SELECTIONS AND ORDERABILITY

JAN VAN MILL AND EVERT WATTEL

ABSTRACT. Let X be a compact Hausdorff space. Then X has a selection if and only if X is orderable.

0. Introduction. Let X be a compact Hausdorff space and let 2^X denote the hyperspace of nonempty closed subsets of X. A selection for X is a continuous map $F: 2^X \to X$ such that $F(A) \in A$ for all $A \in 2^X$. Let $X(2)$ denote the 2-fold symmetric product of X, i.e. the subspace of 2^X consisting of all nonempty closed subspaces of X containing at most two points. A weak selection for X is a continuous map $s: X(2) \to X$ such that $s(A) \in A$ for all $A \in X(2)$. It is easy to see that X has a weak selection if and only if there is a continuous map $s: X^2 \to X$ such that for all $x, y \in X$,

\begin{enumerate}
 \item $s(x, y) = s(y, x)$, and
 \item $s(x, y) \in \{x, y\}$.
\end{enumerate}

Such a map $s: X^2 \to X$ will also be called a weak selection.

Michael [M] showed that for a continuum X the following statements are equivalent: (a) X has a selection, (b) X has a weak selection, and (c) X is orderable. In [Y], Young claims, without giving a proof, that statements (a), (b), and (c) are also equivalent for compact zero-dimensional spaces X. In this paper we will show that, for compacta, statements (a), (b), and (c) are always equivalent.

1. The construction. Let X be compact and let $s: X^2 \to X$ be a weak selection. For each $x \in X$ define

$$B_x = \{ y \in X \mid s(y, x) = y \},$$

and

$$A_x = \{ y \in X \mid s(y, x) = x \}.$$

Observe that both A_x and B_x are closed, that $A_x \cup B_x = X$ and that $A_x \cap B_x = \{x\}$.

1.1. Theorem. Let X be a compact space. Then the following statements are equivalent:

(a) X is orderable,

(b) X has a weak selection,

(c) X has a selection.
The implication (c) \Rightarrow (b) is trivial and the implication (a) \Rightarrow (c) is well known. Indeed, simply define $F: 2^X \to X$ by $F(A) = \min(A)$. An easy check shows that F is a selection. It therefore suffices to prove that (b) \Rightarrow (a). To this end, let $s: X^2 \to X$ be a weak selection for X and, for each $x \in X$, let A_x and B_x be defined as above. Let \prec be a wellordering on X. For every $x \in X$ we will construct closed sets L_x, $U_x \subseteq X$ such that

1. $L_x \cup U_x = X$ and $L_x \cap U_x = \{x\}$,
2. if $y \prec x$ and if $x \in L_y$ then $L_x \subseteq L_y \setminus \{y\}$,
3. if $y \prec x$ and if $x \in U_y$ then $U_x \subseteq U_y \setminus \{y\}$,
4. if $z \in L_x$ and if $z \not\in \cup \{L_y \mid y \prec x \land x \in U_y\}$ then $z \in B_x$,
5. if $z \in U_x$ and if $z \not\in \cup \{U_y \mid y \prec x \land x \in L_y\}$ then $z \in A_x$.

(In the total ordering on X which we will construct in this proof, L_x will be the set of all points smaller than or equal to x, and U_x will be the set of all points larger than or equal to x.)

Let x_0 be the first element of X and define $L_{x_0} = B_{x_0}$ and $U_{x_0} = A_{x_0}$. Assume that we have defined L_y and U_y for all $y \prec x$ satisfying (1) through (5). Let $E = \{y \prec x \mid x \not\in L_y\}$ and $F = \{y \prec x \mid x \not\in U_y\}$. Put

$$Z = X \setminus \left(\bigcup_{y \in E} L_y \cup \bigcup_{y \in F} U_y \right).$$

Let $\kappa = |E|$ and for each $\xi \leq \kappa$ define points $y_\xi \in E$ in the following way:

6. $y_0 = \min(E),
7. y_\xi = \min(\{x\} \cup \{y \in E \mid (\forall \mu < \xi \exists L_y)\}) \cup \{y \in E \mid (\forall \mu < \xi \exists L_y)\})$. Let $\xi < \kappa$ be the first ordinal for which $y_\xi = x$.

Claim 1. If $\xi_0 < \xi$ then $\cup \{L_y \mid y \in E \land y < y_{\xi_0}\} = \cup_{\mu < \xi_0} L_y$.

Take $y \in \{z \in E \mid z < y_{\xi_0}\} \setminus \{y_{\mu_0} \mid \mu < \xi_0\}$ and let $\mu < \xi_0$ be the first ordinal for which $y < y_{\mu}$. Since $y_{\rho} < y$ for all $\rho < \mu$ (notice that $\mu \neq 0$) and since $y \neq y_{\mu}$, by (7), $y \in \cup_{\rho < \mu} L_{y_\rho}$. Choose $\rho < \mu$ such that $y \in L_{y_\rho}$. Since $y_{\rho} < y$, by (2),

$$L_y \subseteq L_{y_\rho} \subseteq \bigcup_{\delta < \xi_0} L_{y_\delta}.$$

Claim 2. If $\mu_0 < \mu_1 < \xi$ then $L_{y_{\mu_0}} \subseteq L_{y_{\mu_1}} \setminus \{y_{\mu_0}\}$.

By (7), $y_{\mu_1} \not\in L_{y_{\mu_0}}$. Consequently, $y_{\mu_1} \in U_{y_{\mu_0}}$ and therefore, by (3), $U_{y_{\mu_1}} \subseteq U_{y_{\mu_0}} \setminus \{y_{\mu_0}\}$. Consequently, by (1), $L_{y_{\mu_0}} \subseteq L_{y_{\mu_1}} \setminus \{y_{\mu_1}\}$.

Claim 3. If $\mu_0 < \mu_1 < \xi$ then $L_{y_{\mu_0}} \setminus L_{y_{\mu_1}} \subseteq A_{y_{\mu_0}}$.

Take $t \in L_{y_{\mu_1}} \setminus L_{y_{\mu_0}}$. Since $t \in U_{y_{\mu_0}}$ and, by (5),

$$U_{y_{\mu_0}} \subseteq \bigcup \{U_y \mid y < y_{\mu_0} \land y_{\mu_0} \in L_y \} \cup A_{y_{\mu_0}},$$

we may assume, without loss of generality that $t \in U_z$ for certain $z < y_{\mu_0}$ with $y_{\mu_0} \in L_z$; we will reach a contradiction. Assume that $y_{\mu_1} \in L_z$. Since $y_{\mu_0} < y_{\mu_1}$ and since $z < y_{\mu_0}$ this implies by (2), that $L_{y_{\mu_1}} \subseteq L_z \setminus \{z\}$. Consequently, $t \in L_z \setminus \{z\}$ and $t \in U_z$, contradicting (1). This shows that $y_{\mu_1} \not\in L_z$ which implies that $y_{\mu_1} \in U_z$. Since $z < y_{\mu_1}$ by (3), $U_{y_{\mu_1}} \subseteq U_z$ and therefore $x \in U_z$. If also $x \in L_z$ then $x = z$ which is impossible since $z < x$. We conclude that $x \not\in L_z$ or equivalently,
$z \in E$. Let $\varepsilon \leqslant \mu_0$ be the smallest ordinal such that $z \leqslant y_\varepsilon$. Since $y_\delta < z$ for every $\delta < \varepsilon$ by (7), either $z = y_\varepsilon$ or $z \in L_\gamma$ for certain $\delta < \varepsilon$. If $z = y_\varepsilon$ then $y_{\mu_0} \in L_\gamma$, which contradicts $z < y_{\mu_0}$ (Claim 2). Therefore, $z \in L_{\gamma_0}$ for certain $\delta < \varepsilon$. Then $z \in L_{\gamma_0} \subseteq L_{\gamma_0} \setminus \{y_{\mu_0}\}$. Since $z < y_{\mu_0}$ and since $y_{\mu_0} \in L_\gamma$, by (2), we also have that

$$L_{\gamma_0} \subseteq L_\gamma \setminus \{z\},$$

which implies that $z \in L_{\gamma_0} \subseteq L_\gamma \setminus \{z\}$, a contradiction.

Claim 4. If $t \in \text{Cl}_X(\bigcup_{y \in E} L_y) \setminus \bigcup_{y \in E} L_y$ then t is a cluster point of the net \(\{y_\mu \mid \mu < \xi\} \).

Suppose not and take a closed neighborhood C of t which misses

$$\text{Cl}_X(\{y_\mu \mid \mu < \xi\}).$$

From Claim 1 it is clear that there is a cofinal subset $G \subseteq \xi$ with the property that for each $\mu \in G$ there exists a point $c_\mu \in C \cap L_{\gamma_0}$ such that

$$\mu = \min \{\delta < \xi \mid c_\mu \in L_{\gamma_0}\}.$$

Take $\mu \in G$. We claim that $c_\mu \in B_{\gamma_0}$. If not, then by (4) there is a $y < y_\mu$ such that $c_\mu \in L_y$ and $y \in U_y$. Since $y < y_\mu$ and $y \in U_y$, by (3), $U_y \subseteq U_y \setminus \{y\}$ which implies that $L_y \subseteq L_{\gamma_0}$. Consequently, $x \notin L_{\gamma_0}$, since $x \notin L_{\gamma_0}$, or equivalently, $y \in E$. By Claim 1 we can find $\delta < \mu$ such that $c_\mu \in L_{\gamma_0}$, which is a contradiction since

$$\mu = \min \{\delta < \xi \mid c_\mu \in L_{\gamma_0}\}.$$ This implies that for all $\mu \in G$ we have that $s(c_\mu, y_\mu) = c_\mu$.

Let (c, y) be a cluster point of the net \(\{(c_\mu, y_\mu)\}_{\mu \in G} \). Then $c \in C$ and $y \notin C$, and since $s(c_\mu, y_\mu) = c_\mu \in C$ for all $\mu \in G$ it is clear that $s(c, y) = c$. Next take $\mu \in G$ arbitrarily. For all $\delta > \mu$ we have by Claim 3 that $s(y_\mu, c_\delta) = y_\mu$. Hence $s(c, y_\mu) = s(y_\mu, c) = y_\mu$. This would imply that $s(c, y) = y$, and since $y \neq c$ this is a contradiction.

Claim 5. If both t and u are cluster points of the net \(\{y_\mu \mid \mu < \xi\} \) then $t = u$.

Let C and D be closed and disjoint neighborhoods of, respectively, t and u. There is clearly a cofinal subset $G \subseteq \xi$ and for each $\mu \in G$ points

$$c_\mu \in C \cap \{y_\lambda \mid \lambda < \xi\} \quad \text{and} \quad d_\mu \in D \cap \{y_\lambda \mid \lambda < \xi\}$$

such that if $\mu, \delta \in G$ and $\mu < \delta$ then

$$c_\mu < d_\mu < c_\delta.$$

Let (t', u') be a cluster point of the net \(\{(c_\mu, d_\mu)\}_{\mu \in G} \), then $t' \in C$ and $u' \in D$. By Claim 3, $s(c_\mu, d_\mu) = c_\mu$ and consequently, $s(u', t') = t'$. Fix $\mu \in G$. For each $\delta > \mu$ it is clear that $s(d_\mu, c_\delta) = d_\mu$ (Claim 3). Since $t' \in \text{Cl}_X(\{c_\delta \mid \delta > \mu\})$ this implies that

$$s(d_\mu, t') = d_\mu.$$

Since $(u', t') \in \text{Cl}_X(\{(d_\mu, t') \mid \mu \in G\})$ this implies that $s(u', t') = u'$. Since $u' \neq t'$, this is a contradiction.

Claim 6. $\bigcup_{y \in E} L_y$ has at most one boundary point.

Follows immediately from Claims 4 and 5.

Claim 7. If $t \in Z$ and $\mu < \xi$ then $t \in A_{\gamma_0}$.
Since \(t \notin L_{y_\xi} \), clearly \(t \in U_{y_{\xi}} \). Therefore by (5), if \(t \notin A_y \) then \(t \in U_y \) for certain \(y<y_\mu \) with \(y_\mu \in L_y \). If \(x \in L_y \) then \(x \notin A_y \) since \(x \neq y \) in which case \(Z \cap U_y = \emptyset \) which contradicts \(t \in Z \cap U_y \). Therefore \(y \in E \). By Claim 1

\[
\bigcup_{\delta<\mu} \{ L_y \mid y \in E \& y<y_\mu \} = \bigcup_{\delta<\mu} L_{y_\delta}.
\]

Therefore \(y_\mu \in L_{y_\delta} \) for certain \(\delta<\mu \) which contradicts (7).

Formally we have to consider two cases, namely that \(\xi \) is a successor or that \(\xi \) is a limit ordinal. Those two cases can be treated analogously and since the case that \(\xi \) is a limit is more complicated we will assume from now on that \(\xi \) is a limit.

Since \(L_{y_\xi} \setminus \{ y_\mu \} \) is open for each \(\mu<\xi \), by Claims 1 and 2, \(\bigcup_{y \in E} L_y \) must have a limit point, say \(a \), and by Claim 6 we see that \(a \) is unique. By using precisely the same technique as above and again restricting our attention to the limit case we can find a limit ordinal \(\eta \) and for each \(\mu<\eta \) a point \(z_\mu \in F \) such that

(8) if \(\mu<\delta \) then \(U_{z_\mu} \subset U_{z_\delta} \)

(9) \(\bigcup_{\mu<\eta} U_{z_\mu} = \bigcup_{y \in E} U_y \) and

(10) if \(t \in Z \) and \(\mu<\eta \) then \(t \in B_{z_\mu} \).

Again we find that \(\bigcup_{y \in E} U_y \) has a unique boundary point, say \(b \), and that this point is a cluster point of the net \(\{ z_\mu \mid \mu<\eta \} \).

(Note that, by (1), (2) and (3), \(y \in E \) and \(y' \in F \) implies that \(L_y \cap U_{y'} = \emptyset \).)

Case 1. \(a = b \). We then claim that \(Z = \{ x \} = \{ a \} = \{ b \} \). For assume that \(t \in Z \). By Claim 7, \(s(y_\mu, t) = y_\mu \) for all \(\mu<\xi \) and consequently \(s(a, t) = a \) since \(a \) is a limit point of \(\{ y_\mu \} \). On the other hand, by (10), \(s(t, z_\mu) = t \) for all \(\mu<\eta \). By the same argument \(s(t, a) = s(t, b) = t \). Hence \(t = a \).

We therefore conclude that \(a = b = x \) and that \(Z = \{ x \} \). Now define

\[
L_x = \bigcup_{y \in E} L_y \cup \{ x \} \quad \text{and} \quad U_x = \bigcup_{y \in F} U_y \cup \{ x \}.
\]

An easy check shows that our inductive hypotheses are satisfied.

Case 2. \(a \neq b \) and \(x \notin \{ a, b \} \). Define \(L_x = \bigcup_{y \in E} L_y \cup (Z \cap B_x) \) and \(U_x = \bigcup_{y \in F} U_y \cup (Z \cap A_x) \). Observe that both \(L_x \) and \(U_x \) are closed since \(a \in Z \cap B_x \) and \(b \in Z \cap A_x \). Again an easy check shows that our inductive hypotheses are satisfied.

Case 3. \(x = a \) and \(a \neq b \). Define \(L_x = \bigcup_{y \in E} L_y \cup \{ x \} \) and \(U_x = \bigcup_{\mu<\xi} U_{y_\mu} \).

Case 4. \(x = b \) and \(a \neq b \). Similar to Case 3.

Now define \(x \leq y \) iff \(x \in L_y \). Then \(\leq \) is a linear order which generates the topology of \(X \) since \(X \) is compact and since for each \(x \in X \) the sets \(\{ y \in X \mid y \leq x \} \) and \(\{ y \in X \mid x < y \} \) are both closed. It is easily seen that whenever \(X \) is a KOTS then the function \(s: X^2 \to X \) defined by \(s(x, y) = \min \{ x, y \} \) is a weak selection. This suggests the following question:
Question. Let X be a space. Is X a KOTS if and only if X admits a weak selection?

The technique used in the proof of our theorem is not applicable to answer this question since certain transfinite sequences of points need not have limit points.

References

WISKUNDIG SEMINARIUM, VRIJE UNIVERSITEIT, DE BOELELAAN 1081, 1081HV AMSTERDAM, THE NETHERLANDS