WHEN $U(\kappa)$ CAN BE MAPPED ONTO $U(\omega)$

JAN VAN MILL

Abstract. $U(\kappa)$ can be mapped onto $U(\omega)$ iff $\text{cf}(\kappa) = \omega$ or $\kappa > 2^\omega$.

0. Introduction. In this note we show that $U(\kappa)$ can be mapped onto $U(\omega)$ if and only if $\text{cf}(\kappa) = \omega$ or $\kappa > 2^\omega$. As a consequence it follows that CH is equivalent to the statement that $U(\omega_1)$ can be mapped onto $U(\omega)$. That $U(\omega)$ is not always a continuous image of $U(\omega_1)$ is known, [B], however, as far as I know, it was unknown that $U(\omega)$ is not a continuous image of $U(\omega_1)$ under \negCH.

1. Conventions. Cardinals carry the discrete topology. If κ is a cardinal then $\beta\kappa$ denotes the Čech-Stone compactification of κ. The subspace

$$\{ p \in \beta\kappa : \text{ if } P \in p \text{ then } |P| = \kappa \}$$

of $\beta\kappa$ is denoted by $U(\kappa)$. It is easy to see that $U(\kappa)$ is compact. For more information on $\beta\kappa$ and $U(\kappa)$ see [CN].

2. The construction.

2.1. Lemma. If $\text{cf}(\kappa) = \omega$ then $U(\kappa)$ can be mapped onto $U(\omega)$.

Proof. Let $\kappa = \Sigma_{n<\omega} \kappa_n$ where, for each n, $\kappa_n < \kappa$. Define $f: \kappa \to \omega$ by $f(\alpha) = n$ iff $\alpha \in \kappa_n$ and let $\beta f: \beta\kappa \to \beta\omega$ be the Stone extension of f. It is routine to verify that $\beta f(U(\kappa)) = U(\omega)$. \hfill \Box

2.2. Remark. This lemma is known of course, see for example [vD].

2.3. Lemma. If $\kappa > 2^\omega$ then $U(\kappa)$ can be mapped onto $U(\omega)$.

Proof. Let $\{ A_\alpha : \alpha < 2^\omega \}$ be a (faithfully indexed) partition of κ into 2^ω subsets of cardinality κ. Define $f: \kappa \to 2^\omega$ by $f(\alpha) = \mu$ iff $\alpha \in A_\mu$ and let $\beta f: \beta\kappa \to \beta(2^\omega)$ be the Stone extension of f. It is routine to verify that $\beta f(U(\kappa)) = \beta(2^\omega)$. Since $U(\omega)$ has clearly weight 2^ω and since $\beta(2^\omega)$ maps onto each compact space of weight at most 2^ω, we conclude that $U(\kappa)$ can be mapped onto $U(\omega)$. \hfill \Box

2.4. Lemma. If $\omega < \text{cf}(\kappa) < \kappa < 2^\omega$ then $U(\omega)$ is not a continuous image of $U(\kappa)$.

Proof. Suppose, to the contrary, that f maps $U(\kappa)$ onto $U(\omega)$. Since there is clearly a compactification of ω with $I = [0,1]$ as remainder, there is a map g from $U(\omega)$ onto I. Let $h: U(\kappa) \to I$ be the composition of f and g. In addition, let $\bar{h}: \beta\kappa \to I$ extend h.

Received by the editors February 12, 1980.

AMS (MOS) subject classifications (1970). Primary 54D35.

© 1980 American Mathematical Society

0002-9939/80/0000-0637/$01.50

701
Take $s \in I$ arbitrarily. Then $g^{-1}((s))$ is a nonempty G_{δ} in $U(\omega)$ and consequently has nonempty interior, [CN, 14.17]. Therefore, $f^{-1}g^{-1}((s))$ has nonempty interior (in $U(\kappa)$) and consequently we can find a subset $E \subset \kappa$ so that

$$\emptyset \neq \overline{E} \cap U(\kappa) \subset f^{-1}g^{-1}((s)).$$

CLAIM. If $n < \omega$ then $\{|(\alpha \in E: \overline{h}(\alpha) \notin (s - 1/n, s + 1/n)}| < \kappa$. Suppose, to the contrary, that $F = \{\alpha \in E: \overline{h}(\alpha) \notin (s - 1/n, s + 1/n)\}$ has cardinality κ. Take a point $x \in \overline{F} \cap U(\kappa)$. By continuity of \overline{h}, the point $\overline{h}(x) \notin (s - 1/n, s + 1/n)$. This implies that $x \in (\overline{E} \cap U(\kappa)) - f^{-1}g^{-1}((s))$, which is impossible.

Since $\text{cf}(\kappa) > \omega$ the claim implies that we can find $\kappa \in E$ so that $\overline{h}(\kappa) = s$.

This is a contradiction since $\kappa < 2^\omega = |I|$. □

2.5. Corollary. CH is equivalent to the statement that $U(\omega_1)$ can be mapped onto $U(\omega)$.

PROOF. Since ω_1 has uncountable cofinality this immediately follows from Lemmas 2.3 and 2.4. □

References

[vD] E. K. van Douwen, Transfer of information about $\beta \mathbb{N} - \mathbb{N}$ via open remainder maps (to appear).

Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana 70803

Current address: Subfaculteit Wiskunde, Vrije Universiteit, De Boelelaan 1081, Amsterdam, The Netherlands