THE REDUCED MEASURE ALGEBRA AND A K_1-SPACE WHICH IS NOT K_0

Jan van MILL*

Subfaculteit Wiskunde, Vrije Universiteit, De Boelelaan 1081, Amsterdam, The Netherlands

Received 26 February 1980
Revised 29 May 1981

The reduced measure algebra is used to construct, under CH, a hereditarily Lindelöf separable K_1-space X which is not a K_0-space.

AMS Subj. Class.: 54C20, 54C99

reduced measure algebra K_0-space
monotone extension property K_1-space

0. Definitions

All topological spaces under discussion are completely regular and T_1.

If X is a space, $C^*(X)$ denotes the Banach space of continuous, bounded, real-valued functions on X. For a function $f \in C^*(X)$ the sup-norm of f is defined by

$$\|f\| = \sup\{|f(x)| : x \in X\}.$$

If A is a closed subspace of X, then a function $\iota : C^*(A) \to C^*(X)$ satisfying $\iota(f)|A = f$ for each $f \in C^*(A)$ is called an extender. The norm of ι, which is denoted by $\|\iota\|$, is defined by

$$\|\iota\| = \sup\{\|\iota(f)\| : f \in C^*(A), \|f\| = 1\}.$$

The extender ι is linear if $\iota(\alpha f + \beta g) = \alpha \iota(f) + \beta \iota(g)$ for all $f, g \in C^*(A)$ and $\alpha, \beta \in \mathbb{R}$; ι is said to be monotone if $\iota(f) \leq \iota(g)$ provided that $f \leq g$.

A space X is said to have property D^*_c, where $c \in \mathbb{R}$, if for every nonempty closed subspace A of X there is a linear extender $\iota : C^*(A) \to C^*(X)$ with norm not exceeding c. Similarly, X has the monotone extension property if for every closed subspace $A \subset X$ there is a monotone extender $\iota : C^*(A) \to C^*(X)$. For more information on these concepts see [3, 4, 7, 13, 14].

* Partially supported by NATO grant 1927.

0166-8641/82/0000-0000/$02.75 © 1982 North-Holland
A subspace \(A \subseteq X \) is said to be \(K_n \)-
embedded in \(X \) \((n \geq 0)\) provided there is a
function \(\kappa : \tau(A) \rightarrow \tau(X) \) (for each space \(Z \), the
topology of \(Z \) is denoted by \(\tau(Z) \)) such that

(a) \(\kappa(U) \cap A = U \) for all \(U \in \tau(A) \);

(b) if \(n = 0 \), then \(\kappa(\emptyset) = \emptyset \) and \(\kappa(U) \cap \kappa(V) = \kappa(U \cap V) \) for all \(U, V \in \tau(A) \); if
\(n > 0 \), then \(\kappa(U_0) \cap \cdots \cap \kappa(U_n) = \emptyset \) whenever \(U_i \cap U_j = \emptyset \) for \(0 \leq i < j \leq n \) and
\(U_0, \ldots, U_n \in \tau(A) \).

A space is a \(K_n \)-space if each subspace is \(K_n \)-
embedded. For more information on these concepts see [3, 4, 18, 19].

1. Introduction

The Dugundji Extension Theorem, [9], has been improved in recent years so
that certain versions of it now also work for certain classes of non-metrizable but
mathematically important objects such as CW-complexes [2, 1] and generalized
ordered spaces [13].

One of the most important observations in Dugundji extension theory is that
spaces which satisfy a certain version of the Dugundji Extension Theorem allow
functions on subspaces which simultaneously extend open sets in a nice way. To
be more precise, a space with property \(D^*_\varepsilon \) is \(K_n \)-space where \(n \) is the smallest
integer greater than \(\frac{1}{2}(\varepsilon - 1) \). This observation of van Douwen [4] was used to
construct a first countable, hereditarily Lindelöf, separable space \(H_\infty \) containing a
closed subspace \(A \) having no continuous linear extender from \(C^*(A) \) to \(C^*(H_\infty) \).

Van Douwen’s Example is the topological sum of spaces \(H_n \) \((n \in \mathbb{N})\), where, for
each \(n \), \(H_n \) is a hereditarily Lindelöf, separable \(K_{n+1} \)-space which is not a \(K_n \)-space.
This example left open the question whether every \(K_1 \)-space is a \(K_0 \)-space and the
aim of this paper is to answer this question, [4, p. 301].

We will construct, assuming the Continuum Hypothesis, a hereditarily Lindelöf,
separable \(K_1 \)-space which is not a \(K_0 \)-space. Our example is inspired by an example
in van Mill [19] where we constructed a first countable compact space \(Z \) containing a
closed subspace \(A \) which is \(K_1 \)-embedded but not \(K_0 \)-embedded \((Z \) is not a
\(K_1 \)-space since \(Z \) is separable and contains an uncountable discrete subspace). Our
example is also interesting for another reason. In [3, 3.1] it was shown that any
space with the monotone extension property is a \(K_1 \)-space. Our example has the
monotone extension property but is not \(K_0 \). That answers another question of van
Douwen.

2. Certain subspaces of extremally disconnected compacta

A space is extremally disconnected if the closure of any open set is again open.
As usual, we call a space without isolated points a Luzin (nodec) space, if each
nowhere dense set is countable (closed). There are, under CH, spaces which are both Luzin and nodec, see [21, 20].

The following results are of independent interest.

2.1. Theorem (CH). Let X be an extremally disconnected, dense in itself compactum of weight 2^ω. Then X contains a dense nodec subspace. If X moreover satisfies the countable chain condition, then X contains a dense subspace which is both nodec and Luzin.

Proof. Let \mathcal{C} be the Boolean algebra of clopen subsets of X and, by CH, list $\mathcal{C}-\{\emptyset\}$ as $\{C_\alpha : \alpha < \omega_1\}$. By induction we will construct, for each $\alpha < \omega_1$, a point $x_\alpha \in X$ and a nowhere dense closed set $Z_\alpha \subset X$ such that

(a) $x_\alpha \in Z_\alpha \subset C_\alpha$,

(b) if $\beta < \alpha$ and if $x_\beta \neq x_\alpha$, then $Z_\beta \cap Z_\alpha = \emptyset$, $x_\beta \notin Z_\alpha$ and $x_\alpha \notin Z_\beta$,

(c) if $D \subset X - Z_\alpha$ is nowhere dense, then $x_\alpha \notin D$.

Suppose that we have constructed the x_β's and the Z_β's for all $\beta < \alpha < \omega_1$. If there is a $\gamma < \alpha$ such that $x_\gamma \in C_\alpha$, then define $x_\alpha = x_\gamma$ and $Z_\alpha = Z_\gamma$. If not, take $x \in C_\alpha$ so that

$$x \notin \bigcup_{\beta < \alpha} Z_\beta.$$

Let $Z \subset C_\alpha$ be a closed G_δ subset of X missing $\bigcup_{\beta < \alpha} Z_\beta \cup \{x_\beta : \beta < \alpha\}$ but containing x. Since X is extremally disconnected and since the cellularity of X is non-measurable, x is not a P-point, i.e. there is a closed nowhere dense G_δ set S containing x, [10, 12H].

Define $S' = S \cap Z$. Then S' is also nowhere dense, so $Y = X - S'$ is a locally compact, σ-compact, dense subspace of X. Since dense subspaces of X are C^κ-embedded, $\beta Y = X$. Since Y is not pseudocompact and βY has weight 2^ω, by Kunen, van Mill & Mills [16, 1.3] there is a point $x' \in Y - Y = S'$ such that $x' \notin D$ for any nowhere dense subspace $D \subset Y$. Define $x_\alpha = x'$ and $Z_\alpha = S'$.

Now put $P = \{x_\alpha : \alpha < \omega_1\}$. Clearly P is dense and we claim that P is nodec. Let $D \subset P$ be nowhere dense and suppose that D is not closed. Take $x \in (P \cap \overline{D}) - D$. Choose $\alpha < \omega_1$ such that $x = x_\alpha$. By (b), $Z_\alpha \cap (P - \{x_\alpha\}) = \emptyset$ and therefore $Z_\alpha \cap D = \emptyset$. Since $D \subset Z_\alpha$ is nowhere dense, by (c), $x \notin D$. Contradiction.

If X is ccc, then the x_α's must be chosen more carefully in order for $P = \{x_\alpha : \alpha < \omega_1\}$ to be Luzin. First observe the well-known fact that there is a family \mathcal{A} of 2^ω nowhere dense subsets of X so that each nowhere dense subset of X is contained in some element of \mathcal{A}. Indeed, since X is ccc each nowhere dense subset of X is contained in a nowhere dense G_δ and, since there are only $(2^\omega)^\omega = 2^\omega$ G_δ's in X, we can simply let \mathcal{A} be the family of all nowhere dense G_δ's of X. To make P Luzin we must simply add in the induction hypotheses that $x_\alpha \notin \bigcup_{\beta < \alpha} A_\beta$ (let $\{A_\alpha : \alpha < \omega_1\}$ enumerate \mathcal{A}). The rest is routine. □

2.2. Remark. For related ideas see [8, 20].
A space is called retractable if each nonempty closed subspace is a retract. The following Lemma generalizes [3, 3.3].

2.3. Lemma. A Lindelöf nodec space is retractable.

Proof. Let X be a Lindelöf nodec space. First observe that each nowhere dense subset of X is discrete and hence, because X is Lindelöf, countable. Therefore X is Luzin, which easily implies that X is zero-dimensional, [15].

Observe that it clearly suffices that each nowhere dense closed subspace of X is a retract. So let $D \subseteq X$ be closed and discrete. Since X is strongly zero-dimensional there is a disjoint clopen cover $\{U_d: d \in D\}$ of X with $d \in U_d$. Then, as in [3, 3.3], define $r: X \to D$ by $r(x) = d$ iff $x \in U_d$. □

2.4. Corollary. A Lindelöf nodec space is K_0.

Proof. By [4, 2.1] it suffices to prove that closed subspaces are K_0-embedded. But that immediately follows from Lemma 2.3. □

2.5. Question. Is the statement “Each dense in itself extremally disconnected compactum of weight 2^ω contains a dense nodec subspace” equivalent to CH?

3. The reduced measure algebra

Let I denote the closed unit interval $[0, 1]$, let \mathcal{M} be the Boolean algebra of measurable subsets of I, and let \mathcal{N} be the ideal of null-sets. The quotient algebra \mathcal{M}/\mathcal{N} is called the reduced measure algebra. Let M denote its Stone space. Notice that \mathcal{M}/\mathcal{N} is complete and has cardinality 2^ω, so that M is an extremally disconnected compactum of weight 2^ω.

Let λ denote Lebesgue measure on I, and for $A \in \mathcal{M}$ let $[A]$ denote the \mathcal{N}-equivalence class of A.

The following lemma is well-known. The proof is included for completeness sake.

3.1. Lemma. (a) The family \mathcal{C} of nonempty clopen (=closed and open) subsets of M can be written as $\mathcal{C} = \bigcup_{n<\omega} \mathcal{C}_n$, where, for each $n<\omega$,
\[(\alpha) \ \bigcap_{n<\omega} \mathcal{C}_n = \emptyset, \text{ and} \]
\[(\beta) \text{ any two members of } \mathcal{C}_n \text{ meet.} \]
(b) M is not separable.

Proof. For (a), let us first prove a corresponding statement for \mathcal{M}/\mathcal{N}. Let \mathcal{B} be a countable (open) basis for I which is closed under finite unions. For each $B \in \mathcal{B}$ define
\[\mathcal{L}(B) = \{ A \in \mathcal{M}: \lambda(A \cap B) > \frac{1}{2} \lambda(B)\}. \]
It is clear that any two members of $\mathcal{L}(B)$ meet in a set of positive measure. Also, $\mathcal{L}(B)$ contains three elements which have empty intersection.

We claim that $\mathcal{M} - \mathcal{N} = \bigcup_{B \in \mathcal{L}(B)}$. Indeed, take $A \in \mathcal{M} - \mathcal{N}$ and construct a compact $K \subset A$ with $\lambda(K) > 0$. There is a $B \in \mathcal{B}$ with $B \supseteq K$ and $\lambda(K) > \frac{1}{2}\lambda(B)$. This shows that $K \in \mathcal{L}(B)$. Hence $A \in \mathcal{L}(B)$.

From these observations (a) is immediately clear.

For (b), let $(p_n)_n$ be any sequence in M. Since p_n is an ultrafilter in the Boolean algebra \mathcal{M}/\mathcal{N} we can find $P_n \in \mathcal{M} - \mathcal{N}$ with $[P_n] \subseteq p_n$ and $\lambda(P_n) < 2^{-2^{-n}}$. Then $\{x \in M : [I - \bigcup_n P_n] \subseteq x\}$ is an open set in M which is nonempty and misses each P_n. □

A family of sets is called linked (centered) if any two (any finite number) of its members meet. Call a family of sets σ-linked (σ-centered) if it is the union of countably many linked (centered) subfamilies. A compact space the topology of which is σ-centered is clearly separable [5], so that we can reformulate Lemma 2.1 by saying that $\tau(M)$ is σ-linked but not σ-centered (this is not entirely true; in Lemma 2.1 we proved that $\tau(M)$ is the union of countably many linked subfamilies which all have empty intersection and it is precisely this fact which makes our construction work).

By Lemma 2.1(a) M satisfies the countable chain condition, so that by Theorem 2.1 M has a dense subspace P which is both Luzin and nodec, see also [21]. Since P is dense in M, $\tau(P)$ is σ-linked but not σ-centered. We have constructed the following example.

3.2. Example (CH). There is a space P which is both Luzin and nodec and which moreover has the following properties:

(a) the family of nonempty clopen subsets of P is not σ-centered,

(b) the family of nonempty clopen subsets of P is the union of countably many linked subfamilies having all empty intersection.

4. The example

Let P be the space of Example 3.2. The family of nonempty clopen subsets of P will be denoted by \mathcal{C}. By 3.2(b), we can write \mathcal{C} as $\bigcup_{n<\omega} \mathcal{C}_n$ where each \mathcal{C}_n is linked while moreover $\bigcap \mathcal{C}_n = \emptyset$.

By Zorn's Lemma extend each \mathcal{C}_n to a maximal linked system $\mathcal{L}_n \subset \mathcal{C}$, i.e. a linked system in \mathcal{C} not properly contained in any other linked system in \mathcal{C}. For each $C \in \mathcal{C}$ define

$$C^+ = C \cup \{n < \omega : C \in \mathcal{L}_n\}.$$

Notice that if $C \in \mathcal{C}$, then either $C \in \mathcal{L}_n$ or $P - C \in \mathcal{L}_n$, and also that $\bigcap \mathcal{L}_n = \emptyset$ since $\bigcap \mathcal{C}_n = \emptyset$.

Fact 1. If \(F \subseteq \omega \) is finite and if \(x \in P \), then there is a \(C \in \mathcal{C} \) containing \(x \) such that \(C^+ \cap F = \emptyset \).

Take \(n \in F \) arbitrarily. Since \(\bigcap \mathcal{L}_n = \emptyset \), there is an \(L_n \in \mathcal{L}_n \) not containing \(x \). Put \(C = \bigcap_{n \in F} (P - L_n) \). Then \(C \) is as required.

Fact 2. Let \(F, G \subseteq \omega \) be finite, let \(x \in P \), and, for each \(n \in F \) let \(C_n \) be a clopen neighborhood of \(x \) in \(P \). Then there is a clopen neighborhood \(C \) of \(x \) such that \(C^+ \subseteq \bigcap_{n \in F} C_n^+ - G \).

Put \(E = \bigcap_{n \in F} C_n \) and let \(D \) be a clopen neighborhood of \(x \) such that \(D^+ \cap G = \emptyset \) (Fact 1).

Then \(C = E \cap D \) is as required.

The underlying set of \(X \) is \(P \cup \omega \). The topology of \(X \) is generated by the collection \(\{C^+: C \in \mathcal{C}\} \cup \{\{n\}: n \in \omega\} \).

Notice that this implies that the points of \(\omega \) are isolated and that a basic neighborhood of \(x \in P \subseteq X \) has the form \(C^+ \), where \(x \in C \in \mathcal{C} \). Since \(C^+ \cap P = C \) for all \(C \in \mathcal{C} \), the inclusion \(P \rightarrow X \) is an embedding.

Fact 3. \(X \) is a zero-dimensional Hausdorff space.

Take \(C \in \mathcal{C} \). Then \(C^+ \cap (P-C)^+ = \emptyset \) and \(C^+ \cup (P-C)^+ = X \). This implies that \(C^+ \) is clopen. The rest is clear.

Fact 4. \(X \) is Lindelöf and \(\omega \) is dense in \(X \). In particular, \(X \) is separable.

Since \(P \) is Lindelöf and \(\omega \) is countable, the Lindelöfness of \(X \) is trivial. We will now show that \(P \subseteq \omega^\circ \). Take \(x \in P \) and let \(U \) be any neighborhood of \(x \) in \(X \). Take \(C \in \mathcal{C} \) so that \(x \in C \subseteq C^+ \subseteq U \). Let \(C \in \mathcal{C}_n \). Then \(C \in \mathcal{L}_n \), or equivalently, \(n \in C^+ \).

That shows that \(U \cap \omega \neq \emptyset \).

Fact 5. \(X \) is not a \(K_0 \)-space.

We claim that there is no \(K_0 \)-function \(\kappa: \tau(P) \rightarrow \tau(X) \). For, to the contrary, assume there is a \(K_0 \)-function \(\kappa: \tau(P) \rightarrow \tau(X) \). since \(X - P \) is countable this would imply that \(\tau(P) \) is \(\sigma \)-centered, a contradiction.

If \(U \subseteq P \) is open, then define
\[
U^+ = U \cup \{n < \omega: \exists C \in \mathcal{L}_n (C \subseteq U)\}.
\]
Notice that \(U^+ \) is open and that if \(U \) is clopen the set \(U^+ \) defined here equals the set \(U^+ \) defined above.
Fact 6. X is a K_1-space.

By [4, 2.1] it suffices to prove that closed subspaces of X allow K_1-functions. Therefore, let $A \subseteq X$ be closed. Since, by Corollary 2.5, P is a K_0-space, there is a K_0-function $\rho: \tau(A \cap P) \to \tau(P)$ (in fact, a K_1-function would suffice). Define $\kappa: \tau(A) \to \tau(X)$ by

$$\kappa(U) = U \cup ((\rho(U \cap P))^+ - A).$$

It is clear that $\kappa(U) \cap A = U$. Let us observe that $\kappa(U)$ is open. Since $X - P$ consists of isolated points of X we only need to check that $\kappa(U)$ is a neighborhood of any point of $\kappa(U) \cap P$. So take $x \in \kappa(U) \cap P$. If $x \notin A$ take a clopen $C \subseteq P$ so that $C \subseteq \rho(U \cap P)$ while moreover $x \in C \subseteq C^+ \subseteq X - A$. Then $C^+ \subseteq \kappa(U)$, and consequently $\kappa(U)$ is a neighborhood of x. If $x \in A$, take a clopen $F \subseteq P$ so that $x \in F \subseteq \rho(U \cap P)$ while moreover $F^+ \cap A \subseteq U$. Then $F^+ \subseteq \kappa(U)$ so that in this case $\kappa(U)$ is also a neighborhood of x. We conclude that $\kappa(U)$ is open.

If $U \cap V = \emptyset$, then $\kappa(U) \cap \kappa(V) = \emptyset$ since $\rho(U \cap P) \cap \rho(V \cap P) = \emptyset$ (which implies that $(\rho(U \cap P))^+ \cap (\rho(V \cap P))^+ = \emptyset$).

Therefore κ is a K_1-function.

5. The monotone extension property

We will now prove that X has the monotone extension property. From this it also follows that X is a K_1-space, [3, 3.1].

Let P and X be as in Section 4. In the following Lemma we will use a technique essentially due to J. Jensen (see [22, II.4.5]).

If $A \subseteq \mathbb{R}$ let $h(A)$ denote the closed convex hull of A in \mathbb{R}.

5.1. Lemma. There is an extender $\Phi: C^*(P) \to C^*(X)$ so that

(a) $\|\Phi(f)\| = \|f\|$ for all $f \in C^*(P)$, and

(b) if $f \leq g$, then $\Phi(f) \leq \Phi(g)$.

Proof. Let $f \in C^*(P)$. Define $\Phi(f): X \to \mathbb{R}$ by

$$\Phi(f)(x) = f(x) \quad (x \in P),$$

and

$$\{\Phi(f)(n)\} = \bigcap \{h(f(L)) : L \in \mathcal{L}_n\} \quad (n \in \omega).$$

Clearly $\Phi(f)|P = f$. We claim that $\Phi(f)$ defined in this way is as required.

Claim 1. $\Phi(f)$ is well-defined.

First observe that the fact that $f \in C^*(P)$ and the fact that \mathcal{L}_n is a linked system imply that $\bigcap \{h(f(L)) : L \in \mathcal{L}_n\} \neq \emptyset$ for all $n \in \omega$. Suppose that for certain $n \in \omega$ $\bigcap \{h(f(L)) : L \in \mathcal{L}_n\}$ contains two distinct points, say a and b. Without loss of
generality $a < b$. Take a clopen set $E \subset P$ such that
\[f^{-1}(-\infty, \frac{3}{4}a + \frac{1}{4}b) \subset E \subset f^{-1}(-\infty, \frac{1}{4}a + \frac{3}{4}b), \]
Since \mathcal{L}_n is a maximal linked system, either $E \in \mathcal{L}_n$ or $P - E \in \mathcal{L}_n$. If $E \in \mathcal{L}_n$, then $b \in h(f(E)) \subset (-\infty, \frac{1}{4}a + \frac{3}{4}b]$, which is impossible. If $P - E \in \mathcal{L}_n$, then
\[f^{-1}[\frac{3}{4}a + \frac{1}{4}b, \infty) \subset P - E \subset f^{-1}(\frac{3}{4}a + \frac{1}{4}b, \infty), \]
so the same contradiction can be derived.

Claim 2. $\Phi(f)$ is continuous.

The reader can easily check that
\[\Phi(f)^{-1}(-\infty, s) = \bigcap \{ C^+ : C \in \mathcal{C} \text{ and } \exists \varepsilon > 0 : f^{-1}(-\infty, s + \varepsilon) \subset C \}, \]
\[\Phi(f)^{-1}[s, \infty) = \bigcap \{ C^+ : C \in \mathcal{C} \text{ and } \exists \varepsilon > 0 : f^{-1}[s - \varepsilon, \infty) \subset C \} \]
for all $s \in \mathbb{R}$.

Claim 3. $\|\Phi(f)\| = \|f\|$ for all $f \in C^*(P)$, in particular, $\Phi(f) \in C^*(X)$.

This follows immediately from the definition of $\Phi(f)$.

Claim 4. If $f \leq g$, then $\Phi(f) \leq \Phi(g)$.

This requires proof. Suppose that $f \leq g$ but $\Phi(f) \not\leq \Phi(g)$ for certain $f, g \in C^*(P)$. Since $\Phi(f)|P = f$ and $\Phi(g)|P = g$, we can find $n \in \omega$ such that
\[\Phi(g)(n) < \Phi(f)(n). \]
Since $f, g \in C^*(P)$ we can find $M, N \in \mathcal{L}_n$ such that
\[h(f(M)) \cap h(g(N)) = \emptyset \]
(argument: if $h(f(M)) \cap h(g(N)) \neq \emptyset$ for all $M, N \in \mathcal{L}_n$ then
\[\bigcap \{ h(f(M)) : M \in \mathcal{L}_n \} \cap \bigcap \{ h(g(N)) : N \in \mathcal{L}_n \} \cap h(f(P) \cup g(P)) \neq \emptyset, \]
i.e. $\Phi(g)(n) = \Phi(f)(n)$, which is impossible).

Since $\Phi(g)(n) < \Phi(f)(n)$ for all $r \in h(f(M))$ and $s \in h(g(N))$ we have that $s < r$. Now, \mathcal{L}_n is a linked system, so that M and N meet, say $x \in M \cap N$. Since $f(x) \in h(f(M))$ and $g(x) \in h(g(N))$ it follows that $g(x) < f(x)$. But this contradicts the fact that $f \leq g$. \qed

5.2. Remark. From the proof of Lemma 4.1, the definition of Φ, Claim 1 and Claim 2 are known, see [22, II 4.5], since $\Phi(f)$ is already continuous in the weaker superextension topology on X. Since we used the explicit construction of $\Phi(f)$ in Claim 3 and Claim 4, for completeness sake we have also included the proofs of Claim 1 and Claim 2.

We now come to the main result in this section.

5.3. Theorem. Let A be any closed subspace of X. Then there is an extender $\Phi : C^*(A) \to C^*(X)$ such that
(a) \(\|\Phi(f)\| = \|f\| \) for all \(f \in C^*(A) \), and

(b) if \(f \leq g \), then \(\Phi(f) \leq \Phi(g) \).

In particular, \(X \) has the monotone extension property.

Proof. Let \(A \subseteq X \) be closed. Without loss of generality \(A \neq \emptyset \).

Suppose first that \(A \cap P = \emptyset \). Then, since \(X - P \) is countable, \(A \) is a closed discrete subspace of the zero-dimensional Lindelöf space \(X \). This implies that \(A \) is a retract of \(X \). Let \(r \) retract \(X \) onto \(A \). Define \(\Phi: C^*(A) \to C^*(X) \) by

\[
\Phi(f)(x) = f(r(x)).
\]

Then \(\Phi \) is as required (this is well-known of course).

Now suppose that \(A \cap P \neq \emptyset \) and let \(\iota: C^*(P) \to C^*(X) \) be an extender as in Lemma 5.1. By Lemma 2.3, \(P \) is retractable, so let \(r: P \to A \cap P \) be a retraction. Define \(\Phi: C^*(A) \to C^*(X) \) by

\[
\begin{align*}
\Phi(f)(x) &= f(x), \quad (x \in A), \\
\Phi(f)(x) &= \iota((f|A \cap P) \circ r)(x), \quad (x \notin A).
\end{align*}
\]

A straightforward check shows that \(\Phi \) defined in this way is as required. \(\square \)

5.4. Remark. The extender \(\Phi \) in Theorem 5.3 is in general not linear.

6. Remarks

The results derived in this paper suggest the following question:

6.1. Question. Is there, in ZFC, a first countable zero-dimensional Lindelöf \(K_0 \)-space \(X \) for which the family of all nonempty clopen subsets is the union of countably many linked subfamilies all having empty intersection but is not \(\sigma \)-centered?

Let us indicate why this question is nontrivial and interesting. It is interesting since a positive answer would yield, using the same technique as in Section 3 of this paper, an example of a first countable separable Lindelöf \(K_1 \)-space which is not \(K_0 \). The question is nontrivial, since if such an example exists, it cannot be locally compact and it cannot have a first countable compactification, by [12]. Of course there are first countable Lindelöf spaces having no first countable compactification, but these examples are all difficult. At first glance one would hope that a space asked for in Question 6.1 can be linearly orderable, or, generalized orderable, since the only known (nontrivial) class of \(K_0 \)-spaces not related to metrizable spaces are the generalized orderable spaces, [3, 2.3.1; 17]. However, unfortunately, the example cannot be generalized orderable. For suppose \(X \) is generalized orderable and has all properties listed in Question 6.1. Let \(X^+ \) be the
Dedekind completion of X. Then X^+ is supercompact (this will not be defined here) and the topology of X^+ is σ-linked. But van Douwen [6] has recently shown that such a space must be separable. Therefore X^+ is separable, which in turn implies that X is separable, contradicting the fact that $\tau(X)$ is not σ-centered.

References