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In this paper we describe sixteen topological types in fw-w. Among others, we show that there
is a weak P-point x € Bw —w which is a limit point of some ccc subset of Bw —w —{x} and that
there is a point y € Bw —w which is a limit point of some countable subset of Bw —w —{y} but
not of any countable discrete subset of Sw — o —{y}.

AMS Subj. Class.: 54D35

BX independent linked family weak P-point topological type

0. Introduction

The aim of this paper is to construct sixteen distinct topological types in Bw — .
We are interested in points x € Bw —w which are a limit point of certain type of
subset of Bw —w —{x} but not of any subset of Bw —w —{x} of another type. Call
a space m-homogeneous provided that all nonempty open subspaces have the same

-weight. Let
A;={x € Bw —w: 3 countable discrete D = Bw —w —{x} with x € D},
A, ={x € Bw —w: I countable 77-homogeneous dense in itself set
D < Bw — —{x} of countable m-weight with x € D},
As={x € Bw —w: 3 countable 77-homogeneous dense in itself set
D < Bw — w —{x} of w-weight w; with x € D},
and
Ays={x € Bw —w: I locally compact ccc nowhere separable

D < Bw —w —{x} with x € D}.
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Theorem 0.1. For every subset F <{1,2,3,4}, (\;cpAi —U;.r A #0 (by definition,
m;eﬂ A.‘ :ﬁw —w and UieﬂAi = @)

It is known [6] that there are 2°“ types in Bw —w, but none of these types is
described in topological terms. It is also known [9] that there are weak P-points
in Bw — w, i.e. points which are not a limit point of any countable set. We heavily
rely on the technique used in the proof of this result. In addition, we were forced
to prove that w X2“! has a remote point (see Section 1), in fact, we will show that
any nonpseudocompact space which is a product of at most w; spaces of countable
m-weight has a remote point. This is not a very shocking generalization of results
in [3] and [4], but is of crucial importance for the proof of our theorem. Interestingly,
we also use the recent result due to Bell [2] that there is compactification yw of
® with yo —w ccc but not separable.

This paper is organized as follows: in Sections 1 and 2 we prove general results
which have interest in their own rights and which will be the tools in proving our
theorem in Section 3.

Some of the results in this paper are also to be found, in a preliminary form, in
the (unpublished) reports [11, 12].

1. Remote filters

All spaces are completely regular and X* denotes BX - X. If X, (n<w) is a
sequence of spaces, then ), X, denotes the disjoint topological sum of the X,,’s.
Whenever we write }, _, X, for convenience we will assume that the spaces X,
are pairwise disjoint.

The aim of this section is to prove thatif X =) __ X, where each X, is a product
of at most w; compact spaces of countable 7-weight’, then there is a collection %
of closed subsets of X such that

(1) if D < X is nowhere dense, then there is some F € % with F~D =0.

(2) if 9= F is finite, then [{n <w: X, N[ 9 =0} < w.

This implies that X has a remote point, i.e. there is a point x € X* such that
x€clgx D for any nowhere dense D < X, but also that the set of remote points of
X is big enough to be manipulated later on.

A collection of sets is called «-centered if every nonempty subfamily with at most
« members has nonempty intersection. A collection of closed subsets & of a space
X is called remote if for each nowhere dense set D = X there is some A € & which
does not intersect D. Finally, a continuous surjection f: X - Y is called quasi-open
provided that for each nonempty open U = X we have that inty f(U) # @.

' A 7-basis for a space X is a collection of nonempty open subsets % of X such that each nonempty

open set in X contains some element of &. The wweight, m(A), of X is w. min{|%B|: B is a w-basis for
X}. A space X is said to be of countable 7-weight in case 7 (x)= w.
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Lemma 1.1. Let X be a compact space, let f: X > Y be quasi-open and let U be a
m-basis for X. For each n-centered (1 <n <w) remote system o of Y and for each
nowhere dense D = X there is a finite F < U with (JF)” = X — D while in addition
{fFH(A): A ey U{UF} is n-centered.

Proof. Let €={E€: EnD =0}. For each E€ & put U(E)=intyf(E). Since
(JZ is a dense in X and since f is quasi-open it easily follows that |_J,._, U(E) is
dense in Y, or, equivalently, Y —|_J. .. U(E) is nowhere dense. Since # is remote,
there is some A € & which is contained in |g.¢ U(E). By the compactness of A
there is a finite # < & such that A | _J._; U(E). We claim that & is as required.
Suppose, to the contrary, that this is not true. Then there is a subfamily % of &/
of n —1 elements such that

Ugmﬂc;eaef_l(e):@-
Then A n(9=0since A<|Jp.z U(E)<=f(lUZ) and

fUFME=0,

which contradicts &/ being n-centered.

Let us notice that in [3] and [4] it was shown that each space of countable
m-weight has, for each 1<n <w, a remote n-centered system. The proof of the
following lemma makes use of ideas in [3] and [4].

Lemma 1.2. Let X be a compact space of countable m-weight and let f: X > Y be
quasi-open. Then for each remote n-centered system 4 (2<n <w) for Y there is a
remote (n —1)-centered system F for X such that {f '(A): Ae A} F.

Proof. Let % be a countable 7-basis for X which is closed undér finite unions.
Recall that @& 2. For each 2 <i =< n define
E(i)={UeU:{U}U{f'(A): A e of}is i-centered}.

Let us notice that for each nowhere dense D = X there is some E € €(n) such that
EcX—-D (Lemma 1.1). Since f| V:V > f(V) is quasi-open for each regular
closed set V = X the reader can easily verify, by using Lemma 1.1, the following fact.

Fact 1. For each 2<j=n and E € €(j) and for each nowhere dense set D < X there
is some F € €(j—1) such that F < E — D.

Enumerate (i) as {E}: k <w}. Let D = X be some nowhere dense set. For each
2=i=n define

H(D,i)={m<w: E:,nD =0}
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Define integers « (D, m) (2<m < n) as follows

(D, n)=min H(D, n),
and
k(D, m)=min{i <w: for all s =« (D, m + 1) there is some j <1

with je H(D, m)and E}" © ER ™M,

Put F(D)=\J!_, | {E%: j<«(D, i) and je H(D, i)}. Notice that F(D) is closed
and does not intersect D. Let % denote the collection of nowhere dense subsets
of X.

Fact 2. {F(D): De %} is (n—1)-centered. In fact, whenever £ is a subfamily of &
of cardinality e, where 1<e<n-—1, then (N .o F(L)DE! "' for some I<
maxi{x(L,n—e+1): Lec%}.

The proof of this fact is by induction on e. The case e =1 is trivial, so assume
the fact to be proven for all 1<i<j, where j=n—1. Let ¥ be a subfamily of &
of cardinality j. Put

k =maxi{x(L,n—j+2): Le ¥}

and take Lo ¥ such that k = k (Lo, n —j +2). Define %' = ¥ —{Lo}. By induction
hypothesis,

(ML FEYSEF™
for some | =max{k(L, n—j+2): Le ¥'}. Since
[=max{k(L,n—j+2): Le £'}=«(Lo,n—j+2)

there is some i <« (Lo, n —j+1) such that E} "' < E} 7" and ie H(D, n —j +1).
Therefore (), ., F(L)>E} """ and since i <x(Lo, n—j+1) this completes the
induction.

Fact 3. The family {F(D): De @}u{f '(A): Aec o} is (n—1)-centered.

Let 9, be a subfamily of & of cardinality e, and let £, be a subfamily of </ of
cardinality e; such that ep+e; =n — 1. By Fact 2 we may assume that ¢; > 0. Also,
by Fact 2, ﬂ%% F(D) contains some element of &(n —eg+1) = (e +2). We may
conclude that

M F(D)n (N f1(A)#0.

De%y Acsly

Now define F={F(D): De Z}u{f '(A): Ac of}. Then & is as required.

A remote filter on a space is a closed filter which is remote. We now come to
the main result in this section,
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Theorem 1.3. Let X =Y, _,, X, where each X, is compact and a product of at most
w; spaces of countable m-weight. Then there is a remote filter F on X such that for
each F € F the set {n <w: F n X, =0} is finite.

Proof. Let X, =[],.,, Xa. For each B =w; let Xt =[locgXa and if k <p <w;
let 7. : X4 = X, be the projection.

Whenever Z is a collection of nonempty sets let o(%) = sup{i <w: each subfamily
of & of cardinality / has nonempty intersection}.

By transfinite induction we will construct for each @« <w; and n <w a remote
system %, in X, such that

(@) o(F2)=2 for each @ <w), n <w;and o(F;)=0(Fy) if n=m;

(b) sup{o(%,): h <w}=w for each a <wy;

(c) whenever & < then there is an n < such that

{mha N(F): FeF:}c F? foreachi=n.

To make the collections %, (n <w) is no problem ([3, 4], Lemma 1.2). So let us
suppose that we have constructed the collections #;, (n <w) for all @ <f <w;. In
case B is not a limit ordinal we can apply Lemma 1.2. So assume that 3 is a limit.
Let y, (n <w) be a strictly increasing sequence of ordinals whose supremum is 3.
Let ko be the first integer for which o(%:3) =3 while in addition

{7y ((F):FeFricFn

for each n = ky. For each n < kg define S‘Fff to be any remote system for XP® such
that o(%5)=2. Define ¥ k(, to be some remote system of X§, such that

o(FL,)=0(F10) -1, (1)
{n3; (F): Fe Fi3} = F4, (2)

(Lemma 1.2). Let k; = ko be the first integer for which o(%7}!) =4 while in addition
{mhy, (F): FeF}= F)2 for each n = k,. For each ko<n <k define F% to be
any remote system for X, for which

o(F)=0(F1)—1; (3)
{mgy ((F): Fe Fn}c F (4)

(Lemma 1.2). Proceeding in this way inductively we can define the families F% (n<
w). It is clear that our inductive hypotheses are satisfied. For each n <w put
Fo=U,colmoa (F): Fe%,} and

F={AcX:Aisclosedand A n X, € &, for every n <w}.

We first claim that % is remote. Let D = X be nowhere dense and closed. By [10,
Lemma 2.1] there is an @ <w, such that |, _, 75, (D nX,) is nowhere dense in
Yo X For each n<w take F, € %, which misses 7, ,«(D NX,). Then F=
U, eo oo~ (F.) €  and misses D.
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If Z is the closed filter generated by F, then, by (c), & is clearly as required.

As remarked before, a space X is said to have a remote point provided that
there is a point x € X* with the property that x€clgx D for any nowhere dense
subset D = X. For more information concerning remote points see [3, 4, 5, 10].

Corollary 1.4. Let X be a nonpseudocompact space which is a product of at most
wy spaces of countable m-weight. Then X has a remote point.

Proof. Let Z < X™* be a nonempty closed Gs which misses X and put Y =8X —Z.
Let {V,: n <w} be a sequence of compact nonempty regular closed subsets of Y
such that

(1) n<m implies that V,, n V,, =0,

(2) if Ecw, then |, g V, is closed in Y.

We may assume that for each n <w, V, =clgx W, where W, is a product of at
most @; spaces of countable m-weight. Since BY =8X [7, 6.7] and since, by
normality of Y, B(},.-., Vu) =clgx (X, ., V), it sufficies to show that V, has
a remote point.

Foreachn <w letf, : BW, » V,, be a continuous surjection such that f,, [ W, =id.
Since f, is irreducible” the function f:¥,_, BW, > Y, ., V. defined by f(x) = f,(x)
(x e BW,) is irreducible. This easily implies that ) V., has a remote point iff
2 <o BW, has a remote point.

For each n <w let yW, be a compactification of W, which is a product of at
most w; spaces of countable 7-weight. By similar arguments as above, ¥, . yW,
has a remote point iff )., _ BW, has a remote point. However, by Theorem 1.3,
2n<o YW, has a remote point.

n<w

n<

Corollary 1.5. w X2 has a remote point.

Remark 1.6. For a slightly more general result see [11].

2. Embedding projective covers in X*

A closed subset A = X is called x-OK ([9, 1.2]) provided that for each sequence
{U,: n <w} of neighborhoods of A in X there are neighborhoods {A,: a <k} of
A such that foreachn=1land o1 <<+ <@, <k:

ﬂ Aar, < Un-

l=i=n

? A continuous surjection f: X - Y is called irreducible if f(A) # Y for any proper closed subset A < X.
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Observe that the property of being k-OK gets stronger as « gets bigger. It is easy
to show, [9, 1.2], that each w;-OK set is a weak P-set (a subset A = X is called a
weak P-set whenever F n A =0 for each countable F < X —A).

As in [13] for our purposes it will be convenient to slightly change the definition
of a «x-OK set in the special case of Cech-Stone remainders. A closed subset
A < X* where X is locally compact and o-compact, is called x-OK provided that
for each sequence {U,: n <w} of neighborhoods of A in X*, there is sequence
{A,: a <k} of closed subsets of X such that A=(") _, AZ, and for each n=1 and
A< ay<-: - <a,<kK:

M ALl
1=i=n
(as usual, if B < X is closed, B* = (clzgx B) — B).
The following lemma shows why we are interested in x-OK sets. The proof is
straightforward and is similar to, but not the same as, [9, 1.4].

Lemma 2.1. Let X be locally compact and o-compact and let A< X* be wi-OK.
IfBc X*—A is ccc, then BN A =0.

Proof. Assume, to the contrary, that BnA #0 and put C=BnA. Then C is a
nonempty nowhere dense subset of B. Consequently, C is not a P-set’ of B, i.e.
there are countable many neighborhoods U, (n<w) of C in B such that
Czints((M,~, U,). Put V,, = U, u(X*—B). Then V,, is a neighborhood of A for all
n <w. Since A is w;-OK we can find closed sets {A,: @ <w;} in X such that for
eachn=land o, <ax < <a, <w;:

(N AZcU,
l=i=n

while moreover A<=("),_,, Ai. By[14, 5.1] each set of the form D*, where D < X
is closed, is a P-set in X *. Consequently, if W, = A¥ n B, then W, is a P-set of B,
and since B is ccc, W, is clopen. Consequently, W, is a neighborhood (in B) of C.
The proof is now completed by precisely the same argument as in [9, 1.4]. Since
C¢intz(),, Uy), for each a there is an n such that W, — U, # 0. Therefore, we
can find an n <w so that E ={a <w;: W, — U, # @} is uncountable. For « € B, let
S, = W, — U,. Then the S, ’s are nonempty, but any n of them have empty intersec-
tion, which contradicts the fact that B is ccc.

Let X =% ,_,X,, where each X, is a compact space of weight at most 2. A
closed filter % on X is called nice, [13], provided that for all Fe % the set
{n<w:F nX,=0}is finite and (% = ¢. There are very nontrivial nice filters (see
e.g. Theorem 1.3).

> A subset B of a space X is called a P-set provided that the intersection of countably many
neighborhoods of B is again a neighborhood of B.



50 J. van Mill | Sixteen types in Bw —w

Let & be a nice filter on X = w X Z, where Z is compact. The aim of this section
is to show that whenever f:w*— Y is a continuous surjection, then there is a
continuous surjection g: X *- Y and a closed set E ©( )z Clgx F such that

(a) Eisa2“-OK set of X*;

(b) g | E is irreducible.

This shows that many projective covers of spaces can be embedded as 2“-OK
sets in Cech-Stone remainders. It will come as no surprise that our method of
proof is similar to Kunen’s, however, we have to overcome a new difficulty.

For the remaining part of this section, let X =} X, where each X, is a compact
space of weight at most 2%,

Whenever [ is a set and « is a cardinal,

Ul ={A<I:|A|=«}

n<w

and
[T ={Acl: |Al<«kk

The following is a generalization of [9, 2.1].

Definition 2.2. Let & be a closed filter on X and assume that no F € & is compact.
In addition, let f: X*—> Y be a continuous surjection. If 1<n <w, an indexed
family {A;: i € I'} of closed subsets of X is precisely n-linked w.r.t. (%, f) if for all
cge[l]"and Fe %

(narnr)=v,
but for all ¢ € [I]1**", (M), A is compact.
An indexed family {A;,: iel, 1 =n <w}is a linked system w.r.t. (%, f) if for each
n, {A;.: i eI} is precisely n-linked w.r.t. (%, f) and, for each n and i, A;, < A;, 1.
An indexed family {Al:iel,1<n<w,jeJ} is an I by J independent linked
family w.r.t. (%, f) if for each jeJ, {Al:iel, 1=n<w} is a linked system w.r.t.
(%, ), and ‘

f(ﬂ ( N Af-;,.) *ﬁF*) =Y

jeT Miea;

whenever 7€[J]™“, and foreach jer, 1<n;<w and ;€ [I]" and Fe &.

Let f:w - w be a finite to one function. The Stone extension of f is denoted by
Bf and f = Bf | w*. The filter of cofinite subsets of w is denoted by $%.

The independent linked family described in the following lemma is the same as
in [9, 2.2].

Lemma 2.3. There is a finite to one surjection £ :w = w and a 2% by 2 independent
linked family w.r.t. (€%, £).
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Proof. LetS={(k, f): kew & fe PP(k)”*}andlet 7 : @ - S be a bijection. Define
g:S->w by

gk, =k

and define £:5 - S to be the composition of g and 7. The required family (defined
on S) will be of the form {AX,: X € P(»), 1=n <w, Y € P(w)} where

A, ={k, eS8 |f(Ynk)\|<=n&Xn kef(Y nk)}

We now present the main result in this section. The proof is an adaptation of
[9, 3.1]. Due to the complexity of the proof we will give all details.

Theorem 2.4. Let X = w X Z where Z is a compact space of weight at most 2% and
suppose that F is a nice filter on X. If Y is a continuous image of w*, then there is
a continuous surjection g:X*-Y and a closed 2°-OK set A< X™* such that A <
MNpesF* and g | A is irreducible.

Proof. Let 7:w X Z - w be the projection and let £:w - @ be as in Lemma 2.3.
In addition, let {A%.: a <2“ 1=n<w, B <2“} be an independent linked family
w.r.t. (6%, &) (Lemma 2.3). For each a <2“, 1=n<w, B <2 put ES. =A%, xZ
and observe that

{Ef,:a<2°1<sn<w, B <2

is an independent linked family w.r.t. (%, %), where % is any nice filter in X,
n=PBnl X* and n=~£&-7. Let fiw™> Y be a continuous surjection and define
g:X*->Y by g=fc1. Notice that the family {E,: a <2°, 1<n<w, <2} is
also an independent linked family w.r.t. (%, g). We claim that g is as required and
it suffices to construct A.

Let {B,: u <2“ & u is even} enumerate all nonempty closed Gs’s of X (there
are clearly only 2% closed Gs’s). Let {{C,: n <w): u <2° & u is odd} enumerate
all sequences of closed nonempty G;’s satistying C,, ,+1 <int C,, —(n X Z) for each
n < w. Furthermore we assume that each sequence is listed cofinally often.

By induction on u we construct %, and K, so that

(1) %, is a closed filter on X, K, =2, and (Ef, a<2°1<n<w,BeckK,}isan
independent linked family w.r.t. (%, g);

(2) Ko=2" and %,=%;

(3) »<up implies ¥, =%, and K, 2 K,,;

(4) if w is a limit ordinal, #, ={J,., %, and K, =( )., K.;

(5) for each u, K, — K, +1 is finite;

(6) if w is even, either B, € #,., or g(Bj nF*)# Y for some F € %,,.1;

(7) if w is odd and each C,, € &,, then there are D,,, € %, 1 for &« <2“ such that
foralln=1and all ;<a;<'-<a,<2” we have that (D,., """ " Dua, )= Cun
has compact closure.
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Let us assume for a moment that this construction can indeed be carried out.
Foreach u <2“put A, =( g5, F*. Clearly g(A,) = Y. Therefore, by compactness
of X*, if we put A = ﬂ#ﬂw A,, then g(A)=Y. We claim that A is as required.
First observe that A =( ),_5 F* and that, by (7), A is 2“-OK, So the only remaining
thing to check is that g [ A is irreducible. Suppose that B = A is a proper closed
set. For some w <2“, B< B} while A—B} #(. Consequently, B, %,., since
F 11U, <30 .. Therefore, by (6), for some F € F,., we have g(Bi nF*)#Y.
Since

g(B)=g(Bi nF™),

this implies that g(B)# Y. We conclude that g | A is irreducible. Fix pu <2 and
assume that the %,, K, have been constructed for v < u. We will construct %,
and K, .1.

If u is even, let 7 be the closed filter generated by %, and B,. If J has no
compact elements and if {E%,: a <2“,1<n<w,Be K,}isindependent w.r.t. (7, g}
we set F,.1 =9 and K, ;1 = K,.. If not, then we can find E € %, such that

{B:nE*~N(N Efns)*) £y

Ber ‘acog

for some 7€[K,]™", ng € w, and oz €[2”]". Then let K,.1 =K, —7, and let F, .,
be the filter generated by %, and

N( N E2,).
Ber \xeog

Clearly %, .1 and K,, ., are as required.

If u is odd and some C,, is not in %,, put #,.1 =%, and K,.1=K,. In case
Cun€ %, for each n <w, then fix B €K, and let K,,.1 =K, —{B}. Let %, be the
closed filter generated by %, and the collection {D,,: @ <2“}, where

D | | EotiCa

l=n<=w

First observe that D, is closed since C,, < (w—n)xZ for all n <w. To verify
condition (7), let @y <a,<: - <a, <2 and put

Y=Dpa,n* NnD,, )—C,..
If n =1, then Y =@. On the other hand, if n > 1, then
Y Eﬁl,n—l iy i ﬁEE,,,n—l:
which has compact closure since these EX,_; are precisely (n — 1)-linked. Finally,

to verify (1), observe that D,,, > C,,, n E%, for each n.

Remark 2.5. The reader will undoubtfully notice that the above proof, except for
some easy adaptations, is the same as [9, 3.1].
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Corollary 2.6. Let Z be a compact space of weight at most 2° and put X =w X Z.
If Y is a continuous image of ™ which satisfies the countable chain condition, then
the projective cover EY* of Y embeds in X* as a 2°-OK set.

Proof. By Theorem 2.4 there is a closed 2“-ok set A< X™* which admits an
irreducible map onto Y. Since X* is an F-space [7], A is an F-space and since, by
irreducibility, A is ccc, A is extremally disconnected. Consequently A =EY,

3. Construction of the points
In this section we will construct for each subset F = {1, 2, 3, 4} a point

Xp € n A,'- U A:‘;
ieF ieF
where the A;’s are defined as in the introduction. Recall our convention that
(MNicg Ai =w* and U, ., A: =0.

3.1. Construction of xy

By [9, 3.1] there is a point x € w* such that {x} is a 2“-OK set (this also follows
from Corollary 2.6 since the projective cover of a one point space is a one point
space). Such a point is called a 2-OK point. By [9, 1.4] (see also Lemma 2.1), if
A< w*—{x}is cce, then x€ A. Put x;=x.

3.2. Construction of xq;

Since Bw is clearly a continuous image of ¥, by Corollary 2.6, EBw embeds in
w* as a 2“-OK set. Since Bw is extremally disconnected, EBw =Bw. We can
therefore find points x, € w* (n <w) so that if D ={x,: n <w}, then D =Bw is a
2“-OKsetinw*.Letx € D —Dbea2”-OK pointof D — D. Assume that A < »* —{x}
has no isolated points and is ccc. We claim that x¢ A. By Lemma 2.1, D n A is clopen
in A. Tt is easily seen that each x, is a 2“-OK point of w*. Hence D nA = 0. We
conclude that A n (D — D) is ccc and that if x € A, then x € (A ~ (D — D)) ". But this
is impossible since x is a 2“-OK point of D — D. Therefore, if we put x;;, = x, then
X1y 1s as required.

3.3 Construction of xz

Since the Cantor set C clearly is a continuous image of w®. the projective cover
E of C embeds as a 2”-OK set in w*. So assume that E < ™ and that E is 2“-OK.
Let E, (n <w) be a sequence of pairwise disjoint nonempty clopen subspaces of

* The projective cover EX of a space X is the unique extremally disconnected (=closure of an open
set is open) space which admits an irreducible perfect map onto X.
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E whose union is dense in E, while moreover E, =E for all n <w. Since E is
extremally disconnected, 8(lJ, -, E.) = E. By Theorems 1.3 and 2.4 there is a point
xeF=E-|J,_, E, such that x is a 2“-OK point of F while moreover x& D for
any nowhere dense subset D<|_J,,_, E,.

Let G < w™—{x} be either countable discrete, or countable 7-homogeneous of
m-weight w1, or ccc nowhere separable. Assume that x € G. Since E is a 2°-OK set,
w.l.o.g, GSE. Since G nlJ,_,, E. is nowhere dense in 1) E,, wlo.g, GCF.
Since x is a 2“-OK point of F this is a contradiction. Since x is clearly a point of
A,, we can put X = X.

Notice that x is a limit point of a countable set but not of any countable discrete
set. That such a point exists answers a question of K. Kunen.

n=am

3.4. Construction of xz

Let &% be a nice filter on w xX2“' which in addition is remote and let E be the
projective cover of 2“1, There is clearly an irreducible perfect map f: w X E - w X 21,
If D<cw XE is nowhere dense, then f(D) is nowhere dense, hence some Fe %
misses f(D). Therefore, if ¢ is the closed filter on w X E generated by {f ' (F): Fe
Z}, then ¥ is both nice and remote. By Theorem 2.4 E embeds as a 2“-OK set in
w*. So assume that E < w™ and that E is 2“-OK. Let E, (n <w) be a sequence of
pairwise disjoint nonempty clopen subsets of E such that E, =E for all » < and
(U,<., E. is dense in E. By Theorem 2.4 and the above remark there is a point
xeF=E-|J,_, E. such that x is a 2°-OK point of F while moreover x& D for
any nowhere dense D <|_J,_, E,. By using the same technique as in section 3.3
it can easily be seen that x;3;= x is as required.

3.5. Construction of x4

By [2], there is a continuous image X of ™ which is ccc and not separable. We
even may assume that X is nowhere separable, [13, 5.1]. Let Y be the one point
compactification of w X X. It is clear that Y is a continuous image of w*. By
Theorem 2.4 the projective cover of Y embeds in w* as a 2“-OK set. This space
is obviously homeomorhpic to B(w X E), where E is the projective cover of X.
Clearly E is ccc and nowhere separable. Let 7 :w X E - E be the projection. For
each countable subset AcwXE let {U,(A): n <w} be a maximal (faithfully
indexed) pairwise disjoint collection of nonempty clopen subsets of E none of
which intersects 7(A). Since E is nowhere separable, (_J U,.(A) is dense in E.
Put

n<ew

L(A)= U (ex U Ui4)).
Then L(A) n A =0 and the closed filter generated by {L(A): A < w X E}is nice. This
construction is implicit in [13, 5.2]. By Theorem 2.4 there is a point x € 8(w X E)
whichisa2“-OK pointof (w X E)* while moreover x £ A forany countable A < w X E.
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As remarked above, we may assume that 8(w X E) < w* and that B(w X E) is a
2“-0OK set in w*, It is easily seen that if we put x4 = x, then x(4; is a weak P-point
of @™® which is a limit point of some ccc subset of w* —{x(}.

That such weak P-point exists was first shown, under MA, in [8]. This answers
a question implicit in [9, § 1].

3.6. Construction of x;1.2

Let E be the projective cover of the Cantor set C and assume that B(w X E)c w®
is 2°-OK. Let D <= (w X E)* be countable and discrete such that D is a 2“-OK set
of (wx E)* while moreover DA =0 for any nowhere dense Acw XE. Let
xeD—D be a2“-OK point of D —D and define x( 2y = x.

3.7. Construction of x{1 3

Replace E in Section 3.6 by the projective cover of 2“.

3.8. Construction of x4

Replace E in Section 3.6 by the projective cover of Y where Y is a ccc nowhere
separable image of w* and use the filter {L(A): A < w X E is countable} constructed
in Section 3.5.

3.9. Construction of x2.3

Let E, be the projective cover of the Cantor set and let E, be the projective
cover of 2“1, Assume that B(w X Eg)cw™ is 2“-OK. In addition, assume that
Bl(w X E;) < (w X Ep)* is 2“-OK in (w X Eo)* while moreover

B(wxE\)nD =0
for any nowhere dense D < w X E,,. Finally, let x € (w X E;)* be a 2“-OK point of
(w X E1)* such that x¢ F for any nowhere dense F € w X E;. Define x, .3 = x.
3.10. Construction of x4

Replace E, in Section 3.9 by the projective cover of Y, where Y is a ccc nowhere
separable image of ™ and use the filter {L(A): A < w X E is countable} constructed
in Section 3.5.

3.11 Construction of x(3 4

Replace Ej in Section 3.10 by the projective cover of 2“1,

3.12 Construction of x(1,2,3), X{1,2,4}» X{1,3.4} Ghd X(2.3.4}

Use the same technique as in Sections 3.6-3.11.
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3.13. Construction of x{1,2,3,4)

This is easy.

4. Remarks

The results in Section 1 suggest the question whether each nonpseudocompact
space of w-weight at most w; has a remote point. Since there are spaces of weight
w> which do not have remote points [10] and since each space which is
nonpseudocompact and which has 7-weight @ has a remote point [3, 4], our
question is relevant. We don’t have any information concerning this question. The
only additional fact we know is the rather curious result that the statement “w X o™
has a remote point™ is both consistent with and independent of the usual axioms
of set theory. Under CH, any small nonpseudocompact space has a remote point,
[10], hence, under CH, w X @™ has a remote point. On the other hand, it is consistent
that w* can be covered by nowhere dense closed P-sets [1], which implies that
® X @™ has no remote points [5].

Let x and y be distinct weak P-points in ™ which are not P-points and let X
be the space we get from w™* by identifying x and y, It is easily seen that X is a
compact space which is not an F-space although every countable subspace is
C*-embedded. This example is due to C.F. Mills. That a space with these properties
exists was previously proved, by a different technique, by the author and indepen-
dently, but earlier, by E.K. van Douwen. Finally, let x and y be distinct points in
™ which are both limits of countable sets but not a limit of any countable discrete
set. Let Y be the space we get from w™® by identifying x and y. It is easily seen
that Y is a compact space in which not every countable subspace is C*-embedded
although each countable discrete subspace is C*-embedded. This example is also
due to C.F. Mills.
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