TOPOLOGY PROCEEDINGS Volume 4, 1979

Pages 609–628

http://topology.auburn.edu/tp/

WEAK *P*-POINTS IN COMPACT F-SPACES

by

JAN VAN MILL

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

WEAK P-POINTS IN COMPACT F-SPACES

Jan van Mill

0. Introduction

All spaces are completely regular and X* denotes $\beta X-X$. The point $x \in X$ is called a P-point whenever $x \notin \overline{F}$ for each F_{σ} F of X which does not contain x. It is known that ω^* contains P-points under CH (cf. Rudin [R]); however, Shelah (see [M] or [W]) showed that it is consistent with the usual axioms of set theory that there are no P-points in ω^* . The point $x \in X$ is called a *weak* P-point whenever $x \notin \overline{F}$ for each countable $F \subset X - \{x\}$. Clearly each P-point is a weak P-point. Recently, Kunen [K₂] showed that there are $2^{2^{\omega}}$ points in ω^* which are weak P-points but not P-points. In this note we generalize this result.

0.1. Theorem. Let X be a compact infinite F-space without isolated points of weight 2^{ω} in which each nonempty G_{δ} has nonempty interior. Then there are $2^{2^{\omega}}$ points in X which are weak P-points but not P-points.

The condition that each nonempty G_{δ} in X has nonempty interior is essential of course, since no separable space without isolated points can have weak P-points (we don't know whether the theorem is true for compact nowhere separable F-spaces). Such F-spaces cannot have weak P-points, but they might have points which are not limit points of countable discrete sets. We have the following partial answer. 0.2. Theorem. Let E be the projective cover of a compact space which is a product of at most ω_1 spaces of countable π -weight. Then there is an $x \in E$ such that $x \notin \overline{D}$ for each countable discrete $D \subseteq E - \{x\}$.

Let us notice that under CH such points exist in each compact F-space of weight 2^{ω} ([vM₂]).

Let (*) denote the innocent statement that there is a compactification $\gamma \omega$ of ω such that $\gamma \omega - \omega$ is ccc but not separable. It is known (cf. section 5) that CH implies (*). I conjecture that (*) is true in ZFC. It is certainly worthwhile to try to solve this conjecture since a positive answer would imply that the following theorem is true in ZFC.

0.3. Theorem. Assume (*) and let X be a compact infinite F-space without isolated points in which each nonempty G_{δ} has nonempty interior. Then there are $2^{2^{\omega}}$ points in X which are weak P-points but not P-points.

In particular, the theorem is true under CH. I have also been able to prove that the theorem is true under $2^{\omega} = 2^{\omega 1}$.

I am indebted to Evert Wattel for some helpful suggestions and to Charley Mills for reading a preliminary version of this note.

1. Independent Matrices

An ordinal is the set of smaller ordinals and a cardinal is an initial ordinal. Whenever X is a set and κ is a cardinal we define (as usual)

$$[\mathbf{X}]^{\mathsf{K}} = \{\mathbf{A} \subset \mathbf{X} \colon |\mathbf{A}| = \kappa\}$$

and

$$[\dot{X}]^{<\kappa} = \{A \subset X: |A| < \kappa\}$$

respectively.

	Let X be a space. An indexed family $\{A_j^: i \in I, j \in J\}$
of	subsets of X is called a J by I independent matrix if
	- each A_j^i is the closure of some nonempty open F $_\sigma$ in X;
	- whenever $j_0^{}, j_1^{} \in J$ are distinct and i \in I then
	$A_{j_0}^i \cap A_{j_1}^i = \emptyset;$
	- for each finite F \subset I and ϕ : F \rightarrow J we have that
	$\bigcap \{ \mathbf{A}^{\alpha}_{\phi(\alpha)} : \alpha \in \mathbf{F} \} \neq \emptyset.$

(This concept, in a slightly different form, is due to Kunen.)

An F-space is a space in which each cozero-set is C*-embedded. It is well-known, and easy to prove, that a normal space X is an F-space iff any two disjoint open F_{σ} 's of X have disjoint closures. This fact will be used frequently without explicit reference throughout the remaining part of this note.

The following Proposition is the key to our construction. I am indebted to Evert Wattel for pointing out to me that my original proof was unnecessarily complicated and for allowing me to publish his proof here.

1.1. Proposition. Let X be a compact infinite F-space without isolated points in which every nonempty G_{δ} has nonempty interior. Then each nonempty open subset of X contains an ω_1 by ω_1 independent matrix for X.

Proof. Wellorder $\omega_1 \times \omega_1$ by <* in order type ω_1 . For

4

each $\langle \alpha, \beta \rangle \in \omega_1 \times \omega_1$ let $Q \langle \alpha, \beta \rangle = \{ \langle \gamma, \delta \rangle : \langle \gamma, \delta \rangle \leq * \langle \alpha, \beta \rangle \}.$ $\mathcal{F} \langle \alpha, \beta \rangle = \{ \phi : \phi \text{ is a function with } |\phi| < \omega \text{ and}$ $\phi \subset Q \alpha, \beta \}, \text{ and}$ $\mathcal{G} \langle \alpha, \beta \rangle = \{ \phi \in \mathcal{F} \langle \alpha, \beta \rangle : \langle \alpha, \beta \rangle \in \phi \}.$

Notice that $\emptyset \in \mathcal{F}(\alpha,\beta) - \mathcal{G}(\alpha,\beta)$ for each $\langle \alpha,\beta \rangle \in \omega_1 \times \omega_1$. A function $\psi \in \mathcal{F}(\alpha,\beta)$ is called an extension of $\phi \in \mathcal{F}(\gamma,\delta)$ whenever $\langle \gamma,\delta \rangle \leq * \langle \alpha,\beta \rangle$ and $\psi \cap Q(\gamma,\delta) = \phi$. Without loss of generality $\langle 0,0 \rangle$ is the first element of $\omega_1 \times \omega_1$. For the sake of notational simplicity we write max $\emptyset = \langle 0,0 \rangle$.

We will now construct for each $\langle \alpha, \beta \rangle \in \omega_1 \times \omega_1$ a collection of nonempty closed G_{δ} 's {S($\langle \alpha, \beta \rangle, \phi$): $\phi \in \mathcal{F}\langle \alpha, \beta \rangle$ } and a collection of nonempty open F_{σ} 's {U($\langle \alpha, \beta \rangle, \phi$): $\phi \in \mathcal{G}\langle \alpha, \beta \rangle$ } such that

- (1) { $S(\langle \alpha, \beta \rangle, \phi): \phi \in \mathcal{H}(\alpha, \beta)$ } is a disjoint collection;
- (2) if $\langle \gamma, \delta \rangle < * \langle \alpha, \beta \rangle$ and $\phi \in \mathcal{F}_{\langle \alpha, \beta \rangle}$ extends $\psi \in \mathcal{F}_{\langle \gamma, \delta \rangle}$ then $S(\langle \alpha, \beta \rangle, \phi) \subset S(\langle \gamma, \delta \rangle, \psi);$
- (3) if $\phi \in \mathcal{G}(\alpha,\beta)$ and $\psi = \phi \{\langle \alpha,\beta \rangle\}$ then $S(\langle \alpha,\beta \rangle,\phi) \subset U(\langle \alpha,\beta \rangle,\phi) \subseteq U(\langle \alpha,\beta \rangle,\phi)^{-1} \subset S(\langle \gamma,\delta \rangle,\psi)$ whenever max $\psi \leq^{*} \langle \gamma,\delta \rangle <^{*} \langle \alpha,\beta \rangle;$
- (4) if $\phi \in \mathcal{G}(\alpha, \beta)$ and $\psi = \phi \{\langle \alpha, \beta \rangle\}$ then $U(\langle \alpha, \beta \rangle, \phi)^{-1}$ $\cap S(\langle \alpha, \beta \rangle, \psi) = \emptyset$.

Let $S(\langle 0, 0 \rangle, \emptyset)$ and $S(\langle 0, 0 \rangle, \{\langle 0, 0 \rangle\})$ be any two nonempty disjoint closed G_{δ} 's. In addition, let $U(\langle 0, 0 \rangle, \{\langle 0, 0 \rangle\})$ be any nonempty open F_{σ} of X the closure of which is properly contained in int $S(\langle 0, 0 \rangle, \{\langle 0, 0 \rangle\})$. Now suppose that we have completed the construction for all $\langle \gamma, \delta \rangle <^* \langle \alpha, \beta \rangle$. For each $\phi \in \mathcal{J}\langle \alpha, \beta \rangle - \mathcal{G}\langle \alpha, \beta \rangle$ put $T(\langle \alpha, \beta \rangle, \phi) = \bigcap \{ S(\langle \gamma, \delta \rangle, \phi) : \max \phi \leq \star \langle \gamma, \delta \rangle < \star \langle \alpha, \beta \rangle \}.$ Observe that by (1) and (2)

$$\{\mathbf{T}(\langle \alpha,\beta\rangle,\phi):\phi\in\mathcal{F}(\alpha,\beta\rangle-\mathcal{G}(\alpha,\beta)\}$$

is a disjoint collection of nonempty closed G_{δ} 's. Put

$$\#\langle \alpha, \beta \rangle = \{ \phi \in \mathcal{H}\langle \alpha, \beta \rangle \colon \phi \cup \{ \langle \alpha, \beta \rangle \} \in \mathcal{G}\langle \alpha, \beta \rangle \}.$$
For each $\phi \in \mathcal{H}\langle \alpha, \beta \rangle - \#\langle \alpha, \beta \rangle$ define $S(\langle \alpha, \beta \rangle, \phi) = T(\langle \alpha, \beta \rangle, \phi)$.
In addition, for each $\phi \in \#\langle \alpha, \beta \rangle$ choose disjoint nonempty
 G_{δ} 's $Z_{0}(\phi)$, $Z_{1}(\phi) \subset \text{int } T(\langle \alpha, \beta \rangle, \phi)$. In addition, let $U(\phi)$
be an open F_{α} such that

 $Z_{1}(\phi) \subset U(\phi) \subset U(\phi)^{-} \subset int T(\langle \alpha, \beta \rangle, \phi) - Z_{0}(\phi).$ Define

 $\begin{cases} S(\langle \alpha, \beta \rangle, \phi) = Z_0(\phi), \\ S(\langle \alpha, \beta \rangle, \phi \cup \{\langle \alpha, \beta \rangle\}) = Z_1(\phi), \\ U(\langle \alpha, \beta \rangle, \phi \cup \{\langle \alpha, \beta \rangle\}) = U(\phi). \end{cases}$

It is trivial that our inductive hypotheses are satisfied.

For each $\langle \alpha, \beta \rangle \in \omega_1 \times \omega_1$ now put

 $U(\alpha,\beta) = \bigcup \{ U(\langle \alpha,\beta \rangle,\phi): \phi \in \mathcal{G}(\langle \alpha,\beta \rangle) \}.$

Now let ϕ be a finite subset of $\omega_1 \times \omega_1$ such that no two elements of ϕ have their first entries equal. Let (α, β) be the maximal member of ϕ . Then

 $\bigcap \{ U \langle \gamma, \delta \rangle : \langle \gamma, \delta \rangle \in \phi \} \supset S(\langle \alpha, \beta \rangle, \phi),$ since, $U \langle \gamma, \delta \rangle \supset U(\langle \gamma, \delta \rangle, \phi \cap Q \langle \gamma, \delta \rangle) \supset S(\langle \gamma, \delta \rangle, \phi \cap Q \langle \gamma, \delta \rangle) \supset$ $S(\langle \alpha, \beta \rangle, \phi),$ according to (2) and (3), and since $S(\langle \alpha, \beta \rangle, \phi)$ $\neq \emptyset$, also

 $n\{ \mathbf{U} \langle \boldsymbol{\gamma}, \boldsymbol{\delta} \rangle : \langle \boldsymbol{\gamma}, \boldsymbol{\delta} \rangle \in \boldsymbol{\phi} \} \neq \boldsymbol{\emptyset}.$

Suppose that $(\alpha, \gamma) <* \langle \alpha, \beta \rangle$. We claim that $U(\alpha, \gamma) \cap U(\alpha, \beta) = \emptyset$. Let us assume, to the contrary, that $U(\alpha, \gamma) \cap U(\alpha, \beta) \neq \emptyset$, say

 $U(\langle \alpha, \gamma \rangle, \phi) \cap U(\langle \alpha, \beta \rangle, \psi) \neq \emptyset$

for certain $\phi \in \mathcal{G}(\alpha, \gamma)$ and $\psi \in \mathcal{G}(\alpha, \beta)$. Define $\psi' = \psi \cap Q(\alpha, \gamma)$. Notice that $(\alpha, \gamma) \notin \psi'$. So $\phi \neq \psi'$ and consequently

 $U(\langle \alpha,\gamma\rangle,\phi) \cap S(\langle \alpha,\gamma\rangle,\psi') = \emptyset.$

Put $\psi'' = \psi - \{\langle \alpha, \beta \rangle\}$. Then

 $U(\langle \alpha, \beta \rangle, \psi) \subset S(\max \psi'', \psi'') \subset S(\langle \alpha, \gamma \rangle, \psi')$ by (2) and (3). We conclude that $U(\langle \alpha, \gamma \rangle, \phi) \cap U(\langle \alpha, \beta \rangle, \psi)$ = \emptyset , a contradiction.

Finally, since every $U(\langle \alpha, \beta \rangle, \phi)$ is an F_{σ} and since $\mathcal{G}\langle \alpha, \beta \rangle$ is at most countable, each $U\langle \alpha, \beta \rangle$ is itself and open F_{σ} . So $\overline{U\langle \alpha, \gamma \rangle} \cap \overline{U\langle \alpha, \beta \rangle} = \emptyset$ for all $\langle \alpha, \gamma \rangle <^* \langle \alpha, \beta \rangle$. We conclude that $\{\overline{U\langle \alpha, \beta \rangle}: \langle \alpha, \beta \rangle \in \omega_1 \times \omega_1\}$ is an ω_1 by ω_1 independent matrix. The same proof shows that actually such a matrix can be chosen in any nonempty open subset of X.

1.2. Remark. In the sequel we will only need the existence of an ω by ω_1 independent matrix.

1.3. *Question*. Let X be a compact F-space without isolated points in which each nonempty G_{δ} has nonempty interior. Is there a 2^{ω} by 2^{ω} independent matrix for X?

2. Nice Filters

Let X be a normal space. A closed *filterbase* on X is a collection of closed subsets of X which is closed under finite intersections and which does not contain the empty set. The closed *filter* generated by the filterbase \mathcal{F} is the collection {A \subset X: A = $\overline{A} \in \mathcal{F} \in \mathcal{F}$: F \subset A}. A closed *ultrafilter* is a maximal filter. The points X* are identified with the nonprincipal closed ultrafilters on X. So $A \in p$ means $p \in cl_{\beta X}A$.

Let X be the topological sum of countably many nonempty compact spaces, say $X_n (n < \omega)$. A closed filter \mathcal{J} on X is called *nice* provided that for each $F \in \mathcal{J}$ the set

 $\{n < \omega: F \cap X_n = \emptyset\}$ is finite, while in addition $\cap \mathcal{I} = \emptyset$.

It is clear that no nice filter is an ultrafilter, in fact each nice filter can be extended to at least $2^{2^{\omega}}$ ultra-filters.

2.1. Lemma. Let X be a compact F-space without isolated points in which each nonempty G_{δ} has nonempty interior. For each $n < \omega$ let Z_n be a nonempty closed G_{δ} in X such that $Z_n \cap (\bigcup \{Z_i: i \neq n\})^- = \emptyset$ and put $Z = (\bigcup \{Z_n: n < \omega\})^- - \bigcup \{Z_n: n < \omega\}$. Then there is a nice filter \mathcal{F} on $\bigcup \{Z_n: n < \omega\}$ such that

- (a) each $F \in \mathcal{F}$ is the closure (in $\bigcup \{Z_n: n < \omega\}$) of some open F_{σ} in X;
- (B) for each countable $D \subset X Z$ there is some $F \in \mathcal{F}$ such that $D \cap F = \emptyset$ (hence $\overline{D} \cap \overline{F} = \emptyset$).

Proof. For each $n < \omega$ let $\{A_{\beta}^{m}(n): m < \omega, \beta < \omega_{1}\}$ be an ω by ω_{1} independent matrix for X each element of which is contained in int Z_{n} (Proposition 1.1). Let $D \subset X - Z$ be countable. Observe that for each $n < \omega$ and $m < \omega$ the family

$$\{A_{\beta}^{m}(n): \beta < \omega_{1}\}$$

is pairwise disjoint. Consequently, for each n < ω and m < ω we can find an index $\beta(n,m;D)$ < ω_1 such that

$$D \cap (A^{m}_{\beta(n,m;D)}(n))^{-} = \emptyset.$$

For each $n < \omega$ put

$$U_{n}(D) = \bigcup_{k=0}^{n} A_{\beta}^{k}(n,k;D) (n).$$

Notice that $U_n(D) \subset Z_n$ and that $D \cap \overline{U_n(D)} = \emptyset$. Define

 $U(D) = \bigcup_{n < \omega} U_n(D)$ and let $\hat{\partial} = \{ D \subset X - Z : |D| < \omega \}.$

Claim. $\overline{U(D)} \cap \overline{D} = \emptyset$ for each $D \in \partial$. Moreover, for each finite $\xi \subset \partial$ there is an $i < \omega$ such that $Z_j \cap \cap \{U(E) : E \in \xi\} \neq \emptyset$ for each j > i.

It is clear that $\overline{U(D)} \cap D = \emptyset$ which implies that $\overline{U(D)} \cap \overline{D}$ = \emptyset since D is countable and X is an F-space. The second clause of the claim is trivial.

Now let \mathcal{F} be the closed filter generated by $\{\overline{U(D)} \cap U \ge n \le \partial\}$. Then \mathcal{F} is as required. $n < \omega$

3. Extending Nice Filters to OK-Points

For technical reasons we slightly change Kunen's $[K_2]$ concept of an OK-point. Let X be a normal space. In this note, a point $p \in X^*$ is called κ -OK provided that for each sequence $\{U_n: n < \omega\}$ of neighborhoods of p in X* there are $A_{\alpha} \in p(\alpha < \kappa)$ such that for each $n \ge 1$ and $\alpha_1 < \alpha_2 < \cdots < \alpha_n < \kappa$:

 $\bigcap_{\substack{1 \leq i \leq n}} c_{\beta X}^{A} \alpha_{\alpha} \cap X^{*} \subset U_{n}^{*}.$

Observe that the property of being κ -OK gets stronger as κ gets bigger.

3.1. Lemma. Let X be a locally compact and σ -compact space and let $p \in X^*$ be ω_1^{-OK} . Then p is a weak P-point of X*.

Proof. Let $F \subset X^* - \{p\}$ be countable. Since p is

 $ω_1$ -OK there is an $A \in p$ such that $cl_{\beta X}A \cap F = \emptyset$ (with precisely the same technique as in $[K_2, 1.3]$). Put $Y = X \cup F$. Then Y is σ-compact, hence normal, and since F and A are both closed in Y there is a Urysohn map f: $Y \neq [0,1]$ such that f[F] = 0 and f[A] = 1. Let $\beta f: \beta Y \neq [0,1]$ be the Stone extension of f. Since $\beta X = \beta Y$ ([GJ, 6.7]) and since $\beta f(p) = 1$ we conclude that $p \notin cl_{\beta X}F$ (this type of argument is due to Negrepontis [N]).

We are going to treat X like Kunen treated ω , so we have to make appropriate adaptations of Kunen's definitions.

3.2. Definition. Let \mathcal{F} be a closed filter on X and assume that no $F \in \mathcal{F}$ is compact.

If $1 \leq n < \omega$, an indexed family $\{A_i: i \in I\}$ of closed subsets of X is *precisely* n-*linked* w.r.t. \mathcal{J} if for all $\sigma \in [I]^n$ and $F \in \mathcal{J}$, $\bigcap_{i \in \sigma} A_i \cap F$ is not compact, but for all $\sigma \in [I]^{n+1}$, $\bigcap_{i \in \sigma} A_i$ is compact.

An indexed family $\{A_{in}: i \in I, l \le n < \omega\}$ is a *linked* system w.r.t. \mathcal{F} if for each n, $\{A_{in}: i \in I\}$ is precisely n-linked w.r.t. \mathcal{F} , and for each n and i, $A_{in} \subseteq A_{i,n+1}$.

An indexed family $\{A_{in}^{j}: i \in I, l \leq n < \omega, j \in J\}$ is an I by J independent linked family w.r.t. \mathcal{J} if for each $j \in J$, $\{A_{in}^{j}: i \in I, l \leq n < \omega\}$ is a linked system w.r.t. \mathcal{J} , and:

$$\begin{array}{c} ((A J)) \\ j \in \tau \ i \in \sigma \\ j \end{array}$$

is not compact, whenever $\tau \in [J]^{\leq \omega}$, and for each $j \in \tau$, $1 \leq n_j < \omega$ and $\sigma_j \in [I]^{n_j}$ and $F \in \mathcal{F}$.

(All these definitions are copied from Kunen $[K_2]$).

3.3. Lemma. There is a 2^{ω} by 2^{ω} independent linked family in ω w.r.t. the filter of cofinite sets.

For a proof of this Lemma see $[K_2, 2.2]$.

3.4. Theorem. Let X be the topological sum of countably many compact nonempty spaces of weight at most 2^{ω} , say $X_n (n < \omega)$. Then each nice filter J on X can be extended to a closed ultrafilter p which is 2^{ω} -OK.

Proof. Let $\{Z_{\mu}: \mu < 2^{\omega} \& \mu \text{ is even}\}$ enumerate all nonempty closed G_{δ} 's of X (there are clearly only 2^{ω} closed G_{δ} 's). Let $\{\langle C_{\mu n}: n < \omega\}: \mu < 2^{\omega} \& \mu \text{ is odd}\}$ enumerate all sequences of closed nonempty G_{δ} 's satisfying

 $C_{\mu,n+1} \subset int C_{\mu n} \cap \bigcup_{i>n} X_{i}$

for each n < ω . Furthermore we assume that each sequence is listed cofinally often. Finally, let $\{A_{\alpha n}^{\beta}: \alpha < 2^{\omega}, 1 \leq n < \omega, \beta < 2^{\omega}\}$ be an independent linked family of ω with respect to the cofinite filter.

By induction on μ we construct $\mathcal{F}_{_{\!\!\!\!\!\!U}}$ and $K_{_{\!\!\!\!\!\!\!U}}$ so that

- 1) \mathcal{F}_{μ} is a closed filter on X, $K_{\mu} \subset 2^{\omega}$, and $\{ \bigcup \{ X_{i} : i \in A_{\alpha n}^{\beta} \}$: $\alpha < 2^{\omega}, 1 \leq n < \omega, \beta \in K_{\mu} \}$ is an independent linked family w.r.t. \mathcal{F}_{μ} ;
- 2) $K_0 = 2^{\omega}$ and $\mathcal{F}_0 = \mathcal{F}_2$;
- 3) $\nu < \mu$ implies $\mathcal{F}_{\nu} \subset \mathcal{F}_{\mu}$ and $K_{\nu} \supset K_{\mu}$;
- 4) if μ is a limit ordinal, $\mathcal{F}_{\mu} = \bigcup_{v < u} \mathcal{F}_{v}$ and $K_{\mu} = \bigcap_{v < u} K_{v}$;
- 5) for each μ , $K_{u} K_{u+1}$ is finite;
- 6) if μ is even, either $\mathbf{Z}_{\mu}\in\mathcal{F}_{\mu}$ or some $\mathbf{F}\in\mathcal{F}_{\mu}$ misses $\mathbf{Z}_{\mu};$
- 7) if μ is odd and each $C_{un} \in \mathcal{F}_{u}$, then there are

 $\begin{array}{l} D_{\mu\alpha} \in \mathcal{J}_{\mu+1} \mbox{ for } \alpha < 2^{\omega} \mbox{ such that for all } n \geq 1 \mbox{ and all } \\ \alpha_1 < \alpha_2 < \cdots < \alpha_n < 2^{\omega}, \mbox{ (} D_{\mu\alpha_1} \mbox{ } \cap \mbox{ } \cdots \mbox{ } \cap \mbox{ } D_{\mu\alpha_n} \mbox{) } - C_{\mu n} \\ \mbox{ has compact closure.} \end{array}$

Notice that since \mathcal{J} is a nice filter, the collection $\{ \cup \{ X_i : i \in A_{\alpha n}^{\beta} \} : \alpha < 2^{\omega}, 1 \leq n < \omega, \beta < 2^{\omega} \}$ is indeed an independent linked family w.r.t. \mathcal{J} .

That this construction can be carried out follows by precisely the same argumentation as in Kunen [K₂, the proof of theorem 3.1]. The only place where the proof, modulo some obvious adaptations, is different, is at the end, namely in the case that μ is odd and each $C_{\mu n} \in \mathcal{F}_{\mu}$. Now the "refinement system" for $\langle C_{\mu n} : n < \omega \rangle$ must be defined as follows:

$$\begin{split} \mathsf{D}_{\mu\alpha} &= \bigcup_{1 \leq n < \omega} \cup \ \{\mathsf{X}_{\mathtt{i}} \colon \mathtt{i} \in \mathsf{A}_{\alpha n}^{\beta}\} \ \cap \ (\mathsf{C}_{\mu n} \ - \ \mathtt{int} \ \mathsf{C}_{\mu, n+1}) \,. \end{split}$$
 For details we refer to [K₂, 3.1]. Now let p be the ultra-filter generated by $\cup_{\mathtt{u}} \mathcal{F}_{\mathtt{u}}$. Then p is as required.

3.5. Proof of Theorem 0.1. We only show that some $p \in X$ is a weak P-point but not a P-point; one can find $2^{2^{\omega}}$ such points by combining our proof with the argument in $[K_2, 0.1]$.

Let $\textbf{Z}_n (n < \omega)$ be a sequence of nonempty closed \textbf{G}_{δ} 's of X such that

 $Z_n \cap (\bigcup \{Z_i: i \neq n \})^- = \emptyset.$ Put $Y = \bigcup Z_n$ and observe that Y is C*-embedded in X, or, $n < \omega$ equivalently, $\beta Y = \overline{Y}$. Let \overline{J} be a nice filter for Y as described in Lemma 2.1. By Theorem 3.4, \overline{J} can be extended to a closed ultrafilter $p \in Y^*$ which is 2^{ω} -OK. Let $D \subset X$ - $\{p\}$ be countable. Take a neighborhood U of p in X which misses D \cap (\overline{Y} - Y) (Lemma 3.1). By Lemma 2.1 some F $\in \mathcal{F}$ misses D - Y*; hence,

 $\overline{F} \cap (D - Y^*)^- = \emptyset$.

Since $p \in \overline{F}$ we can find a neighborhood V of p which misses D - Y*. Then U \cap V does not intersect D. Hence p is a weak P-point; clearly p is not a P-point.

3.6. Remark. In fact, Theorem 0.1 can be generalized. With the same proof it follows that each compact F-space X of weight 2^{ω} which can be mapped onto a compact F-space without isolated points in which each nonempty G_{δ} has nonempty interior contains a weak P-point.

3.7. Remark. Notice that Theorem 0.1 implies that each compact F-space of weight 2^{ω} in which each nonempty G_{δ} has nonempty interior contains a weak P-point.

4. Remote Points

The point $x \in X^*$ is called a *remote point* of X provided that

x ¢ cl_{βx}A

for each nowhere dense set $A \subset X$. Van Douwen [vD, 4.2] and Chae and Smith [CS] have shown that each nonpseudocompact space of countable π -weight¹ has a remote point. Subsequently, van Mill $[vM_1]$ showed that, more generally, each nonpseudocompact space which is a product of at most ω_1 spaces of countable π -weight has a remote point. For more

620

¹A π -basis β for X is a collection of nonempty open subsets of X such that each nonempty open set in X contains an element of β . The π -weight, $\pi(X)$, is ω .min{ $|\beta|: \beta$ is a π -basis for X}.

information concerning remote points, see [vD], [vDvM], [CS],
[KvMM], [vM₁], [Wo].

4.1. Theorem. Let X be a locally compact normal nonpseudocompact space which is a product of at most w_1 spaces of countable π -weight. Then X has a remote point x which is also a 2^{ω} -OK point.

Proof. The "remote filter" \mathcal{F} for X constructed in $[vM_1]$ is defined on a discrete sequence of compact subspaces while this filter in addition is nice. Now apply Theorem 3.4.

For each space X let EX be the unique extremally disconnected space which admits a perfect irreducible map onto X. The space EX is called the *projective cover* of X (for a beautiful survey on projective covers, see Woods [Wo]).

4.2. Proof of Theorem 0.2. The theorem is trivial in case E has an isolated point, so assume that E has no isolated points. Theorem 4.1 implies that there is a sequence $\{C_n: n < \omega\}$ of pairwise disjoint nonempty clopen sets such that

$$C = \bigcup_{n < \omega} C_n$$

has a remote point x which is also a 2^{ω} -OK point (observe that whenever f: $Z_0 \rightarrow Z_1$ is perfect and irreducible and Z_0 is normal, that $|\beta f^{-1}(p)| = 1$ for each remote point p of Z_1 (βf is the Stone extension of f)). We claim that x $\notin \overline{D}$ for each countable discrete $D \subset E - \{x\}$. This is trivial however, since x is 2^{ω} -OK and $\overline{D} \cap C$ is nowhere dense in C for each countable discrete $D \subset E - (\overline{C} - C)$.

5. Proof of Theorem 0.3

Let us recall that (*) denotes the statement that there is a compactification $\gamma\omega$ of ω such that $\gamma\omega - \omega$ is ccc and not separable.

5.1. Lemma. CH implies (*) and (*) implies that there is a compactification $\gamma \omega$ of ω such that $\gamma \omega - \omega$ is ccc and nowhere separable.

Proof. By Tall [T, Ex. 7.5], the Stone space of the Boolean algebra of Lebesgue measurable subsets of [0,1] modulo the nullsets is a compact extremally disconnected ccc nonseparable space of weight 2^{ω} . Under CH, each compact space of weight at most 2^{ω} is a continuous image of ω^* , or, equivalently, is the remainder of some compactification of ω (cf. Parovičenko [P]). Hence CH implies (*).

Now assume that b ω is a compactification of ω such that $b\omega - \omega$ is ccc and not separable. Let \mathcal{U} be a maximal disjoint family of nonempty separable open subsets of $b\omega - \omega$. Then $|\mathcal{U}| \leq \omega$ and $|\mathcal{U}|$ is not dense. Let V be a nonempty open F_{σ} of $b\omega - \omega$ such that $\overline{V} \cap \overline{|\mathcal{U}|} = \emptyset$. Now let $\gamma\omega$ be the quotient space one obtains from $b\omega$ by collapsing $(b\omega - \omega) - V$ to a single point.

For each space X let RO(X) be the Boolean algebra of regular open subsets of X. It is clear that $|RO(X)| \leq w(X)^{C(X)}$, where w(X) and c(X) denote the weight and cellularity of X. If f: X \rightarrow Y is a closed irreducible² surjection then f#: $RO(X) \rightarrow RO(Y)$ defined by

²A continuous surjection f: $X \rightarrow Y$ is called *irreducible* whenever f[A] $\neq Y$ for each proper closed set A $\subset X$.

$$f#(U) = Y - f[X - U]$$

clearly is a Boolean isomorphism, hence $|RO(X)| = |RO(Y)| \le w(Y)^{C(Y)}$. This observation will be used in the remaining part of this section.

5.2. Proof of Theorem 0.3. For each $n < \omega$ let $Z_{n}^{}$ be a nonempty closed $G_{\delta}^{}$ of X such that

 $Z_{n} \cap (\bigcup \{Z_{i}: i \neq n\})^{-} = \emptyset.$

Let $\{E_n: n < \omega\}$ be a partition of ω in countably many infinite sets. For each $n < \omega$ let \mathcal{F}_n be a nice filter on $\cup\{Z_i: i \in E_n\}$ as described in Lemma 2.1. For each $n < \omega$ put

$$F(n) = \bigcap_{F \in \mathcal{F}_n} \overline{F}.$$

Notice that $F(n) \cap F(m) = \emptyset$ whenever $n \neq m$ and that $\bigcup F(n)$ n< ω is C*-embedded in X. Define f: $\bigcup Z_n \neq \omega$ by $n < \omega$

 $f(\mathbf{x}) = \mathbf{n} \iff \mathbf{x} \in \mathbf{Z}_{n};$ let $f_{n} = f \models \bigcup_{i \in \mathbf{E}_{n}} \mathbf{Z}_{i}$. Let βf_{n} be the Stone extension of $f_{n}(n < \omega)$. Since $\bigcup_{n < \omega} \mathbf{Z}_{n}$ is C*-embedded in X, $\beta(\bigcup\{\mathbf{Z}_{i}: i \in \mathbf{E}_{n}\}) = (\bigcup\{\mathbf{Z}_{i}: i \in \mathbf{E}_{n}\})^{-}$

for each $n < \omega$. Put

 $S(n) = (U\{Z_i: i \in E_n\})^- - U\{Z_i: i \in E_n\}$

 $(n < \omega)$. Then clearly $\beta f_n[S(n)] = E_n^* \approx \omega^*$. Since \mathcal{J}_n is a nice filter we also have that

$$\beta f_n[F(n)] = E_n^*.$$

By (*), let Y be some ccc nowhere separable remainder of a compactification of ω (cf. Lemma 5.1). For each $n < \omega$ let g_n map E_n^* onto Y and let h_n be the composition of $\beta f_n \uparrow S(n)$ and g_n . Notice that $h_n[F(n)] = Y$ for each $n < \omega$. For each

 $n < \omega$ let $Y(n) \subset F(n)$ be closed such that $h_n
ightharpoonrightarrow Y(n)
ightarrow Y$ is an irreducible surjection. Then $|RO(Y(n))| = |RO(Y)| \leq w(Y)^{C(Y)} \leq (2^{\omega})^{\omega} = 2^{\omega}$. We conclude that Y(n) has weight 2^{ω} .

For each countable subset G of $\bigcup_{n \le \omega} S(n)$ let $\{U_n(G): n \le \omega\}$ be a maximal pairwise disjoint collection of nonempty regular closed sets of Y none of which intersects $(\bigcup_{n \le \omega} h_n[G \cap S(n)])^-$. Define $n \le \omega$

 $L(G) = \bigcup_{n < \omega} (h_n^{-1} [\bigcup_{i \in n} U_i(G)] \cap Y(n)).$

Notice that L(G) is a closed subset of $\bigcup S(n)$ and that $n < \omega$ L(G) does not intersect the closure (in $\bigcup S(n)$) of G. Also, $n < \omega$ $\ell = \{L(G): G \text{ is a countable subset of } \bigcup S(n)\}$ $n < \omega$ is centered and the filter ℓ' generated by ℓ is nice. By Theorem 3.4 ℓ' can be extended to an ultrafilter p which is 2^{ω} -OK. Since clearly $\bigcup Y(n)$ is C*-embedded in X, p is a $n < \omega$ point of X. We claim that p is a weak P-point of X.

Let $H \subset X - \{p\}$ be countable. Put $Z = (\bigcup_{i < \omega} Z_i)^{-1} - i^{<\omega}$

 $\bigcup_{i < \omega} \mathbf{Z}_i$ and let

 $H_0 = H - Z$.

For each n < ω there is some $G_n \in \mathcal{F}_n$ such that $G_n \cap H_0 = \emptyset$. By construction of the filters \mathcal{F}_n , and since X is an F-space,

$$(\bigcup_{n < \omega} G_n)^{-} \cap \overline{H}_0 = \emptyset.$$

Since $p \in (\bigcup_{n < \omega} G_n)^-$ this shows that $p \notin \overline{H}_0$. Now, notice that Z is an F-space, being a closed subspace of the compact F-space X, and that each S(n) is a clopen subspace of Z; consequently

$$(\bigcup S(n)) \cap \overline{E} = \emptyset$$

 $n \le \omega$

for each countable $E \subseteq Z - (\bigcup S(n))^{-}$. We conclude that n<ω $p \notin (H \cap (Z - (\cup S(n))))$. $n < \omega$ Now let $H_{1} = H \cap \bigcup_{n \le \omega} S(n).$ By construction of \angle some $L \in \angle$ misses the closure (in \cup S(n)) of H₁. Therefore n<ω $\overline{L} \cap \overline{H}_1 = \emptyset$, since disjoint closed sets in U S(n) have disjoint closures n<ω in X. This shows that $p \notin \overline{H}_1$. Define $\mathbf{H}_{2} = \mathbf{H} \cap \left(\left(\bigcup_{n < \omega} \mathbf{S}(n) \right)^{-} - \bigcup_{n < \omega} \mathbf{S}(n) \right).$ If $H_2' = H_2 - (\cup Y(n))^{-}$, then by precisely the same technique as in Lemma 3.1 it follows that $\overline{H_2^{+}} \cap (\bigcup_{n < \omega} Y(n))^{-} = \emptyset;$ we conclude that $p \notin \overline{H}_2^{\prime}$. Finally, put $H_{3} = H \cap \left(\left(\bigcup_{n < \omega} Y(n) \right)^{-} - \bigcup_{n < \omega} Y(n) \right).$ Then $p \notin \overline{H}_2$ since p is 2^{ω}-OK. We conclude that $p \notin \overline{H}_2$, i.e. p is a weak P-point of X. By construction, p is not a

P-point.

By making an appropriate adaptation of $[K_2, 0.1]$ one can find $2^{2^{\omega}}$ weak P-points which are not P-points.

5.3. *Remark*. By a somewhat different and more technical comstruction I have proved that Theorem 0.3 is true if one assumes that $2^{\omega} = 2^{\omega 1}$. In addition, Theorem 0.3 is true under the following hypothesis.

(**) for each compact ccc space X of weight 2^{ω} there is

As (*), (**) is true if CH.

х.

5.4. Question. Is one of (*), (**) true in ZFC?

5.5. *Question*. Let X be a compact infinite F-space without isolated points in which each nonempty G_{δ} has nonempty interior. Are there |X| weak P-points in X?

6. Remarks

It is shocking that the answer to a question as simple as:

is there in ZFC a compactification $\gamma\omega$ of ω such that $\gamma\omega$ - ω is ccc and not separable 4

is unknown. The easiest way of solving this question would be to construct a compact ccc nonseparable space of weight ω_1 , since each compact space of weight ω_1 is the remainder of some compactification of ω ([P]). However, under MA + ¬CH, each compact ccc space of weight less than 2^{ω} is separable ([T, Theorem 1.4 (a)]), which blocks this attempt (this was brought to my attention by Eric van Douwen).

Let us finally notice that Kunen has asked whether one can delete "F-space" from the hypotheses of our results.

6.1. Question (Kunen). Let X be a compact space of weight 2^ω in which each nonempty $G_{\hat{X}}$ has nonempty interior.

³A subset P \subset X is called a P-set whenever P $\cap \overline{F} = \emptyset$ for each $F_{\sigma}F$ of X which misses P.

⁴The author offers a bottle of Jenever (Dutch gin) for the first valid solution of this problem.

Is there a weak P-point in X?

It is clear that this is true under CH.

Remarks added in August 1980: Our question whether a ccc nonseparable growth of ω exists was answered, in the affirmative, by Bell [B]. Theorems 0.1 and 0.3 were generalized by Dow and van Mill [DvM] who showed, using Bell's result, that each compact nowhere ccc F-space contains a weak P-point. Subsequently, Dow [D] showed that each compact F-space of weight greater than 2^{ω} contains a weak P-point. For more generalizations, see $[vM_1]$, $[vM_3]$.

References

119-123.

[B]	M. G. Bell, Compact ccc non-separable spaces of small
	weight (to appear).
[CS]	S. B. Chae and J. H. Smith, Remote points and G-spaces
	(to appear in Top. Appl.).
[D]	A. Dow, Weak P-points in compact ccc F-spaces (to
	appear in Trans. Amer. Math. Soc.).
[DvM]	A. Dow and J. van Mill, On nowhere dense ccc P-sets
	(to appear in Proc. Amer. Math. Soc.).
[vD]	E. K. van Douwen, Remote points (to appear in Diss.
	Math.).
[vDvM]	and J. van Mill, Spaces without remote points
	(to appear in Pac. J. Math.).
[GJ]	L. Gillman and M. Jerison, Rings of continuous func-
	tions, Princeton, N.J.: van Nostrand (1960).
[K]]	K. Kunen, Some points in βN , Math. Proc. Cambridge
_	Philos. Soc. 80 (1976), 385-398.
[K ₂]	, Weak P-points in N* (to appear in Proc.
	Bolyái János Society Colloquium on Topology, Budapest
	(1978).
[KvMM]	, J. van Mill, and C. F. Mills, On nowhere
	dense closed P-sets, Proc. Amer. Math. Soc. 78 (1980),

627

- $[vM_1]$ J. van Mill, Sixteen topological types in $\beta\omega-\omega$ (to appear).
- [VM2] _____, A simple observation concerning the existence of non-limit points in compact F-spaces, Top. Structures 2, Mathematical Centre Tracts 115 (1979), 167-168.
- [VM₃] ____, Weak P-points in Čech-Stone compactifications (to appear).
- [M] C. F. Mills, An easier proof of the Shelah P-point independence theorem (to appear in Trans. Amer. Math. Soc.).
- [N] S. Negrepontis, The Stone space of the saturated Boolean algebra's, Trans. Amer. Math. Soc. 141 (1969), 515-527.
- [P] I. I. Parovičenko, A universal bicompact of weight X, Sov. Math. 4 (1969), 592-595.
- [R] W. Rudin, Homogeneity problems in the theory of Cech compactifications, Duke Math. J. 23 (1956), 409-420.
- [T] F. D. Tall, The countable chain condition versus separability--applications of Martin's axiom, Gen. Top. Appl. 4 (1974), 315-340.
- [W] E. Wimmers, The Shelah P-point independence theorem (to appear in Jsr. J. Math.).
- [Wo] R. G. Woods, A survey of absolutes of topological spaces, Top. Structures 2, Mathematical Centre Tracts 116 (1979), 323-362.

Subfaculteit Wiskunde

Vrije Universiteit

De Boelelaan 1081

Amsterdam, The Netherlands