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A NONSUPERCOMPACT CONTINUOUS IMAGE OF A 

SUPERCOMPACT SPACE 

Charles F. Mills and Jan van Mill* 

ABSTRACT. We give an example of a nonsupercompaet 
continuous image of a supercompact space. 

0. Introduction. This paper deals with supercompact spaces. A space is called 

supercompact (cf. de Groot [7] ) provided it has a closed subbase such that any of its 

linked subsystems (a system of sets is called linked if any two of its members meet) 

has nonempty intersection. Much work has been done to show that certain spaces are 

supercompact and that certain spaces are not supercompact. We want to mention 

Strok & Szyma'nski [11], who showed that all compact metric spaces are 

supercompact (easier proofs are available now, see van Douwen [4] and Mills [9] ) and 

Bell [2] who gave the first examples of compact (Hausdorff) spaces which are not 

supercompact. Another big class of supercompact spaces has recently been discovered. 

Mills [ 10] has shown that every compact topological group is supercompact. 

It has been open for some time whether every dyadic space (i.e. a space which is 

a continuous image of a family of two point discrete spaces) is supercompact. Notice 

that every compact topological group is dyadic (cf. Ku,z'mi•ov [8]) so that Mills' 

result stated above gives a partial answer to this question. Since every dyadic space is 

the continuous image of a supercompact space, the question arises whether the 

continuous image of a supercompact space is supercompact (cf. van Douwen & 

van Mill [6]). We will give an example of a nonsupercompact space which is a 

continuous image of a supercompact space (all our spaces are Hausdorff; a T 1 example 
was earlier given by Verbeek [12] .). In addition we will prove a theorem which as an 

application allows us to give a surprisingly simple proof that a space like •co is not 

supercompact. 

*The research of this author was supported by the Netherlands Organization for the Advancement 
of Pure Research (Z.W.O.); Juliana van Stolberglaan 148, 's-Gravenhage, the Netherlands. 
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We finally want to note that the question whether a closed G/5 subset of a 
supercompact space is supercompact (cf. van Douwen & van Mill [6] ) was answered in 

the negative recently by Bell [3]. 

1. Supercompact spaces. All topological spaces under discussion are assumed to 

be Tychonoff. 

A closed subbase S for a space X with the property that any of its linked 

subsystems has nonempty intersection usually is called binary. It is an easy 

observation that a space X has a binary subbase iff X has a binary subbase closed 

under arbitrary intersections. We will assume, from now on, that every binary subbase 

is closed under arbitrary intersections. 

Let S be a binary subbase for X. For A C X define I(A) C X by 

I(A) = c•{S CSIA c S}. 

Notice that I(A)CS, hence that clx(A)C I(A), that I(I(A))= I(A) and that 

I(A) C I(B) if A C B, for all A,B CX. The following simple lemma is due to 

van Douwen & van Mill [6]. Although it is simple, it is quite useful. 

1.1. LEMMA. Let S be a binary subbase for X and let pOX. If U is a 

neighborhood of p and if A is a subset of X with p C clx(A), then there is a subset B 

of A with p C clx(B ) and I(B) CU. 

This lemma is the basic tool in proving the main result of this section. Recall that 

d(X) denotes the density of a space X. We give ordinals the order topology; a cardinal 

number is an initial ordinal number. A set A C X is called a G6, • set if A is an 
intersection of • open sets in X. 

1.2. THEOREM. Let X be a space and suppose that X contains a closed G 6,d(X) 
set which can be mapped onto d(X)++ 1. Then X is not a continuous image of a 

superco mpac t space. 

PROOF. To the contrary assume that Y is a supercompact space, with binary 

subbase S, which can be mapped by f onto X. For convenience set • = d(X). Let A be 

a closed G/•,• set in X which admits a surjective mapping g: A --> •+ + 1. Write X - A = 
, 

Uot<xCot , where the Cot s are closed. Let D = { dotlot < •} be a dense subset for X and 

for each ot < • take a point dot C Y such that f(dr[) = dot. Let D' be the set of points 
thus obtained. Define 
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Z = cly(D') C• f-1 (A). 
Since D is dense and f is closed we see that f[Z] = A. 

By induction we will construct for each a < • a set F a • S with the following 

properties: 

(i) F a c 
(ii) g[f[F a (3 ZI ] (3 •+ is unbounded; 
(iii) F a C Y - f-l(ca). 

Suppose that the Fa's are constructed for all a </•. Define F = (3a•4•F a if/• > 0 and 
F = Y if/• = 0. By (i) and by the compactness of Y and X we have that 

g[f[F (3 Z] I = (3a•4•g[f[F a (3 Z] l 
and hence, by (ii), g[f[F (3 Z] ] (3 •+ is unbounded. Since $ is a subbase there is a 

finite F• C $ such that 
f'l (A) C U FO C Y- f-l(co). 

Define F/• = (H (3 (F (3 Z)IH •F/•). Then g[f[F (3 Z] ] = U(g[f[E] ]lE • } and 
consequently there is an E •F/• such that g[f[E] ] (3 •+ is unbounded. Take H 
such that H (3 (F (3 Z) = E and define FO = H (3 F. It is clear that FO defined in this 
way satisfies our inductive assumptions. 

By the compactness of X and Y we have, by (i), that 

(*) (3a<t•g[f[F a (3 Z] ] = g[f[r3a•_xF a (3 Z] ]. 

Define F = (3o•_xF a. Notice that F C f-l(A). By (*) and by (ii) we also have that 
g[f[F Cl Z] ] Cl •:+ is unbounded. 

For each a • • take a point 
! 

e a • (3y•FI ( {da,y }) (3 F. 
Notice that it is possible to take such a point since $ is binary. Define E = (eala < • }. 
Notice that E C F. 

CLAIM. f[F (3 ZI C clx(f[El ). 

Indeed, take x 0 G f[F (3 Z] and let U be any open neighborhood of x 0. Take 

Y0 G F n Z such that f(Y0) = x0' Since Y0 G Z C cly(D'), by Lemma 1.1 there is a 
! subset B C D' such that Y0 G cly(B) and I(B) C f-l(u). Take d a G B arbitrarily. Then 

! 

e a • (3y•FI ({da,y}) (3 F C I({da,Y0} ) C I(B) C f-l(u). 
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Hence flea) CU. This proves the claim. 

We conclude that g[f[F A Z] ] C g[clx(f[E ] )] C cl•++l (g[f[E] ]). Since IEI = • 
this contradicts the fact that g[f[F Ch Z] ] Ch •+ is unbounded. 

Notice that this theorem gives an easy proof that no compact preimage of ttco 

(i.e. for example ttco- co) is supercompact since clearly ttco- co can be mapped onto 

col + 1. The first proof that t3co is not supercompact was found by Bell [2]. 

2. The example. In this section we will present an example of a compact space 

D which is not embeddable as a G/5 subset of a supercompact space while it is a 

continuous image of a supercompact space under a two to one mapping. That D could 

be a candidate to be a nonsupercompact continuous image of a supercompact space 

was suggested to us by Eric van Douwen. 

Recall that a cardinal • is regular if • is not the sum of fewer, smaller cardinals. 

In addition, a set C is a cub in • if it is closed and unbounded in •. Also, S C • is 

called stationary in • if S r3 C -• ½ for every set C which is a cub in •. We heavily rely 

on the following lemma which is well known; short proofs are to be found in 

van Douwen & Lutzer [ 5 ] and Baumgartner & Prikry [ 1 ]. 

2.1. LEMMA. (Pressing Down Lemma): Let S be a stationary subset of a 

regular uncountable cardinal • and suppose that f: S-• • is a function such that 

f(x) < x for all x C S - {0}. Then for some y • • the set f-1 [{y} ] is stationary in •. 
We will refer to Lemma 2.1 as PDL. 

We will now describe D. Let X = (col + 1) X (col + 1)and Z = {(a,t3)• X[t3 •<a}. 
It is easily seen that Z is supercompact. Indeed, the collection 

{([a,B] X [a 1 ,B1 ] ) r3 Zla,B,a 1 ,B1 • col + 1} 
is a binary subbase for Z. Now, D is the quotient space obtained from Z by collapsing 

for each a < col the set {(a,ob,{co 1,oh } to one point. We will show that D is not 

embeddable as a G• subset of a supercompact space. To the contrary, assume that Y is 

a supercompact space with binary subbase S which contains D as a G•. We will derive 

a contradiction. To simplify the notation let us make the following conventions: 

(i) the point ( (c•,ob,(co 1 ,oh } of D will be denoted by Pa and (co 1 ,co 1 ) is p co 1' 
(ii) P = {palau< col } and Z* = D-P; 

(iii) for each (%t3) G Z* we set T(('),,/•),pt3) = ( pt3} •J ((•,t3) G Z* 1• >• '),}. 
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Now fix a < co 1- Notice that for each 3' with a < 3' < co 1 the set T((7,ob,p a) is a 

Gfi in Y. 

CLAIM. If a < 3' < co 1 we can find S 7 • S such that S 7 C T((7,ob,Pa) and Pa is a 
limit point of S 7. 

We use a technique similar to that used in the proof of Theorem 1.2. Say 

T((7,ob,p a) = C•n<coUn, where each U n is open in Y. For each n < co there is a finite 

subcollection F n C S such that 

T((7,o•),pa) C L/F n C U n. 

But then there must be an F n • F n such that F n meets T((7,o•),p a) in an unbounded 
set; that is 

{•3< co 1 ](•,o•) • F n) 

is cub. But then Nn•coF n is cub, and the claim is proved. 

We claim further that if T = { min(N A)tA C {S7la< 7 < col )) then T contains a 
cub. For assume not: then there is a stationary S C col X {a) disjoint from T. Then 

also A= U{S 7OS[a<7<col ) is stationary. Define h:A-•col X {a) by h(a)= 
min O {S7la < 7 < col and a • S3r). Since S O T = •b we have h(a) < a for all a • A. By 
PDL there is a stationary B C A and a • < col such that for all q3,o• • B we have that 

h((•,a)) = (7,o•. Since B is stationary it meets S7+ 1; say (fi,o• • B O S7+ 1 . But since 
S7+ 1 C T((7 + 1 ,o•,Pa) we have that h((h,o•) 4: (7,o•, which is a contradiction. We have 
proved: 

FACT 1. For every a < co 1 there is a cub C a C co 1 such that for every (fl,o• • 

C a X {a) we have that 

I({(fl,o•,Pa)) C T((fl,o•,Pa). 

Now take •3 • C a. We claim that there is h(•3) < •3 such that for all 7 • (h03)fi] N C a 

the point (fl,a) is in I({(7,o•),pa)). If • is a successor, then there is nothing to prove, so 
suppose that •3 is a limit ordinal. Now suppose that our claim is not true. Then there 

are r/n < •(n < co) belonging to C a such that sup[ r/nln < co) = • while in addition 

q3,a) • I( {(r/n,O•),p a )) for every n < co. There is a clopen neighborhood U of (fl,o• in D 

such that U does not intersect T((fl,o•),pa)- {(fl,o• ). Let V be any open set in Y such 

that V O D = U. By Lemma 1.1 there is a set E C {(r/n,a)l n< co) such that 

sup E= ($8,a) while moreover I(E) CU. Take (r/n,O• • E arbitrarily. Then 
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I({<r/n,Ob,•,ob }) c I(E) c U. Consequently 

I({ <r•n,Ob,</3,a> )) r3 I((</3,ob,pa)) C• I({ <r•n,Ob,p a} ) 

C U C3 T(•,cO,pa) c3 T((r/n,Ob,pa) 

c ( •,a> } c3 T((r/n,a>,pa) = ½, 

which contradicts the binarity of S. 

Now, by PDL, there is a stationary S C C a and there is a 3' < co 1 such that for 

each s G S, h(s)=3'. Then by the definition of h, for each /3>3' we have that 

(S -/3) X {a} C I( {(/3,ob,pa} ). We have verified the following fact. 

FACT 2. For every a < co 1 there is a stationary D a C C a and a 3'a < Cøl such 

that for every/3 •> 3'a we have that (D a X (a}) VI T(•,a),pa) c I( {•,a),p a} ). 

We may assume that 3'a C D a and also that 3'a > a. It is an easy consequence of 

PDL that we may find r/< co 1 for which there is a sequence (anln < co} such that 

(3'an,a n) converges to (r/,r/). For suppose that such a sequence cannot be found. Then, 
for each/3 < co 1 set h(/3) = sup{ a < co 1 la </3 and 3'a </3}' Then h presses down and is 

monotone. By PDL there is a stationary S C co 1 and a 3' < co 1 such that h(/3) = 3' for 

all /3 C S. Take a G S such that a > 3'. There is a • G S such that • > 3'a' Then h(•) > 3', 
which is a contradiction. 

Write Tr/= { (a,/3) G Z* [max{a,/3} •<r/} CJ (palau<r/}. We claim that there are 
infinitely many n such that I((Pan,Pr/})C3 D C Tr/. It suffices to prove that every 
infinite subset of co contains such n. Let (knln < co } c co be strictly increasing. Then 

Pakn converges to Pt/' For/3 < col, define 
T• = {(3',•) G Z* 13' >/3 and • •< r•} O Try. 

Then T• is an open neighborhood of p,/in D. By Lemma 1.1 there is an n(/3) < co such 
that I( {Pakn(B),pr/} ) C3 D C Tg. There is m < co such that E = {/3 < col In(/3) = m} is 
uncountable. Then 

I({Pakn,Pr/}) C3 D C C3/3cET• = Tr/, 
which proves the claim. Hence we may assume that I((Pan,Pr/} ) C3 D C Tr/ for all 
n < co. By fact (1) and fact (2) we have that 

(*) I ( ( pan,p r/} ) C3 I ( ( ('ran ,a n ), pan } ) = ( pan } 
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for every n < co. Set E = rhn<coDan (closure is taken in col). Then E is closed and 
unbounded since Dan is stationary. Take /3• E such that /3>T. Define A = 
({/3 } X/3) t3 { p/3}. Then A is closed in Y and does not contain PT' By Lemma 1.1 there 
is an n < co for which I({(3•an,an),pT}) C Y A while in addition </3. We claim - 7an 

that • I({(7an,an),p T }) For suppose that belongs to I({(7an,an),PT}). Then Pa n - Pa n 
{pan,(7an,an) } C I({(7an,an),pT}) and consequently 

I( { pa n,(7an,an) }) = I({ (7a n,a n),pan } ) C I( { (7a n,a n),pT } )' 

However, we will prove that •,an)G I({Pan,(7an,an)}) which obviously is a 
contradiction. Indeed, since/3 G and since I({ pan,(7a n,a n) }) C3 (co 1 X { an}) is Da n 
closed in col X {an } this is a direct consequence of Fact 2. 

By (*) above we now have that 

I({Pan,pT} ) rh I( {(7an,an),Pan} ) rh I({(Tan,an),PT}) = ½, 
which contradicts the binarity of S. 
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