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ON NOWHERE DENSE CCC P-SETS
ALAN DOW AND JAN VAN MILL

ABSTRACT. We prove that no compact Hausdorff space can be covered by nowhere
dense ccc P-sets. As an application it follows that if X is a compact Hausdorff
space with a nonisolated P-point then X X K is not homogeneous for any compact
cce space K.

1. Introduction. All spaces under discussion are Tychonoff.

A subset B of a space X is called a P-set whenever the intersection of countably
many neighborhoods of B is again a neighborhood of B. It is known that no
compact space of 7-weight w; can be covered by nowhere dense P-sets [KvMM]. In
addition, there is a compact space of weight w, which can be covered by nowhere
dense P-sets [KvMM]. In this note we will show that no compact space can be
covered by nowhere dense ccc P-sets. As a consequence it follows that if X is a
compact space with a nonisolated P-point then X X K is not homogeneous for any
compact ccc space K.

2. Independent matrices. Let X be a space. An indexed family {4/:i € 1,j € J}
is called an I by J independent matrix for X provided that

(a) each A/ is an open F,;

(b) if i € I and j, j, are distinct elements of J then 4; N A,-‘; = J;

(c) if F C Iis finite and @: F — J then N ,;cf Ag,) 7 2.

This concept, in a slightly different form, is due to Kunen.

In [vM,] it was shown that each compact space in which each nonempty G has
nonempty interior contains an w; by w, independent matrix. We need a generaliza-
tion of this result. As usual, a space is called ccc if each pairwise disjoint collection
of nonempty open sets is countable. A space is nowhere ccc if no point has a ccc
neighborhood.

2.1. THEOREM. Suppose that X is nowhere ccc. Then X contains an w; by w,
independent matrix.

PRrROOF. For each finite subset F C w, (possibly empty) we will define an open F,,
Cr C X, such that

() Cpy(ay C Cpforallmax F < a < wy;

(i) Cryay N Crypy =D ifmax F<a <B <
(as usual, an ordinal is the set of smaller ordinals; we define max & = —1).

We will induct on the cardinality of F. Define Cy = X.
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Suppose that we have defined Cy for all F C w, of cardinality n. Let {Cr (4
max F < a < w;} be a “faithfully indexed” collection of pairwise disjoint non-
empty open F,’s of Cr. This completes the induction.

FACT.C, N Ce # D —>(F C G) V(G C F).

We induct on the cardinality of |F| + |G|. If | F| + |G| = 1 then there is nothing
to prove. Suppose that we have proved the Fact for all finite sets F, G C w,
satisfying |F| + |G| < n — 1. Now take finite sets S, T C w, so that |S| + |T| < n.
Define S’ = § — {max S}. By (i) we have that Cg C Cg and consequently Cs. N
C; # <. By induction hypothesis, S’ ¢ Tor T c S’. If T c S’ then we are done,
so we may assume that S’ C T. Define 7' = T — {max T}. By precisely the same
argumentation we may conclude that 77 C S. Then clearly

SNT)u{maxS} =S and (SNT)U{maxT} =T.

If max S € T or max T € S then there is nothing to prove. So assume that this is
not true. Then by (ii) we have that Cg N C; = &, which is a contradiction.

Let f: w, >, X @, be onto and one-to-one. Define Ug = U {Cr, (51(¢apdy
max F < f7'(Ka, B)) and fIF] N ({a} X ;) = &}. Notice that C ;apy C Up-
We claim that {Ug: @, 8 < w,} is an , by w, independent matrix for X. First
observe that each Ug is an open F, being the union of at most countably many
open F,’s.

Now, let us assume that Uy N U;* % & for some B # y. Withot loss of general-
ity assume that f'({a, 8>) < f~'(a, v)). There are finite sets F, F;, C w, so that

@ Cru(riapn N Cruicarn * D5

(b) max F, < f(<a, B) and f1Fe] N ({@} X ©,) = D;

(©) max F, < f'(e, v)) and fIF] N ({a} X @) = 2.

Since f'Ka, v)) & Fy U {f'(Ka, B))), by the Fact, Fy U {f'(Ka, BD)} Cc F, U
{F (e, ¥))}. Therefore f(Ca, B)) € F,, since /e, BY) #~'(a, v)). How-
ever, this contradicts (c).

Take a, . . ., @, < w,; so that a; # a; for i #j. In addition, take B; < w,; (i <n)
arbitrarily. Put y; = f'({a;, 8;>) and without loss of generality assume that y, < v,
<+ <Y,.Then C, .. ,,CUg'n:- - NUg andsince C(, ., 73T we
find that Ug! n - - - NUgF # 3. O

3. The first application. A point x € X is called a weak P-point provided that
x & F for each countable F c X — {x}. Kunen [K] proved that there is a weak
P-point in w* (= Bw \w). Subsequently van Mill [vM,] proved that there is a weak
P-point in each compact F-space of weight 2 in which each nonempty G; has
nonempty interior (an F-space is a space in which each cozero set is C*-embedded).
Bell [B] has since shown that the weight condition is superfluous. Using Theorem
2.1 by precisely the same technique as in [vM,] we obtain the following generaliza-
tion.

3.1. THEOREM. Each compact nowhere ccc F-space contains a weak P-point.

4. The main result. In this section we derive our main result. The techniques of
proof used in the following lemma is the same as in [vM,], [VIVL,].
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4.1. LEMMA. No compact nowhere ccc space can be covered by ccc P-sets.

PROOF. Let X be a compact nowhere ccc space. Clearly X is not finite, so there is
a collection {¥,: n < w} of (faithfully indexed) pairwise disjoint nonempty open F,
subsets of X. For each n < w let {U}(n): a < w,, i < w} be an w, by w indepen-
dent matrix for ¥, (Theorem 1.1). Notice that each U/(n) is an open F, of X. Put
F ={4CX:Vn<wVi<n 3da < w, such that Uy(n) C 4}. It is clear that F
has the finite intersection property, so there is an x € N pcg F. We claim that
x & K for each ccc P-set K. Indeed, let K C X be any ccc P-set. Since X is ccc for
each n < w and for each i < n there is an a(n, i) < w, so that

U;(,,,,-)(n) N K= Q.

Put F= U ,, U ;c,Ukny(n). Then F € ¥ and F is an open F, being the union
of cm_mtably many open F,’s. Also, F N K = . Since K is a P-set, it also follows
that F N K = J. We conclude that x & K. []

We now come to our main result.
4.2. THEOREM. No compact space can be covered by ccc nowhere dense P-sets.

Proor. Let X be a compact space and suppose that X can be covered by ccc
nowhere dense P-sets. Let U C X be nonempty and open and suppose that U is
ccc. Let B be a nowhere dense P-set meeting U. Since B N U is nowhere dense in
U the fact that U is ccc implies that there is a countable family § of compact
subsets of U — B so that U § is dense in U. However, this is impossible since B is
a P-set. So U is not ccc. But now the assumption that X can be covered by ccc
nowhere dense P-sets contradicts Lemma 4.1. []

5. Another application. A space X is called homogeneous provided that for all x,
y € X there is an autohomeomorphism ¢ from X onto X mapping x onto y. It is
well known that although X is not homogeneous the product X X K can be
homogeneous for certain K (for example, let X be a convergent sequence and let X
be the Cantor set). This makes the following straightforward corollary to Theorem
4.2 of some interest.

5.1. COROLLARY. Let X be a compact space having a nonisolated P-point. Then
X X K is not homogeneous for any compact ccc nonempty space K.

ProOF. Let x be a nonisolated P-point of X. Then {x} X K is a ccc nowhere
dense P-set of X X K. Take any {x,y) € {x} X K. By Theorem 4.2 there is a
point {p,g)> € X X K so that {p, ¢q) & E for any nowhere dense ccc P-set
E c X X K. It is clear that no autohomeomorphism of X X K can map {x,y)

onto {p,qy. [J

6. Questions. Since there is a compact space X of weight w, which can be covered
by nowhere dense P-sets (which all have to have cellularity at most w,), Theorem
4.2 suggests the following question:

6.1. QUESTION. Is there a compact space X which can be covered by nowhere dense
P-sets of cellularity at most w,?
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Since Frankiewicz and Mills [FM] have shown that Con(ZFC + w* can be
covered by nowhere dense P-sets) the question naturally arises whether it is
consistent that w* can be covered by nowhere dense P-sets of cellularity at most ,.
Let us answer this question.

6.2. PROPOSITION. w* cannot be covered by nowhere dense P-sets of cellularity at
most w,.

ProoF. Under CH the result follows from [KvMM]. So assume — CH. Kunen [K]
proved that (in ZFC) there is a 2° by 2“ independent matrix of clopen subsets of
w*. Since w; < 2° we can use the same proof as in Lemma 4.1 to get a point
x € w* so that x & B for any P-set B of cellularity at most w,. []

Let us finally notice that Proposition 5.1 suggests the following question.

6.3. QUESTION. Let X be a compact space having a nonisolated P-point and let K be
compact. Is X X K not homogeneous?
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