An almost fixed point theorem for metrizable continua

By

JAN VAN MILL

0. Introduction. Let X be a topological space. A collection \mathscr{A} of closed subsets of X has the *n*-intersection property (n > 1) provided that any subfamily of \mathcal{A} of n elements has nonempty intersection. Whenever a system \mathscr{A} of closed sets is maximal with respect to the *n*-intersection property we say that \mathcal{A} is a maximal *n*-centered system. The motivation for this paper arose from the observation that if X is a metrizable continuum and if $f: X \to X$ is continuous then there is a maximal 2centered system \mathscr{M} so that $\mathscr{M} = \{A \in 2^{X} : f^{-1}(A) \in \mathscr{M}\}$ (see [4, Th. 4] and [9, II 4.5]) (M. van de Vel has recently given an elementary, though nontrivial, proof of a similar assertion for arbitrary continua; see [8], and also [7]). This result suggests the question whether one can obtain a similar result for maximal n-centered systems with n > 2. Obviously we cannot expect the same result for systems of closed sets maximal with respect to the finite intersection property, for if \mathcal{F} is such a system and $\mathscr{F} = \{A \in 2^X : f^{-1}(A) \in \mathscr{F}\}$ then $\bigcap \mathscr{F}$ is a fixed point of f. Unfortunately the same method of proof as in the maximal 2-centered system case does not work for n > 2. In fact, we do not know whether the result can be generalized but we can prove that for each n > 2 there is a maximal *n*-centered system \mathscr{A} so that \mathscr{A} and $\{A \in 2^{\mathcal{X}} : f^{-1}(A) \in \mathscr{A}\}$ are as "close" as we please. To make this explicit we first have to define a notion of closeness for systems of closed sets. There is a very natural way to do this. It turns out, see Section 1, that each maximal *n*-centered system \mathscr{A} in X is closed when regarded to be a subset of the hyperspace 2^X of X. Hence such a system is a point of $2^{2^{X}}$. In the same way $\overline{f}(\mathscr{A}) = \{A \in 2^{X} : f^{-1}(A) \in \mathscr{A}\}$ is a point of 2^{2^x} . Since 2^{2^x} can be metrized, in a natural way, by the Hausdorff distance it is natural to say that \mathscr{A} and $\overline{f}(\mathscr{A})$ have distance ε in case \mathscr{A} and $\overline{f}(\mathscr{A})$ have distance ε in $2^{2^{x}}$. Let us say that a maximal *n*-centered system \mathscr{A} is finitely generated whenever there is a finite subset $F \subset X$ so that $\{A \cap F : A \in \mathscr{A}\}$ is *n*-centered. Our main result is that if X is a metric continuum and if $f: X \to X$ is continuous then for each $\varepsilon > 0$ and $n \ge 2$ there is a finitely generated maximal *n*-centered system \mathscr{A} in X so that \mathscr{A} and $\overline{f}(\mathscr{A})$ have distance less than ε in $2^{2^{X}}$. By an example we show that for finitely generated maximal n-centered systems this result is best possible.

I am indebted to Marcel van de Vel for some helpful suggestions.

1. Preliminaries. Let (X, d) be a compact metric space. Put

$$U_{\varepsilon}(A) = \{x \in X : d(x, A) < \varepsilon\},\$$

$$B_{\varepsilon}(A) = \{x \in X : d(x, A) \leq \varepsilon\}$$

for all $\varepsilon \geq 0$ and $A \in X$.

The hyperspace 2^X of X is the space of all nonempty closed subsets of X topologized by the Hausdorff distance d_H , i.e.

$$d_H(A, B) = \inf \{ \varepsilon > 0 : A \in U_{\varepsilon}(B) \& B \in U_{\varepsilon}(A) \}.$$

The hyperspace of 2^{X} is metrized by d_{HH} which is denoted, for simplicity, by ϱ . For information concerning hyperspaces see Nadler [3].

1.1. Lemma. Let $n \ge 2$ and let \mathscr{A} be a maximal n-centered system in X. Then $\mathscr{A} \subset 2^X$ is closed.

Proof. Suppose that $B \notin \mathscr{A}$. By maximality of \mathscr{A} there is a subfamily \mathscr{E} of \mathscr{A} of cardinality n-1 so that $B \cap \bigcap \mathscr{E} = \emptyset$. Take $\varepsilon > 0$ so that

$$U_{\varepsilon}(B) \cap \bigcap \mathscr{E} = \emptyset$$
.

Then $\{D \in 2^X : d_H(D, B) < \varepsilon\}$ is a neighborhood of B in 2^X which misses \mathscr{A} . \Box

If $\mathscr{A} \subset 2^X$ put $\mathscr{A}^{\dagger} = \{B \in 2^X : \exists A \in \mathscr{A} \text{ with } A \subset B\}$. The proof of the following simple lemma is left to the reader.

1.2. Lemma. Let $\mathscr{F}, \mathscr{G} \subset 2^X$ be closed so that $\mathscr{F} = \mathscr{F}^{\uparrow}$ and $\mathscr{G} = \mathscr{G}^{\uparrow}$. Then

$$\varrho(\mathscr{F},\mathscr{G}) = \inf \left\{ \varepsilon > 0 : (\forall F \in \mathscr{F} : B_{\varepsilon}(F) \in \mathscr{G}) \& (\forall G \in \mathscr{G} : B_{\varepsilon}(G) \in \mathscr{F}) \right\}. \quad \Box$$

Define an operator $F: 2^{2^x} \to 2^{2^x}$ by $F(\mathscr{A}) = \mathscr{A}^{\uparrow}$.

1.3. Lemma. F is well defined and continuous.

Proof. Suppose that $B \notin \mathscr{A}^{\dagger}$. For each $A \in \mathscr{A}$ let U(A) be an open set in X so that $A \cap U(A) \neq \emptyset$ and $U(A)^{-} \cap B = \emptyset$. By the compactness of \mathscr{A} there is a finite subcollection $\mathscr{E} \subset \mathscr{A}$ so that for each $A \in \mathscr{A}$ we have that $A \cap U(E) \neq \emptyset$ for some $E \in \mathscr{E}$. Then

$$\{C \in 2^X : C \cap U(E)^- = \emptyset \text{ for each } E \in \mathscr{E}\}$$

is an open neighborhood of B which misses \mathscr{A}^{\dagger} . Hence \mathscr{A}^{\dagger} is closed.

The continuity of F is an easy exercise which is left to the reader (use Lemma 1.2).

1.4. Corollary. $\{\mathscr{A} \in 2^{2^{x}} : \mathscr{A} = \mathscr{A}^{\dagger}\}$ is closed in $2^{2^{x}}$.

2. Finitely generated maximal *n*-centered systems. Let X be a compact metric space. For each $n \ge 2$ define

 $\mathscr{L}_n(X) = \{ \mathscr{A} \in 2^{2^x} : \mathscr{A} \text{ is } n \text{-centered and } \mathscr{A} = \mathscr{A}^{\dagger} \}.$

160

2.1. Lemma. $\mathscr{L}_n(X)$ is closed in 2^{2^x} .

This Lemma easily follows from Corollary 1.4. Define a function $\mu: \mathscr{L}_n(X)^{n+1} \to \mathscr{L}_n(X)$ by

$$\mu(\mathscr{A}_1, \ldots, \mathscr{A}_{n+1}) = \{ B \in 2^X : \exists i \leq n+1 \text{ so that } B \in \mathscr{A}_j \text{ for all } j \neq i \}.$$

It is clear that μ is well-defined.

2.2. Lemma. μ is continuous.

Proof. Take $\mathscr{A}_i \in \mathscr{L}_n(X)$ $(i \leq n+1)$ and let \mathscr{E}_m^i $(m \in \mathbb{N})$ be a sequence of points in $\mathscr{L}_n(X)$ converging to \mathscr{A}_i $(i \leq n+1)$. Choose $\varepsilon > 0$ and let $m_0 \in \mathbb{N}$ be so that

$$\varrho(\mathscr{E}_m^i,\mathscr{A}_i) < \varepsilon$$

for all $m \ge m_0$ and $i \le n + 1$. Fix $m \ge m_0$ and take $E \in \mu(\mathscr{E}_m^1, \ldots, \mathscr{E}_m^{n+1})$. Then there is an $i \le n + 1$ so that $E \in \mathscr{E}_m^j$ for all $j \ne i$. Since $\varrho(\mathscr{E}_m^j, \mathscr{A}_j) < \varepsilon$, by Lemma 1.2, it follows that $B_{\varepsilon}(E) \in \mathscr{A}_j$ for all $j \ne i$ and consequently

 $B_{\varepsilon}(E) \in \mu(\mathscr{A}_1, \ldots, \mathscr{A}_{n+1}).$

In the same way one shows that if

$$A \in \mu(\mathscr{A}_1, \ldots, \mathscr{A}_{n+1})$$
 then $B_{\varepsilon}(A) \in \mu(\mathscr{E}_m^1, \ldots, \mathscr{E}_m^{n+1})$.

By Lemma 1.2 we conclude that

$$\varrho(\mu(\mathscr{A}_1,\ldots,\mathscr{A}_{n+1}),\ \mu(\mathscr{E}_m^1,\ldots,\mathscr{E}_m^{n+1})) \leq \varepsilon,$$

which proves continuity of μ .

Notice that μ is symmetric, i.e.

$$\mu(\mathscr{A}_1,\ldots,\mathscr{A}_{n+1})=\mu(\mathscr{A}_{\pi(1)},\ldots,\mathscr{A}_{\pi(n+1)})$$

for each permutation π of $\{1, 2, ..., n + 1\}$. Also $\mu(\mathscr{A}, ..., \mathscr{A}) = \mathscr{A}$ for each $\mathscr{A} \in \mathscr{L}_n(X)$. Hence μ is a (n + 1)-mean in the sense of Aumann [1].

The following Lemma is a trivial though fundamental observation.

2.3. Lemma. Take
$$\mathscr{A}, \mathscr{B} \in \mathscr{L}_n(X)$$
. Then $\mu(\mathscr{A}, \mathscr{A}, \ldots, \mathscr{A}, \mathscr{B}) = \mathscr{A}$.

It is precisely this observation which makes our construction work.

As noted in the introduction, a maximal *n*-centered system \mathscr{A} in X is called *finitely generated* if there is a finite set $F \subset X$ so that

 $\{A \cap F : A \in \mathscr{A}\}$

is *n*-centered. There are many maximal *n*-centered systems \mathscr{A} in X which are finitely generated. For example, let $F \subset X$ be a set of precisely n + 1 points. Then

$$\{A \in 2^X : |F - A| \leq 1\}$$

is a finitely generated maximal n-centered system in X.

Let $\wedge_n(X) = \{ \mathscr{A} \in \mathscr{L}_n(X) : \mathscr{A} \text{ is a finitely generated maximal n-centered system} \}$. If $\mathscr{A} \in \wedge_n(X)$ then a finite set $F \subset X$ is called a *center* for \mathscr{A} provided that $\{A \cap F : A \in \mathscr{A}\}$ is n-centered.

Archiv der Mathematik 40

2.4. Lemma. Let $\mathscr{A} \in \wedge_n(X)$.

- (i) If F is a center for \mathscr{A} then $\{A \cap F : A \in \mathscr{A}\} \subset \mathscr{A}$.
- (ii) If F and G are centers for \mathscr{A} then so is $F \cap G$.

Proof. For (i), take $A \in \mathscr{A}$ so that $A \cap F \notin \mathscr{A}$. By maximality of \mathscr{A} there is a subfamily \mathscr{E} of \mathscr{A} of cardinality n-1 so that

$$(A \cap F) \cap \bigcap \mathscr{E} = \emptyset.$$

However, this contradicts the fact that F is a center for \mathscr{A} .

Now assume that both F and G are centers for \mathscr{A} . By (i) $\{A \cap F : A \in \mathscr{A}\} \subset \mathscr{A}$. Hence, also by (i), $\{(A \cap F) \cap G : A \in \mathscr{A}\} \subset \mathscr{A}$. This proves that

 $\{A \cap (F \cap G) : A \in \mathscr{A}\}$

is *n*-centered, i.e. $F \cap G$ is a center for \mathscr{A} .

We will show that if X is a continuum and if $\overline{\wedge}_n(X)$ denotes the closure of $\wedge_n(X)$ is 2^{2^x} then $\mu[\overline{\wedge}_n(X)^{n+1}] = \overline{\wedge}_n(X)$, where μ is defined above. We first need a simple Lemma.

2.5. Lemma. Let $\mathscr{A}_i \in \wedge_n(X)$ and let F_i be a center for \mathscr{A}_i $(i \leq n+1)$. If $\{F_1, \ldots, F_{n+1}\}$ is pairwise disjoint then $\mu(\mathscr{A}_1, \ldots, \mathscr{A}_{n+1}) \in \wedge_n(X)$.

Proof. We will first show that $\mu(\mathscr{A}_1, \ldots, \mathscr{A}_{n+1})$ is a maximal *n*-centered system. Suppose not, then there is some $B \in 2^X$ so that

 $\mu(\mathscr{A}_1,\ldots,\mathscr{A}_{n+1})\cup\{B\}$

is n-centered but $B \notin \mu(\mathscr{A}_1, \ldots, \mathscr{A}_{n+1})$. Without loss of generality $B \notin \mathscr{A}_1$ and $B \notin \mathscr{A}_2$. Take $E_i^1 \in \mathscr{A}_1$ and $E_i^2 \in \mathscr{A}_2$ $(i \leq n-1)$ so that

$$\bigcap_{i=1}^{n-1} E_i^1 \cap B = \emptyset \quad \text{and} \quad \bigcap_{i=1}^{n-1} E_i^2 \cap B = \emptyset.$$

Lemma 2.4(i) implies that we may assume that $E_i^1 \subset F_1$ and $E_i^2 \subset F_2$ for each $i \leq n-1$. Define

$$G_i = E_i^1 \cup E_i^2 \cup \bigcup \{F_j : 3 \leq j \leq n+1 \text{ and } j \neq i+2\}$$

for all $i \leq n-1$. Clearly $G_i \in \mu(\mathscr{A}_1, \ldots, \mathscr{A}_{n+1})$. Since $\{F_1, \ldots, F_{n+1}\}$ is pairwise disjoint,

$$\bigcap_{i=1}^{n-1} G_i \cap B = \bigcap_{i=1}^{n-1} (E_i^1 \cup E_i^2) \cap B = \emptyset,$$

which contradicts the fact that $\mu(\mathscr{A}_1, \ldots, \mathscr{A}_{n+1}) \cup \{B\}$ is *n*-centered.

Hence $\mu(\mathscr{A}_1, \ldots, \mathscr{A}_{n+1})$ is maximal. It is clear that $\bigcup_{i=1}^{n-1} F_i$ is a center for $\mu(\mathscr{A}_1, \ldots, \mathscr{A}_{n+1})$, hence $\mu(\mathscr{A}_1, \ldots, \mathscr{A}_{n+1}) \in \wedge_n(X)$. \Box

2.6. Corollary. Let X be a continuum. Then $\mu[\overline{\wedge}_n(X)^{n+1}] = \overline{\wedge}_n(X)$.

Proof. Clearly $\overline{\wedge}_n(X) \subset \mu[\overline{\wedge}_n(X)^{n+1}]$. Choose $\varepsilon > 0$ and let $\delta > 0$ be so that if $\varrho(\mathscr{A}_i, \mathscr{A}'_i) < \delta$ for each $i \leq n+1$ then

$$\varrho(\mu(\mathscr{A}_1,\ldots,\mathscr{A}_{n+1}),\ \mu(\mathscr{A}'_1,\ldots,\mathscr{A}'_{n+1})) < \varepsilon.$$

Suppose that $\mathscr{L} = \mu(\mathscr{A}_1, \ldots, \mathscr{A}_{n+1})$ where $\mathscr{A}_i \in \overline{\wedge}_n(X)$ for each $i \leq n+1$. For each $i \leq n+1$ take $\mathscr{E}_i \in \wedge_n(X)$ so that $\varrho(\mathscr{E}_i, \mathscr{A}_i) < \frac{1}{2}\delta$. In addition, let E_i be a center for \mathscr{E}_i . By induction we will construct for each $i \leq n+1$ a point $\mathscr{E}'_i \in \wedge_n(X)$ with center E'_i such that

- (a) $\varrho(\mathscr{E}_i, \mathscr{E}'_i) < \frac{1}{2}\delta$ for all $i \leq n+1$;
- (b) $E'_i \cap \bigcup_{j \le i} E'_j = \emptyset$.

Define $\mathscr{E}'_1 = \mathscr{E}_1$ and $E'_1 = E_1$. Suppose that \mathscr{E}'_j and E'_j are defined for all $j < i \le n+1$. Suppose that $E_i = \{e_1, \ldots, e_m\}$ where $e_k \neq e_l$ if $k \neq l$. Choose $0 < \delta_0 < \frac{1}{2}\delta$ so that the family

$$\{U_{\delta_0}(e_k):k\leq m\}$$

is pairwise disjoint. For each $k \leq m$ take a point $y_k \in U_{\delta_0}(e_k) - \bigcup_{i \leq i} E'_i$. Define

$$\mathscr{F} = \{F \in \{y_1, \ldots, y_m\} : \{e_k : y_k \in F\} \in \mathscr{E}_i\}$$

and

$$\mathscr{F}' = \{ A \in 2^X : \exists F \in \mathscr{F} \text{ with } F \subset A \}.$$

It is clear that $\mathscr{F}' \in \bigwedge_n(X)$ and that $\{y_1, \ldots, y_m\}$ is a center for \mathscr{F}' . Define $\mathscr{E}'_i = \mathscr{F}'$ and $E'_i = \{y_1, \ldots, y_m\}$. It is clear that our inductive hypotheses are satisfied.

Notice that $\varrho(\mathscr{A}_i, \mathscr{E}'_i) < \frac{1}{2}\delta + \frac{1}{2}\delta = \delta$ so that

$$\varrho(\mu(\mathscr{A}_1,\ldots,\mathscr{A}_{n+1}),\ \mu(\mathscr{E}'_1,\ldots,\mathscr{E}'_{n+1})) < \varepsilon.$$

Since $\{E'_i : i \leq n+1\}$ is pairwise disjoint, $\mu(\mathscr{E}'_1, \ldots, \mathscr{E}'_{n+1}) \in \wedge_n(X)$ (Lemma 2.5). We conclude that $\varrho(\mathscr{L}, \wedge_n(X)) < \varepsilon$. Therefore $\mathscr{L} \in \overline{\wedge_n}(X)$. \Box

3. Some topological properties of $\overline{\wedge}_n(X)$. In this section we give some topological properties of $\overline{\wedge}_n(X)$ which are of crucial importance throughout the remaining part of this paper. Our main result is that $\overline{\wedge}_n(X)$ is connected if X is. The proof uses a similar trick as in [5, Th. 2.1].

Throughout the remaining part of this section X is a compact connected metric space and μ is defined as in Section 2.

A subset $A \subset \overline{\wedge}_n(X)$ is called *convex* if for all $\mathscr{A}_1, \mathscr{A}_2, \ldots, \mathscr{A}_n \in A$ and $\mathscr{B} \in \overline{\wedge}_n(X)$ we have that

$$\mu(\mathscr{A}_1, \mathscr{A}_2, \ldots, \mathscr{A}_n, \mathscr{B}) \in A$$

For each $A \in 2^X$ put $A^+ = \{ \mathscr{A} \in \overline{\wedge}_n(X) : A \in \mathscr{A} \}.$

3.1. Lemma. If $A \in 2^X$ then A^+ is convex.

Proof. Take $\mathscr{A}_1, \ldots, \mathscr{A}_n \in A^+$ and $\mathscr{B} \in \overline{\wedge}_n(X)$. Since

$$\{C \in 2^X : C \in \mathscr{A}_i \text{ for all } i \leq n\} \subset \mu(\mathscr{A}_1, \dots, \mathscr{A}_n, \mathscr{B})$$

by definition of μ we conclude that $A \in \mu(\mathscr{A}_1, \ldots, \mathscr{A}_n, \mathscr{B})$, or, equivalently,

 $\mu(\mathscr{A}_1,\ldots,\mathscr{A}_n,\mathscr{B}) \in A^+.$

3.2. Lemma. If $\mathcal{F} \in \wedge_n(X)$ and if G is a center for \mathcal{F} then

$$\{\mathscr{F}\} = \bigcap \{A^+ : A \in \mathscr{A}\}, \quad where \quad \mathscr{A} = \{F \cap G : F \in \mathscr{F}\}.$$

Proof. Suppose not. Take $\mathscr{B} \in \bigcap \{A^+ : A \in \mathscr{A}\} - \{\mathscr{F}\}$. Then $\mathscr{B} \neq \mathscr{F}$ and consequently there is a $B \in \mathscr{B}$ such that $B \notin \mathscr{F}$. By maximality of \mathscr{F} there are $A_1, A_2, \ldots, A_{n-1} \in \mathscr{A}$ (Lemma 2.4(i)) so that $B \cap A_1 \cap \cdots \cap A_{n-1} = \emptyset$. Since \mathscr{B} is *n*-centered, by Lemma 2.1, there must be an $i \leq n-1$ so that $A_i \notin \mathscr{B}$, or, equivalently, $\mathscr{B} \notin A_i^+$. Contradiction. \Box

Define an embedding $\varphi: X \to 2^{2^X}$ by $\varphi(x) = \{A \in 2^X : x \in A\}$. Notice that $\varphi[X] \subset \wedge_n(X)$. Now inductively define subspaces Z_i $(i \in \mathbb{N})$ of $\overline{\wedge}_n(X)$ as follows:

$$Z_1 = \varphi[X], \quad Z_{i+1} = \mu[Z_i^{n+1}].$$

Notice that $Z_i \subset Z_{i+1} \subset \overline{\wedge}_n(X)$ for all $i \in \mathbb{N}$ (Corollary 2.6). Put $Z = \bigcup_{i=1}^{\infty} Z_i$.

3.3. Lemma. Let \mathscr{A} be a finite n-centered system of closed subsets of X. Then

 $\bigcap \left\{ A^+ : A \in \mathscr{A} \right\} \cap Z \neq \emptyset.$

Proof. We will prove this by induction on $|\mathscr{A}|$. If $|\mathscr{A}| \leq n$ then there is nothing to prove. Suppose that the statement is true for all *n*-centered systems \mathscr{A} of closed subsets of X of cardinality at most *i*, where $n \leq i$. Let $\{A_1, \ldots, A_{i+1}\} \in 2^X$ be *n*-centered. By induction hypothesis, for each $j \leq n+1$ there is a point

$$\mathscr{A}_j \in \bigcap \left\{ A_k^+ \colon k \leq i+1 \& k \neq j \right\} \cap Z.$$

Take $l \in \mathbb{N}$ so that $\{\mathscr{A}_1, \ldots, \mathscr{A}_{n+1}\} \subset \mathbb{Z}_l$. Since $|A_k^+ \cap \{\mathscr{A}_1, \ldots, \mathscr{A}_{n+1}\}| \ge n$ by the convexity of the sets A_k^+ (Lemma 3.1) it follows that

$$\mu(\mathscr{A}_1,\ldots,\mathscr{A}_{n+1})\in\bigcap_{k=1}^{i+1}A_k^+.$$

By definition, $\mu(\mathscr{A}_1, \ldots, \mathscr{A}_{n+1}) \in \mathbb{Z}_{l+1} \subset \mathbb{Z}$. We conclude that

$$\bigcap_{k=1}^{i+1} A_k^+ \cap Z \neq \emptyset. \quad \Box$$

We can now prove the main result in this section.

3.4. Theorem. Let X be a metric continuum. Then $\overline{\wedge}_n(X)$ is connected.

Proof. Define Z as above. Since Z_1 is connected, by the continuity of μ it follows that Z_i is connected for all $i \in \mathbb{N}$, hence Z is connected. We claim that $\wedge_n(X) \in Z$ which shows that $\overline{\wedge}_n(X)$ is connected since $\wedge_n(X)$ is dense in $\overline{\wedge}_n(X)$.

164

Take $\mathscr{A} \in \wedge_n(X)$ and let F be a center for \mathscr{A} . Put $\mathscr{E} = \{A \cap F : A \in \mathscr{A}\}$. Then \mathscr{E} is *n*-centered and since $\{\mathscr{A}\} = \bigcap \{E^+ : E \in \mathscr{E}\}$ (Lemma 3.2), by Lemma 3.3 it follows that $\mathscr{A} \in \mathbb{Z}$. \Box

For n = 2 this result is known, see [9, III.4.1].

We now turn to compactness properties of $\wedge_n(X)$.

The reader might wonder why we work with $\overline{\wedge}_n(X)$ and not with $\lambda_n(X)$, i.e. the space with underlying set the set of all maximal *n*-centered systems topologized by regarding it to be a subspace of 2^{2^x} . The following lemma explains this.

3.5. Lemma. Let X be a metric compactum with at least one non-isolated point. Then $\lambda_n(X)$ is compact iff n = 2.

Proof. Take $\mathscr{A}_n \in \lambda_2(X)$ $(n \in \mathbb{N})$ so that $\mathscr{A}_n \to \mathscr{A}$. It is clear that \mathscr{A} is 2-centered. Suppose that $\mathscr{A} \notin \lambda_2(X)$. Take $D \in 2^X$ so that $\mathscr{A} \cup \{D\}$ is 2-centered while $D \notin \mathscr{A}$. There is an $\varepsilon > 0$ so that $B_{\varepsilon}(D) \notin \mathscr{A}$. Since $\mathscr{A}_n \to \mathscr{A}$ there is an $m \in \mathbb{N}$ such that $B_{\varepsilon}(D) \notin \mathscr{A}_n$ for all $n \geq m$. The maximality of \mathscr{A}_n now implies that

$$E = X - U_{\varepsilon}(D) \in \mathscr{A}_n \quad (n \ge m).$$

Since $\mathscr{A}_n \to \mathscr{A}$ we conclude that $E \in \mathscr{A}$. This is a contradiction however since $E \cap D = \emptyset$.

Let x be a non-isolated point of X and let x_n $(n \in \mathbb{N})$ be a sequence converging to x. We assume that $x_i = x_j$ iff i = j. We will only show that $\lambda_3(X)$ is not compact. The proof that $\lambda_n(X)$ is not compact for all $n \ge 3$ is similar. Define

$$\mathscr{A}_n = \{A \in 2^X : |A \cap \{x, x_{n+2}, x_1, x_2\}| \ge 3\}.$$

Then $\mathscr{A}_n \in \lambda_3(X)$ and the sequence $\{\mathscr{A}_n\}_n$ converges in 2^{2^x} to \mathscr{A} , where

$$\mathscr{A}=\{A\in 2^{X}:\{x,x_{1}\}\subset A\lor\{x,x_{2}\}\subset A\}$$
 ,

It is clear that $\mathscr{A} \notin \lambda_3(X)$ since $\mathscr{A} \cup \{\{x\}\}$ is 3-centered while $\{x\} \notin \mathscr{A}$. This shows that $\lambda_3(X)$ is not compact. \Box

4. Mixers. A map $\mu: X^{n+1} \to X$ is called an *n*-mixer provided that

 $\mu(x, x, ..., x, y) = \mu(x, x, ..., x, y, x) = \mu(x, x, ..., x, y, x, x) = \cdots = x$

for all $x, y \in X$. This concept, for n = 2, is due to van Mill and van de Vel [6]. Notice that the function $\mu: \overline{\wedge}_n(X)^{n+1} \to \overline{\wedge}_n(X)$ described in Section 2 is an *n*-mixer.

4.1. Lemma. Let X be a metric continuum with an n-mixer μ . Then X is locally connected.

Proof. Let $U \subset X$ be open and let $K \subset U$ be a component. We will show that K is open. Take $x \in K$. Then

$$\begin{array}{c} (\{x\} \times \{x\} \times \cdots \times \{x\} \times X) \cup (\{x\} \times \{x\} \times \cdots \times \{x\} \times X \times \{x\}) \\ \cup \cdots \subset \mu^{-1}[U] \end{array}$$

J. VAN MILL

and by the compactness of X there is a neighborhood V of x so that

$$E(V) = (V \times V \times \cdots \times V \times X) \cup (V \times V \times \cdots \times V \times X \times V)$$
$$\cup \cdots \in \mu^{-1}[U].$$

By the connectedness of X it follows that E(V) is connected. Consequently, $x \in V \subset \mu[E(V)] \subset K$. Hence K is open.

4.2. Remark. The technique of proof in Lemma 4.1 is the same as in [6, 1.1].

Let μ be an *n*-mixer. A subset $A \subset X$ is called μ -convex if for all $x_1, x_2, \ldots, x_{n+1} \in A$ and for each permutation π of $\{1, 2, \ldots, n+1\}$ it is true that

$$\mu(x_{\pi(1)}, x_{\pi(2)}, \ldots, x_{\pi(n+1)}) \in A$$
.

We use the standard representations

$$S^{n} = \left\{ (x_{0}, \dots, x_{n}) \in R^{n+1} : \sum_{i=0}^{n} x_{i}^{2} = 1 \right\},\$$
$$B^{n+1} = \left\{ (x_{0}, \dots, x_{n}) \in R^{n+1} : \sum_{i=0}^{n} x_{i}^{2} \leq 1 \right\}.$$

The following Lemma is inspired by van Mill and van de Vel [6, Th. 1.3].

4.3. Lemma. Let X be a compact metric space and let $\mu: X^{n+1} \to X$ be an n-mixer. Then for each μ -convex set $A \subset X$ and $i \ge 1$ and mapping $f: S^i \to A$ there is a map $f: B^{i+1} \to A$ which extends f.

Proof. Before we prove the Lemma we first verify the following usefull Fact (compare [6, Lemma 1.2]).

Fact. If $x_i^1, x_i^2, \ldots, x_i^n, y_i \ (i \in \mathbb{N})$ are points of X such that the sequences $(x_i^j)_{i \in \mathbb{N}}$ $(j \leq n)$ all converge to $a \in X$, then for each permutation π of $\{1, 2, \ldots, n\}$ and $j \leq n$ the sequence

$$(\mu(x_i^{\pi(1)}, x_i^{\pi(2)}, \dots, x_i^{\pi(j)}, y_i, x_i^{\pi(j+1)}, \dots, x_i^{\pi(n)}))_{i \in \mathbb{N}}$$

converges to a.

Let U be a neighborhood of a. As in the proof of Lemma 4.1 we can find a neighborhood V of a such that

$$E(V) = (V \times V \times \cdots \times V \times X) \cup (V \times V \times \cdots \times V \times X \times V)$$
$$\cup \cdots \subset \mu^{-1}[U].$$

Let $i_0 \in \mathbb{N}$ be such that $x_i^j \in V$ for all $i \geq i_0$ and $j \leq n$. Now, if $i \geq i_0$ the point

$$z_i = (x_i^{\pi(1)}, x_i^{\pi(2)}, \dots, x_i^{\pi(j)}, y_i, x_i^{\pi(j+1)}, \dots, x_i^{\pi(n)})$$

belongs to E(V), whence $\mu(z_i) \in U$.

Now let us proceed to the proof of the Lemma. Suppose that $A \subset X$ is μ -convex and let $f: S^i \to A$ be given $(i \ge 1)$. Take $u_1, \ldots, u_{n+1} \in S^i$ so that $u_i = u_j$ iff i = j.

Define, for each $j \leq n+1$ a function $g_j: B^{i+1} \to S^i$ by

$$\begin{cases} g_j(v) = v & (v \in S^i), \\ g_j(v) = \text{the unique point of } S^i - \{u_j\} \text{ which lies on the straight line} \\ \text{through } v \text{ and } u_j \ (v \notin S^i). \end{cases}$$

This leads us to a function

$$g = (g_1, \ldots, g_{n+1}) : B^{i+1} \to (S^i)^{n+1}$$

Notice that this function is not continuous. Define $f: B^{i+1} \to X$ as the composition

$$B^{i+1} \xrightarrow{g} (S^i)^{n+1} \to X^{n+1} \xrightarrow{\mu} X$$

where the map in the middle is (f, f, ..., f). Then \overline{f} clearly extends f. Also, by a straightforward application of the Fact, \overline{f} is continuous. Finally, since A is μ -convex, $\overline{f}[B^{i+1}] \subset A$.

We now come to the main result in this section.

4.4. Theorem. Let X be a metrizable continuum and let $\mu: X^{n+1} \to X$ be an n-mixer. If X has a basis of μ -convex sets then X is an Absolute Retract.

Proof. Let d be a metric for X and let $\varepsilon > 0$. Let \mathscr{U} be a finite cover of X by μ -convex sets so that {int $U: U \in \mathscr{U}$ } covers X and each $U \in \mathscr{U}$ has diameter at most ε . Let \mathscr{V} be a finite open star refinement of {int $U: U \in \mathscr{U}$ }. Define

 $\mathscr{K} = \{ K \in X : (\exists V \in \mathscr{V} : K \text{ is a component of } V) \}.$

By Lemma 4.1 each $K \in \mathscr{K}$ is open and since $\bigcup \mathscr{K} = X$ there is a finite subcollection $\mathscr{K}' \subset \mathscr{K}$ so that $\bigcup \mathscr{K}' = X$. Let λ be a Lebesgue number for \mathscr{K}' .

Now let P be a compact polyhedron and let $P_0 \,\subset P$ be a subpolyhedron containing all the vertices of P and let $f: P_0 \to X$ be continuous so that the partial image of f of any simplex of P has diameter less than λ . Since, by Lemma 4.1, each $K \in \mathscr{K}'$ is a locally compact locally connected and connected metric space we can extend f to a map $g: P_1 \to X$ where P_1 is a subpolyhedron of P which contains P_0 and the 1-skeleton of P while moreover the partial image of g of any simplex of Pis contained in some $U \in \mathscr{U}$. Using Lemma 4.3 and the fact that each intersection of μ -convex sets is again μ -convex we can extend g to a map $\overline{f}: P \to X$ so that for each simplex $\sigma \subset P$ there is a $U \in \mathscr{U}$ with $\overline{f}[\sigma] \subset U$.

By a well known result of Lefschetz [2] it follows that X is an ANR. Since X is Peano continuum (Lemma 4.1), Lemma 4.3 implies that X is C^{∞} . However, a C^{∞} ANR is an AR.

4.5. Corollary. Let X be a metrizable continuum. Then $\overline{\wedge}_n(X)$ is an Absolute Retract.

Proof. By Theorem 3.4, $\overline{\wedge}_n(X)$ is connected. Therefore, by Theorem 4.2, we only need to show that the *n*-mixer μ for $\overline{\wedge}_n(X)$ described in Section 2 is stable in the sense that there is a basis for $\overline{\wedge}_n(X)$ consisting of μ -convex sets. Let d be a metric for X. As in Section 1, ϱ is the induced metric on $2^{2^{\chi}}$. Take $\mathscr{L} \in \overline{\wedge}_n(X)$ and $\varepsilon > 0$. We claim that

$$U = \{ \mathscr{L}' \in \overline{\wedge}_n(X) : \varrho(\mathscr{L}, \mathscr{L}') < \varepsilon \}$$

is μ -convex, which suffices to prove the Corollary.

Take $\mathscr{L}_1, \mathscr{L}_2, \ldots, \mathscr{L}_{n+1} \in U$ and let $\pi: \{1, 2, \ldots, n+1\} \rightarrow \{1, 2, \ldots, n+1\}$ be a permutation. Let $\delta = \max\{\varrho(\mathscr{L}_i, \mathscr{L}) : 1 \leq i \leq n+1\}$. Then $\delta < \varepsilon$. Take $L \in \mathscr{L}$. Then $B_{\delta}(L) \in \mathscr{L}_i$ for all $1 \leq i \leq n+1$ and consequently

 $B_{\delta}(L) \in \mu(\mathscr{L}_{\pi(1)}, \mathscr{L}_{\pi(2)}, \ldots, \mathscr{L}_{\pi(n+1)}).$

Also, take $E \in \mu(\mathscr{L}_{\pi(1)}, \mathscr{L}_{\pi(2)}, \ldots, \mathscr{L}_{\pi(n+1)})$. There is an index $i \leq n+1$ so that $E \in \mathscr{L}_{\pi(i)}$. Since

 $\varrho(\mathscr{L}, \mathscr{L}_{\pi(i)}) \leq \delta$

we conclude that $B_{\delta}(E) \in \mathscr{L}$. This implies that

$$\varrho(\mathscr{L}, \mu(\mathscr{L}_{\pi(1)}, \mathscr{L}_{\pi(2)}, \dots, \mathscr{L}_{\pi(n+1)})) \leq \delta,$$

i.e. $\mu(\mathscr{L}_{\pi(1)}, \mathscr{L}_{\pi(2)}, \ldots, \mathscr{L}_{\pi(n+1)}) \in U.$

5. Proof of the main result. We now can prove the main result of this p per.

5.1. Theorem. Let X be a metrizable continuum and let $f: X \to X$ be continuous. Then for each $n \ge 2$ and $\varepsilon > 0$ there is a maximal n-centered system \mathscr{A} of closed subsets of X so that $\varrho(\mathscr{A}, \{B \in 2^X : f^{-1}(B) \in \mathscr{A}\}) < \varepsilon$. In addition, \mathscr{A} can be taken to be finitely generated.

Proof. Define
$$f: \overline{\wedge}_n(X) \to \overline{\wedge}_n(X)$$
 by
 $f(\mathscr{A}) = \{B \in 2^X : f^{-1}(B) \in \mathscr{A}\}$

A straightforward check shows that \overline{f} is continuous. By Corollary 4.5, $\overline{\wedge}_n(X)$ is an AR and therefore, as is well known, has the fixed point property. Let $\mathscr{A} \in \overline{\wedge}_n(X)$ be a fixed point of \overline{f} . Since $\wedge_n(X)$ is dense in $\overline{\wedge}_n(X)$ we can find $\mathscr{L} \in \wedge_n(X)$ so that \mathscr{L} and $\overline{f}(\mathscr{L})$ are as close as we please. \Box

This result, for finitely generated maximal *n*-centered systems, is best possible. Indeed, let $T: S^1 \to S^1$ be a translation through an irrational angle. It is clear that for each finite $F \in S^1$ there is a $k \ge 1$ so that $T^k[F] \cap F = \emptyset$. It is now routine to check that $\overline{T}: \overline{\wedge}_n(S^1) \to \overline{\wedge}_n(S^1)$, where \overline{T} is defined as in the proof of Theorem 5.1, has no fixed point belonging to $\wedge_n(S^1)$.

References

- [1] G. AUMANN, Über Räume mit Mittelbildungen. Math. Ann. 119, 210-215 (1943).
- [2] S. LEFSCHETZ, On locally-connected and related sets. Ann. Math. 35, 118-129 (1934).
- [3] S. B. NADLER, Hyperspaces of sets. New York 1978.
- [4] J. VAN MILL, The superextension of the closed unit interval is homeomorphic to the Hilbert cube. Fund. Math. CIII, 151-175 (1979).
- [5] J. VAN MILL and A. SCHRIJVER, Subbase characterizations of compact topological spaces. Gen. Top. Appl. 10, 183-201 (1979).

- [6] J. VAN MILL and M. VAN DE VEL, On an internal property of Absolute Retracts. Top. Proc. 4, 193-200 (1979).
- [7] M. VAN DE VEL, Superextensions and Lefschetz fixed point structures. Fund. Math. CIV, 33-48 (1979).
- [8] M. VAN DE VEL, Some elementary proofs in fixed point theory. Proc. Kon. Ned. Akad. Wet. 83, 437-444 (1980).
- [9] A. VERBEEK, Superextensions of topological spaces. MC tract 41, Amsterdam 1972.

Eingegangen am 23. 4. 1980

Anschrift des Autors:

Jan van Mill Department of Mathematics Vrije Universiteit De Boelelaan 1081 Amsterdam The Netherlands