + i - x \), then \([0, y + x - i] \supset [0, K(\mathbb{M})] \subseteq \mathbb{M} \); if \(y \leq K(\mathbb{M}) + i - x \) then \([0, x] \cup [y, 1] \supset [0, x] \cup [K(\mathbb{M}) + i - x, 1] \subseteq \mathbb{M} \).

Conversely, suppose that

\[[0, x] \cup [y, 1] \subseteq \mathbb{M} \quad \text{or} \quad [0, x + y - i] \subseteq \mathbb{M} \]

for each \(y \in I \), then also \([0, x + y - i] \subseteq \mathbb{M} \) for each \(y < K(\mathbb{M}) + i - x \); hence \([0, x] \cup [y, 1] \subseteq \mathbb{M} \); we conclude that \([0, x] \cup [K(\mathbb{M}) + i - x, 1] \subseteq \mathbb{M} \), i.e., \(H(\mathbb{M})(i) \leq x \). In the same way one proves:

\[\{ \mathbb{M} \in \lambda_{\mathcal{G}}(I) \mid H(\mathbb{M})(i) \geq x \} = \bigcap_{y \in I} \{ \mathbb{M} \in \lambda_{\mathcal{G}}(I) \mid [x, y] \subseteq \mathbb{M} \} \quad \text{or} \quad [x + y - i, 1] \subseteq \mathbb{M} \}

and hence is closed.

As a consequence of these two theorems we have, as announced,

Theorem 4.3. \(\lambda_{\mathcal{G}}(I) \backsimeq Q \).
5. A superextension of the n-sphere

In this final section we show that the superextension of the n-sphere S^n with respect to the collection of all closed massive n-balls in S^n is homeomorphic with the Hilbert-cube. As usual, the n-sphere S^n is the space

$$\left\{(x_0, x_1, \ldots, x_n) \in \mathbb{R}^{n+1} \mid \sum_{i=0}^{n} x_i^2 = 1\right\}$$

and the closed massive n-ball with centre $x \in S^n$ and radius $\varepsilon \geq 0$ is the set

$$B(x, \varepsilon) = \{y \in S^n \mid d(x, y) \leq \varepsilon\}.$$

Writing \mathcal{B} for the collection of all closed massive n-balls in S^n, we will prove that, if $n \geq 1$, $\lambda_{\mathcal{B}}(S^n) \cong Q$. Obviously $\lambda_{\mathcal{B}}(S^n)$ is the superextension of the circle with respect to the set of closed intervals. For the definition of \mathcal{B} it does not matter whether the euclidian metric of \mathbb{R}^{n+1} or the sphere metric of S^n (in this case the distance between x and y in S^n is $\arccos \sum_{i=0}^{n} x_i y_i$, i.e., the minimum length of a curve between x and y on S^n) is used. However, in the proof of the theorem we need the latter metric and we call this metric d. Furthermore we define, for each point $x = (x_0, x_1, \ldots, x_n) \in S^n$, the antipode \overline{x} of x by $\overline{x} = (-x_0, -x_1, \ldots, -x_n)$.

Theorem 5.1. If $n \geq 1$, $\lambda_{\mathcal{B}}(S^n)$ is homeomorphic to the Hilbert-cube Q.

Proof. In fact we show that $\lambda_{\mathcal{B}}(S^n)$ is compact and infinite-dimensional and has a countable base and that $\lambda_{\mathcal{B}}(S^n)$ can be embedded as a convex subspace in \mathbb{R}^∞; hence, by KELLER's theorem, $\lambda_{\mathcal{B}}(S^n)$ is homeomorphic to Q. Clearly, $\lambda_{\mathcal{B}}(S^n)$ is compact.

To prove that $\lambda_{\mathcal{B}}(S^n)$ has a countable base, let X be a countable dense subset of S^n. Define $\mathcal{B}_0 = \{B(x, \varepsilon) \mid x \in X, \varepsilon \in Q, \varepsilon \geq 0\}$. It is not difficult to see that $P : \lambda_{\mathcal{B}}(S^n) \rightarrow \lambda_{\mathcal{B}_0}(S^n)$, such that $P(\mathcal{B}_0) = 3 \cap \mathcal{B}$ ($3 \in \lambda_{\mathcal{B}}(S^n)$) is a homeomorphism; hence, since $\lambda_{\mathcal{B}_0}(S^n)$ has a countable base, $\lambda_{\mathcal{B}}(S^n)$ also has a countable base. Next, $\lambda_{\mathcal{B}}(S^n)$ is infinite-dimensional, since $\lambda_{\mathcal{B}_0}(I)(\cong Q)$ can be embedded in $\lambda_{\mathcal{B}}(S^n)$. For, let

$$Y = \{x \in S^n \mid x = (x_0, x_1, \ldots, x_n), x_1 \geq 0, x_2 = \ldots = x_n = 0\};$$

this subspace is homeomorphic to I. Let \mathcal{C}_2 be as defined in Section 3, i.e., \mathcal{C}_2 is the collection of all closed subsets Y' if Y such that Y' is connected or $Y \setminus Y'$ is connected. Define $T : \lambda_{\mathcal{B}_0}(Y) \rightarrow \lambda_{\mathcal{B}}(S^n)$ by $T(3) = \{B \in \mathcal{B} \mid B \cap Y \in 3\}$ ($3 \in \lambda_{\mathcal{B}}(I)$). Again it is not difficult to prove that T is a topological embedding. Hence $\lambda_{\mathcal{B}_0}(I)(\cong Q)$ can be embedded in $\lambda_{\mathcal{B}}(S^n)$, i.e., $\lambda_{\mathcal{B}}(S^n)$ is infinite-dimensional.
Finally we embed \(\lambda (S^n) \) as a convex subspace in \(\mathbb{R}^{S^n} \), by means of the function \(U: \lambda (S^n) \rightarrow \mathbb{R}^{S^n} \), determined by:

\[
U(\mathcal{M})(x) = \inf \{ \varepsilon \geq 0 \mid B(x, \varepsilon) \in \mathcal{M} \}, \quad (\mathcal{M} \in \lambda (S^n), \ x \in S^n).
\]

The mapping \(U \) is continuous and one-to-one since \(U(\mathcal{M})(x) \leq \varepsilon \) iff \(B(x, \varepsilon) \in \mathcal{M} \), and \(U(\mathcal{M})(x) \geq \varepsilon \) iff \(B(x, \pi - \varepsilon) \in \mathcal{M} \). And indeed, \(U[\lambda (S^n)] \) is a convex subspace of \(\mathbb{R}^{S^n} \). In order to show this, we need only prove: if \(\mathcal{M}_1, \mathcal{M}_2 \in \lambda (S^n) \), then there exists an \(\mathcal{M} \in \lambda (S^n) \) such that \(U(\mathcal{M}) = \frac{1}{2} U(\mathcal{M}_1) + \frac{1}{2} U(\mathcal{M}_2) \) (\(U[\lambda (S^n)] \) being compact and hence closed in \(\mathbb{R}^{S^n} \)). So take \(\mathcal{M}_1, \mathcal{M}_2 \in \lambda (S^n) \) and let \(\mathcal{M}_3 = \{ B(x, \varepsilon) \mid x \in S^n, \ \varepsilon \geq \frac{1}{2} U(\mathcal{M}_1)(x) + \frac{1}{2} U(\mathcal{M}_2)(x) \} \). Then \(\mathcal{M}_3 \) is a linked system, because if \(B(x, \varepsilon) \) and \(B(y, \delta) \in \mathcal{M}_3 \) (\(x, y \in S^n, \ \varepsilon \geq \delta \geq \frac{1}{2} U(\mathcal{M}_1)(x) + \frac{1}{2} U(\mathcal{M}_2)(x) \)), then:

\[
d(x, y) \leq U(\mathcal{M}_1)(x) + U(\mathcal{M}_1)(y),
\]

and

\[
d(x, y) \leq U(\mathcal{M}_2)(x) + U(\mathcal{M}_2)(y);
\]

hence

\[
d(x, y) \leq \delta + \varepsilon,
\]

i.e.,

\[
B(x, \varepsilon) \cap B(y, \delta) \neq \emptyset.
\]

Let \(\mathcal{M}_3 \) be a maximal linked system containing \(\mathcal{M}_3 \) (in fact \(\mathcal{M}_3 \) is itself a maximal linked system). Then, clearly,

\[
U(\mathcal{M}_3)(x) \leq \frac{1}{2} U(\mathcal{M}_1)(x) + \frac{1}{2} U(\mathcal{M}_2)(x),
\]

and

\[
U(\mathcal{M}_3)(x) \leq \frac{1}{2} U(\mathcal{M}_1)(x) + \frac{1}{2} U(\mathcal{M}_2)(x) \text{ for each } x \in S^n.
\]

But, since for each maximal linked system \(\mathcal{M} : U(\mathcal{M})(x) + U(\mathcal{M})(x) = \pi \), we have

\[
U(\mathcal{M}_3)(x) = \frac{1}{2} U(\mathcal{M}_1)(x) + \frac{1}{2} U(\mathcal{M}_2)(x) \text{ for each } x \in S^n.
\]

Thus

\[
U(\mathcal{M}_3) = \frac{1}{2} U(\mathcal{M}_1) + \frac{1}{2} U(\mathcal{M}_2).
\]
REFERENCES

(Received July 5, 1976)