SHORTER NOTES

The purpose of this department is to publish very short papers of an unusually
elegant and polished character, for which there is no other outlet.

\[\beta \omega - \omega \text{ IS NOT FIRST ORDER HOMOGENEOUS} \]

ERIC K. VAN DOUWEN\(^{1}\) AND JAN VAN MILL

ABSTRACT. We find a first order property shared by some but not all point of
\(\beta \omega - \omega \).

Our result. Throughout, cardinals carry the discrete topology, and \(X^* \) denotes
\(\beta X - X \). The purpose of this note is to point out the following consequence of
known results.

THEOREM. Some but not all points \(x \) of \(\omega^* \) have the following property.
\(\mathcal{P} \): There is a closed subspace \(Y \) of \(\omega^* \) which is extremally disconnected and has \(x \)
as its cluster point.

Our property is simpler than previously known properties shared by some, but
not by all, points, the simplest of which is
\(\mathcal{Q} \): there is a countable \(A \subseteq \omega^* \) with \(x \in \overline{A} - A \),
see [K]; see also [F] and [R]. The reason that \(\mathcal{P} \) is simpler is that it can be
formulated in a much simpler language: in order to formulate \(\mathcal{Q} \) one needs the
notion “countable” (or an infinitely long expression), while \(\mathcal{P} \) can be formulated
with an expression of finite length which only uses the notion of a closed subset.
(Since \(\omega^* \) is a \(T_1 \)-space we can discuss \(x \in \omega^* \) by talking about \(\{x\} \).) Properties of
this sort are called first order; see [HJRT] for a more accurate description. To see
that our property \(\mathcal{P} \) is first order, note that for closed \(Y \subseteq \omega^* \) and for \(x \in \omega^* \).

\(Y \) is extremally disconnected iff \(\forall \) closed \(F, G \subseteq \omega^* \exists \) closed \(F', G' \subseteq \omega^* \) such that
\[\left[F \cup G = Y \Rightarrow ((F' \cup G' = Y) \land (F' \subseteq F) \land (G' \subseteq G) \land (F' \cap G' = \emptyset)) \right] \]
and \(x \) is a cluster point of \(Y \) iff \(\forall \) closed \(F \subseteq \omega^*[F \cup \{x\} = Y \Rightarrow F = Y] \).

The fact that not all points of \(\omega^* \) have the same first order properties answers a
question of Hensel, Jockusch, Rubel and Takeuti, [HJRT, §10, Q9]. Actually they
ask if every two points of \(\omega^* \) have the same first order properties in \(\beta \omega \) (this looks

\(^{1}\)Research supported by NSF Grant MCS 78-09464.

Received by the editors March 31, 1980.
1980 Mathematics Subject Classification. Primary 54D30, 03B10.

© 1981 American Mathematical Society
0002-9939/81/0000-0135/S01.50

503
like a slip of the pen). Since for closed $Y \subseteq \beta\omega$ one has $Y \subseteq \omega^*$ iff Y contains no isolated points of $\beta\omega$, which is a first order property of Y in $\beta\omega$, our theorem implies that the answer is no.

Remarks. (a) If not all points of a space X have the same first order properties then certainly X is not homogeneous. We mention without proof that the converse is false, even for zero-dimensional compact spaces.

(b) Let X denote e.g. the rationals or the irrationals. It was shown in [vD, 6.6] that some but not all points x of X^* have a property similar to \mathcal{P}, namely
\[
\mathcal{P}': \text{there are disjoint open sets } U \text{ and } V \text{ in } X^* \text{ with } x \in \overline{U} \cap \overline{V}.
\]
We leave it to the reader to verify that \mathcal{P}' is first order.

The proof. Since the extremely disconnected space $\beta\omega$ can be embedded into ω^* [GJ, 6.10(a)] some points of ω^* satisfy \mathcal{P}. (In fact \mathcal{Q} implies \mathcal{P} since every separable subspace of $\beta\omega$ is extremely disconnected by [GJ, 9H.1 and 6.M2]. It is shown in [vM] that \mathcal{Q} does not imply \mathcal{Q}.)

For the proof that not every point of ω^* has \mathcal{P} we need Kunen’s κ-OK-points: a point p of a space is called a κ-OK-point if for every sequence $\langle U_n \rangle_{n<\omega}$ of neighborhoods of p there is a κ-sequence $\langle V_a \rangle_{a<\kappa}$ of neighborhoods of p such that for all $n<\omega$ and $F \subseteq \kappa$, if $|F| = n+1$, then $\bigcap_{a \in F} V_a \subseteq U_n$. Kunen proved the important result that ω^* has a κ-OK-point, where $\kappa = 2^\omega$, [K]. Let x be a κ-OK-point of ω^*, and suppose there is a closed extremely disconnected subspace Y of ω^* which has x as its cluster point. Clearly x is a κ-OK-point of Y. But x is not a P-point of Y, for if X is an extremely disconnected space with $|X|$ not Ulam-measurable, then no nonisolated point of X is a P-point of X, [GJ, 12H.5]. It follows that Y has a disjoint open family of cardinality κ, since, more generally, if X is regular then X has a disjoint open family of cardinality κ if it has a κ-OK-point that is not a P-point, by [K, Proof of 1.4]. Since Y is compact and extremely disconnected it follows that $\beta\mathcal{C}$ embeds into Y, hence into $\beta\omega$. This is absurd, since $|\beta\mathcal{C}| = 2^{2^\omega}$ for each $\kappa > \omega$, [GJ, 9.2].

References

INSTITUTE FOR MEDICINE AND MATHEMATICS, OHIO UNIVERSITY, ATHENS, OHIO 45701 (Current address of E. K. van Douwen)

DEPARTMENT OF MATHEMATICS, LOUISIANA STATE UNIVERSITY, BATON ROUGE, LOUISIANA 70803

Current address (Jan van Mill): Subfaculteit Wiskunde, Vrije Universiteit, De Boelelaan 1081, Amsterdam, The Netherlands