TOPOLOGY PROCEEDINGS Volume 4, 1979

Pages 193–200

http://topology.auburn.edu/tp/

ON AN INTERNAL PROPERTY OF ABSOLUTE RETRACTS

by

Jan van Mill and Marcel van de Vel

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

ON AN INTERNAL PROPERTY OF ABSOLUTE RETRACTS

Jan van Mill¹ and Marcel van de Vel

0. Introduction

The motivation for this paper partially arose from the observation that the function m: $I^3 \rightarrow I$, where I denotes the closed unit interval [0,1], defined by m(x,y,z) = the middle of x, y and z, is continuous. This function induces a similar function $m_{\infty}: Q^3 \rightarrow Q$ on the Hilbert cube $Q(=I^{\infty})$ as follows:

 $\mathbf{m}_{\infty}(\mathbf{x},\mathbf{y},\mathbf{z})_{n} = \text{the middle of } \mathbf{x}_{n}, \ \mathbf{y}_{n} \ \text{and } \mathbf{z}_{n}.$ This function has among others the following algebraic property

$$(*)m_{m}(x,x,y) = m_{m}(x,y,x) = m_{m}(y,x,x) = x$$

for all $x, y \in Q$. Since having a function with this property is clearly a retraction invariant it follows that every (compact) AR has such a function. A ternary operation μ on a space X which satisfies (*) will be called from now on a *mixer*. Hence we can reformulate the above observation by saying that every AR has a mixer and the question arises whether every (metrizable) continuum with a mixer is an AR. Note that the above mixer and its "retracts" are also symmetric, i.e. $m_{\infty}(x,y,z) = m_{\infty}(x,z,y) = \cdots$. As this condition can be avoided in all of our results we did not include it in our definition.

¹Research supported by the Netherlands Organization for the Advancement of Pure Research (Z.W.O.); Juliana van Stolberglaan 148, s'-Gravenhage, The Netherlands.

A class of spaces with a very "geometric" mixer is the class of all triple-convex subspaces of the Hilbert cube. A subset $X \subseteq Q$ is called triple-convex whenever $m_{\infty}[X^3] = X$, where m_{∞} is defined as above (cf. van Mill & Wattel [6]). It has been proved by van Mill [4] that every compact connected triple-convex subset of Q is an AR, a result which indicates that the answer to the above question might well be in the affirmative. Unfortunately not every AR is realizable as a triple-convex subset of Q. A. Szymański has observed that each compact connected triple-convex subset of Q is even a local AR, so that, for example, the two dimensional AR having the singularity of Mazurkiewicz, described by Borsuk ([1], p. 152), is not realizable as a tripleconvex subset of Q. This observation makes our question interesting even in the finite dimensional case.

We will prove that each continuum with a mixer is C^{∞} and LC^{∞} , in particular, such a continuum is locally connected. As a consequence, a finite dimensional continuum X is an AR iff X has a mixer. We were unable to solve our problem in the infinite dimensional case. However, we will show that a contractible continuum with a mixer is EC which shows that for obtaining a counterexample to our question an example like Borsuk's ([1], p. 124) famous contractible and locally contractible compactum which is not an AR is of no help.

All spaces in consideration are compact metric.

1. Spaces with a Mixer are C^∞ and LC $^\infty$

In this section we show that each continuum with a mixer is C^{∞} and LC^{∞} . This allows us to give an internal

characterization of finite dimensional AR's.

Lemma. Let X be a continuum with a mixer. Then
 X is locally connected.

Proof. Let $U \subset X$ be open and let K be a component of U. We will show that K is open.

Let $\mu: X^3 \to X$ be a mixer and take $x \in K$. Then $\mu^{-1}[U] \supset \mu^{-1}(x) \supset (\{x\} \times \{x\} \times X) \cup (\{x\} \times X \times \{x\})$ $\cup (X \times \{x\} \times \{x\}),$

and by compactness there is a neighborhood V of x such that $\mu^{-1}[U] \supset (V \times V \times X) \cup (V \times X \times V) \cup (X \times V \times V).$ Since clearly $(V \times V \times X) \cup (V \times X \times V) \cup (X \times V \times V)$ is connected we conclude that

 $\mu[(V \times V \times X) \cup (V \times X \times V) \cup (X \times V \times V)] \subset K$ and consequently $x \in V \subset K$. Therefore, K is open.

1.2. Lemma. Let X be a compact space, and let μ : $X^{3} \rightarrow X$ be a mixer. If x_{n}, y_{n}, z_{n} ($n \in N$) are points of X such that the sequences $(x_{n})_{n \in N}$ and $(y_{n})_{n \in N}$ both converge to $a \in X$, then the sequence $(\mu(x_{n}, y_{n}, z_{n}))_{n \in N}$ converges to a.

Proof. Let U be a neighborhood of a. As in the proof of the preceding lemma we can find a neighborhood V of a with

 $(v \times v \times x) \cup (v \times x \times v) \cup (x \times v \times v) \subset \mu^{-1}[v].$ Let $n_o \in \mathbf{N}$ be such that $x_n, y_n \in v$ for all $n \ge n_o$. For such n, the triple (x_n, y_n, z_n) is in the left hand set above, whence

$$\mu(\mathbf{x}_n, \mathbf{y}_n, \mathbf{z}_n) \in \mathbf{U}$$

for each $n \ge n_0$.

We can now prove our first main theorem.

1.3. Theorem. Let X be a continuum with a mixer. Then X is $C^{^{\infty}}$ and $LC^{^{\infty}}.$

Proof. We will only show that X is LC^{∞} . The proof that X is C^{∞} is similar, though easier. Let μ : $X^3 + X$ be a mixer. By Lemma 1.1, X is locally path connected (LC^{O}) by our assumption on metrizability. Let $n \ge 1$, and let U be a neighborhood of $x \in X$. As above, we can find a neighborhood V of x with

 $(V \times V \times X) \cup (V \times X \times V) \cup (X \times V \times V) \subset \mu^{-1}[U].$ Let f: Sⁿ → V be a map. We use the standard representations

$$S^{n} = \{ (x_{0}, \dots, x_{n}) \in \mathbf{R}^{n+1} : \sum_{i=0}^{n} x_{i}^{2} = 1 \},$$

$$B^{n+1} = \{ (x_{0}, \dots, x_{n}) \in \mathbf{R}^{n+1} : \sum_{i=0}^{n} x_{i}^{2} \le 1 \}.$$

Let $u \in B^{n+1}$ be defined by

 $u_0 = 1;$ $u_i = 0$ for $1 \le i \le n$. For each $v \in B^{n+1}$ the equation

$$\sum_{i=0}^{n-1} v_i^2 + y^2 = 1$$

has exactly two solutions $y = g_1(v) \ge 0$ and $y = g_2(v) \le 0$ each depending continuously on v.

For each $v \in B^{n+1} \setminus \{u\}$ the line through u and v meets $S^n \setminus \{u\}$ in exactly one point $g_3(v)$ depending continuously on v. We put $g_3(u) = u$ for convenience.

This leads us to a map

$$g = (g_1, g_2, g_3) : B^{n+1} \rightarrow (S^n)^3$$

which is continuous in all points $v \neq u$. Define $\overline{f}: B^{n+1} \rightarrow X$ as the composition

$$B^{n+1} \stackrel{g}{\rightarrow} (S^n)^3 \rightarrow X^3 \stackrel{\mu}{\rightarrow} X,$$

where the map in the middle is (f,f,f). Then \overline{f} extends f since for each $v \in S^n$, two points out of $g_1(v)$, $g_2(v)$, $g_3(v)$ equal v. Also, \overline{f} is continuous in each point $v \in B^{n+1} \setminus \{u\}$. Let $(a_n)_{n \in \mathbb{N}}$ be a sequence in $B^{n+1} \setminus \{u\}$ converging to u. Then $fg_1(a_n)$ and $fg_2(a_n)$ both converge to f(u), whence by Lemma 1.2

 $\overline{f}(a_n) = \mu(fg_1(a_n), fg_2(a_n), fg_3(a_n))$ converges to f(a). This proves continuity of \overline{f} .

Finally note that for each $\nu \in S^n$ we have $f(\nu) \in V$. By the construction of V, we find that $\overline{f}[B^{n+1}] \subset U$. Hence, X is LC^n for each $n \geq 1$.

Observe that the above extension \overline{f} of f is obtained through a constant (i.e. not depending on f) procedure on B^{n+1} , resulting into a map which is then composed with f.

1.4. Corollary. Let X be a finite dimensional continuum. Then X is an AR iff it admits a mixer.

Proof. This is a direct consequence of Theorem 1.3 and Borsuk ([1], p. 122).

2. EC Structures

A local equiconnecting function (cf. Fox [3]) for a space Y is a map λ : U × I → Y, where U is a neighborhood of the diagonal in Y × Y, such that $\lambda(y_0, y_1, i) = y_i (i \in \{0, 1\})$, and $\lambda(y, y, t) = y$, for every $y_0, y_1, y \in Y$, $t \in I$. An equiconnecting function for a space Y is a local equiconnecting function the domain of which is Y × Y × I. We say that Y is EC (LEC) if it admits an equiconnecting function (a local equiconnection function). 2.1. Theorem. Let X be a continuum with a mixer. If X is contractible then X admits an equiconnecting function.

Proof. Let H: $X \times I \rightarrow X$ be a homotopy which is the identity at stage 0 and which is constant at stage 1. In addition, let μ be a mixer. Define an equiconnecting function λ by

$$\lambda(\mathbf{x}_{1},\mathbf{x}_{2},t) = - \begin{cases} \mu(\mathbf{x}_{1},\mathbf{x}_{2},H(\mathbf{x}_{1},2t)) & (t \leq 1/2) \\ \mu(\mathbf{x}_{1},\mathbf{x}_{2},H(\mathbf{x}_{2},2-2t)) & (t \geq 1/2) \end{cases}$$

The check that λ is indeed an equiconnecting function is left to the reader.

As a corollary we obtain that Borsuk's [1] contractible and locally contractible compactum which is not an AR does not have a mixer since Dugundji [2] has shown that this space is not LEC.

The contractibility condition in Theorem 2.1 is an unpleasant limitation. In van Mill & van de Vel [5] this condition will be weakened considerably. There we will show, using the idea of the proof of Theorem 2.1, that whenever X has a (local) mixer and has an open cover by sets contractible within X then X is LEC (also for non-compact X).

Let μ be a mixer on X. If $a, b \in X$ are distinct such that $\mu(a, b, x) = x$ for each $x \in X$, then we say that a and b are *endpoints* for μ , and we say μ is a *mixer with endpoints*.

2.2 Theorem. Each AR has a mixer with endpoints and each continuum having a mixer with endpoints is contractible, hence even EC.

Proof. Let X be a non-degenerate AR and embed X in Q

in such a way that both $(0,0,\cdots)$ and $(1,1,\cdots)$ belong to X. Let r: $Q \rightarrow X$ be a retraction and let m_{∞} be as in the introduction. Define μ : $X^3 \rightarrow X$ by

$$\mu(\mathbf{x},\mathbf{y},\mathbf{z}) = \mathrm{rm}_{\infty}(\mathbf{x},\mathbf{y},\mathbf{z}).$$

Clearly $\boldsymbol{\mu}$ is a mixer with endpoints.

Now let $\mu: X^3 \to X$ be a mixer with endpoints, say $\mu(a,b,x) = x$ for each $x \in X$ and distinct $a,b \in X$. By Lemma l.l X is a Peano continuum, so X is path-connected. Fix $c \in X - \{a,b\}$ and let $f_0: I \to X$ be a path with $f_0(0) = a$ and $f_0(1) = c$ and let $f_1: I \to X$ be a path with $f_1(0) = b$ and $f_1(1) = c$. Now define H: $X \times I \to X$ by

 $H(x,t) = \mu(f_{0}(t), f_{1}(t), x).$

It is easily seen that H is a contraction. By using Theorem 2.1 we find that X is even EC.

3. Remarks

An important construction related to a mixer $\mu\colon X^3\to X$ is to obtain neighborhoods $V\subset U\subset X$ with

 $(V \times V \times X) \cup (V \times X \times V) \cup (X \times V \times V) \subset \mu^{-1}[U].$ The above results can be adapted for "local" mixers provided one requires such a map to be defined on a neighborhood of the diagonal of X^3 containing enough small sets of the above type. This will be investigated in a forthcoming paper of the authors, in which we will also obtain results for noncompact spaces (cf. [5]).

References

K. Borsuk, Theory of retracts, Warszawa (1967).
 J. Dugundji, Locally equiconnected spaces and absolute

neighborhood retracts, Fund. Math. 57 (1965), 187-193.

- [3] R. H. Fox, On fiber spaces, II, Bull. Amer. Math. Soc.
 49 (1943), 733-735.
- J. van Mill, The superextension of the closed unit interval is homeomorphic to the Hilbert cube, Fund. Math. 103 (1979), 151-175.
- [5] and M. van de Vel (in preparation).
- [6] J. van Mill and E. Wattel, An external characterization of spaces which admit binary normal subbases, Am. J. Math. 100 (1978), 987-994.

Subfaculteit Wiskunde

Vrije Universiteit

De Boelelaan 1081

Amsterdam, The Netherlands