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An almost fixed point theorem for metrizable continua

By

Jax vaxy MiLL

0. Introduction. Let X be a topological space. A collection 7 of closed subsets of
X has the n-intersection property (n > 1) provided that any subfamily of &7 of
n elements has nonempty intersection. Whenever a system &/ of closed sets is maximal
with respect to the n-intersection property we say that o/ is a maximal n-centered
system. The motivation for this paper arose from the observation that if X is a
metrizable continuum and if f: X ~> X is continuous then there is & maximal 2-
centered system .# so that # = {4 € 2% :f-1(4) e .#} (see [4,Th.4] and [9, IT 4.5])
{M. van de Vel has recently given an elementary, though nontrivial, proof of a
similar assertion for arbitrary continua; see [8], and also [7]). This result suggests
the question whether one can obtain a similar result for maximal n-centered systems
with # > 2. Obviously we cannot expect the same result for systems of closed sets
maximal with respect to the finite intersection property, for if % is such a system
and F = {4 €2¥X:f1(4) e F} then NF is a fixed point of f. Unfortunately the
same method of proof as in the maximal 2-centered system case does not work for
n > 2. In fact, we do not know whether the result can be generalized but we can
prove that for each » > 2 there is a maximal n-centered system 7 so that & and
{Ae2X:f1(4d)e} are as “close” as we please. To make this explicit we first
have to define a notion of closeness for systems of closed sets. There is a very natural
way to do this. It turns out, see Section 1, that each maximal n-centered system .7
in X is closed when regarded to be a subset of the hyperspace 2% of X. Hence such
a system is a point of 22*. In the same way f(&/) = {4 2% :f1(4)e} is a
point of 2%*. Since 22* can be metrized, in a natural way, by the Hausdorff distance
it is natural to say that o/ and f(/) have distance ¢ in case &/ and f(s/) have
distance ¢ in 2%2*. Let us say that a maximal n-centered system .o/ is finitely generated
whenever there is a finite subset F c X so that {4 N F: 4 e/} is n-centered.
Our main result is that if X is a metric continuum and if f: X — X is continuous
then for each ¢ > 0 and n = 2 there is a finitely generated maximal n-centered
system &7 in X so that & and f(&/) have distance less than ¢ in 2?*. By an ex-
ample we show that for finitely generated maximal n-centered systems this result
is best possible.

I am indebted to Marcel van de Vel for some helpful suggestions.
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1. Preliminaries. Let (X, d) be a compact metric space. Put
Us(d) ={xeX:d(z, 4) < ¢},
B(A)={zeX:d(z,A) < ¢}

for all ¢ =0 and AcX.

The hyperspace 2X of X is the space of all nonempty closed subsets of X topologized
by the Hausdorff distance dy, i.e.

du(4, B) =inf{e > 0: A c U,(B) & Bc U,(4)}.

The hyperspace of 2X is metrized by dgy which is denoted, for simplicity, by p.
For information concerning hyperspaces see Nadler [3].

1.1. Lemma. Let n = 2 and let o/ be a maximal n-centered system in X. Then
o c2X s closed.

Proof. Suppose that B ¢ &/. By maximality of & there is a subfamily & of &/
of cardinality » — 1 so that BN & = @. Take ¢ > 0 so that

U(BynN&=9.
Then {De2X:dy(D, B) < ¢} is a neighborhood of B in 2% which misses &/. []

If o c2X put &1 = {Be2X:34 € o with 4 c B}. The proof of the following
simple lemma is left to the reader.

1.2. Lemma. Let &, % c 2% be closed so that F = F' and ¥ = %!, Then
o F, 9 =inf{¢>0:(VFeF :B(F)c¥9) & (VGe¥:B:(eF)}. O
Define an operator F: 2% — 22* by F(&) = /.

1.3. Lemma. F is well defined and continuous.

Proof. Suppose that B¢ 27! For each 4 € &7 let U(A4) be an open set in X
so that AN U(4) 50 and U(4)- N B = 0. By the compactness of </ there is a
finite subcollection & ¢ &7 so that for each A € &/ we have that ANU(E) = 0
for some E € &. Then

{Ce2X:CNU(E) =0 for each Ee &}
is an open neighborhood of B which misses /1. Hence /" is closed.

The continuity of F is an easy exercise which is left to the reader (use Lemma 1.2).

O
1.4. Corollary. {&/ €2% : o/ = o/} is closed in 2%*. [

2. Finitely generated maximal n-centered systems. Let X be a compact metric
space. For each n = 2 define

Ln(X) = {of €2¥ : o is n-centered and & = 1}.
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2.1. Lemma. %, (X) is closed in 2%".

This Lemma easily follows from Corollary 1.4.
Define a function u: £p (X))l - £, (X) by

U, ..., p1) ={Be2X:3i <n+1 so that Bess; for all j=i}.
It is clear that y is well-defined.

2.2. Lemma. u is continuous.
Proof. Take o7; € Zu(X) (i < n + 1) and let &, (m € N) be a sequence of points
in %, (X) converging to &7; (¢+ < n + 1). Choose ¢ > 0 and let moe N be so that
0(&%L,, o) < e
for all m =mp and ¢ < n + 1. Fix m = mo and take E e u(&%, ..., &1). Then

there is an ¢ < n + 1 so that E e &, for all § &= 1. Since ¢(&%,, ;) < &, by Lem-
ma 1.2, it follows that B.(E) e &; for all j == ¢ and consequently

B (EYeu(st, ..., %)
In the same way one shows that if
Aecu(, ..., %ns1) then Be(d)eu(éh, ..., 60H).
By Lemma 1.2 we conclude that
(S, ..., Hpi1), u(&y,, ..., E ) e,
which proves continuity of u. [
Notice that p is symmetric, i.e.
w1, o ns1) = w( Anqys - n@sn)

for each permutation m of {1,2,...,n + 1}. Also u(#,..., &) = & for each
o € Lp(X). Hence u is a (n + 1)-mean in the sense of Aumann [1].
The following Lemma is & trivial though fundamental observation.

2.3. Lemma. Take o, B e Ln(X). Then u(L, o, ..., o, B) = .

It is precisely this observation which makes our construction work.
As noted in the introduction, a maximal n-centered system & in X is called
finitely generated if there is a finite set F c X so that
{AnF:Ae}

is n-centered. There are many maximal n-centered systems 7 in X which are finitely
generated. For example, let ¥ ¢ X be a set of precisely » + 1 points. Then

{Ade2X: |F—A4| <1}
is a finitely generated maximal n-centered system in X.
Let 7 p(X) = {& € Ln(X) : o is a finitely generated maximal n-centered system}.

If &/ €rpn(X) then a finite set F c X is called a center for &7 provided that
{ANF:A4ecs} is n-centered.

Archiv der Mathematik 40 11
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2.4. Lemma. Let &7 € Arp(X).
(i) If F is a center for of then {ANF:Aesl}c.
(i) If F and G are centers for o then so is F N G.

Proof. For (i), take 4 € &/ so that 4 N F ¢ o/. By maximality of &/ there is
a subfamily & of &/ of cardinality » — 1 so that

ANnF)nNE=06.

However, this contradicts the fact that F is a center for .&7.
Now assume that both F and G are centers for &7. By (i) {ANF:Aesl}cs.
Hence, also by (i), {(ANF)NG: 4 e} c/. This proves that
{ANn(FNG):Ae}

is m-centered, i.e. FNG is a center for &/. [J

We will show that if X is a continuum and if 7, (X) denotes the closure of A, (X)
is 2% then p[An(X)?*1] = n,(X), where u is defined above. We first need a sim-
ple Lemina.

2.5. Lemma. Let o/;€r,(X) and let F; be a center for 2Z; (1 <n -+ 1). If
{F1,..., Fpy1} is pairwise disjoint then p(L1. ..., Sps1) € An(X).

Proof. We will first show that u (&, ..., &p41) is a maximal n-centered system.
Suppose not, then there is some B e 2% so that

ﬂ(ﬂl, ceny dn-l—l) |} {B}

is n-centered but B¢ u{, ..., &pey). Without loss of generality B¢ ./; and
B¢ sfy. Take Elesy and E?cofy (5 <n — 1) so that

n—1 n—1
NEinB=0¢ and (EINB=0.
i=1 i=1

Lemma 2.4(i) implies that we may assume that Elc F; and E?c F for each
t <n — 1. Define

Gi=EfVE;UY{F;:3<j<n-+1andj==i+2}
for all ¢ £n — 1. Clearly Gieu(, ..., Hya1). Since {Fi,..., Faoy1} is pairwise
disjoint,

n—1 n—1

NGNB=EIVE)NB=0,

ie=1 i=1
which contradicts the fact that w(s1,..., o441) U {B} is n-centered.

n+1

Hence u (&1, ..., &Zp4+1) is maximal. It is clear that UF‘ is a center for

i=1

ul(, ..., 1), hence u(,...,shmn)er(X). O
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2.6. Corollary. Let X be a continuum. Then u[An{(X)?+1] ="7,(X).

Proof. Clearly n"p(X)c u[An(X)?+1]. Choose ¢ > 0 and let 6 > 0 be so that
if o(sts, .Qi,f) < ¢ for each ¢ <n 4 1 then

Q(;u('gla -":Mn'f'l)? [u(‘ﬂ;_, -"5‘%7;4'1)) < é&.
Suppose that & = p(&, ..., Fnt1) where o €7q(X) for each ¢ < n 4+ 1. For
each ¢ =n + 1 take &;en,(X) so that o(&;, &) < $4. In addition, let E; be
a center for &;. By induction we will construct for each ¢ < # + 1 a point E;€ny (X
with center E; such that
(@) o(&i, &) < 36 for all i < n 4 1;
(b) EinlJE =0.

i<t

Define &; = &) and E; = E, . Suppose that &; and E; are defined for all j <i <n 1.
Suppose that E; = {e;, ..., en} where ey ==¢; if k== 1. Choose 0 < do < 3 so
that the family

{Uao(ek) +k é m}
is pairwise disjoint. For each & < m take a point yi e Ug,(ex) — UE,' Define

i<i
F={Fc{ys,....ym} :{ex:yreF}e &}

and
F'={Ae2X:3FeF with FcA}.

Tt is clear that F' e, (X) and that {y1, ..., ym} is a center for #'. Define &, = £’
and E; = {y1,..., ym}. It is clear that our inductive hypotheses are satisfied.

Notice that g(s7;, &) <30+ 16 =20 so that
Q(M(Mlz---:ﬂn'{’l)r ,u'(éniy-“: éa;;+1))<8-

Since {E’; (i <+ 1} is pairwise disjoint, u(&y, ..., Enyy) €An(X) (Lemma 2.5).
We conclude that o(&, Ar,(X)) < &. Therefore Ler,(X). [

3. Some topological properties of 7, (X). In this section we give some topological
properties of Ay (X) which are of crucial importance throughout the remaining part
of this paper. Our main result is that A, (X) is connected if X is. The proof uses
a similar trick as in [5, Th. 2.1].

Throughout the remaining part of this section X is a compact connected metric
space and yu is defined as in Section 2.

A subset 4 c'Ap(X) is called convex if for all &), s, ..., €4 and B e7,(X)
we have that

p(ﬂl,dg,...,ﬂn,.@)efl.
For each 4€2X put 4+ = {7y (X): Aec}.

3.1. Lemma. If A c€2X then At is convex.

11*
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Proof. Take o, ..., % e AT and Fer,(X). Since
{Ce2X:Cecsf; for all i Sn}culah,...,n, B)
by definition of u we conclude that A € u(#1, ..., &, %), or, equivalently,
ply, .., by, ByeAdr. O

3.2, Lemma. If &F eny(X) and if G is a cenfer for F then
{Fl=N{d+:Aed}, where L ={FNG:FecF}.

Proof. Suppose not. Take ZeN{4d*: 4L} — {#}. Then # == % and con-
sequently there is a Be# such that B¢ %. By maximality of & there are
Ay, A3, ..., Ap—1cZ {(Lemma 2.4(i)) so that BN A1 N+ NAp_3=0. Since &
is n-centered, by Lemma 2.1, there must be an 7 S n — 1 so that 4;¢ Z, or,
equivalently, & ¢ 4;". Contradiction. [

Define an embedding ¢: X — 2% by ¢(z) = {4e€2X:2e4}. Notice that
p(X]can(X). Now inductively define subspaces Z; (i € N) of 72,(X) as follows:
Zy = @[X], Zyn = pulZ7tY.

Notice that Z; c Zi1; C 7 (X) for all ie N (Corollary 2.6). Put Z =|_) Z;.
i=1

3.3. Lemma. Let o be a finite n-centered system of closed subsets of X. Then
N{d+t:ded}NZE0.

Proof. We will prove this by induction on |«/|. If |2/| < » then there is nothing
to prove. Suppose that the statement is true for all n-centered systems . of closed
subsets of X of cardinality at most ¢, where » < 4. Let {4,, ..., Ai+1} c2X be
n-centered. By induction hypothesis, for each § < n 4 1 there is a point

AieN{4f:k<i+1&k£5}NZ.

Take leN so that {,..., 1} CcZ;. Since [4f N {1, ..., Se1}| 27 by the
convexity of the sets A7 (Lemma 3.1) it follows that
i1

/.&((%1, cevs <2¢n+1) S n.‘l;j'
k=1

By definition, u (&, ..., #hi1)€Zi1cZ. We conclude that
i+

N4ifnzZ=+=06. O
k=1
We can now prove the main result in this section.

3.4, Theorem. Let X be a metric continuum. Then 7, (X) is connected.

Proof. Define Z as above. Since Z; is connected, by the continuity of y it follows
that Z; is connected. for all 7 € N, hence Z is connected. We claim that Ar,(X)cZ
which shows that %, (X) is connected sinee A, (X) is dense in A, (X).
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Take o/ €7, (X) and let F be a center for &/. Put 6§ = {4 N F: 4 € &/}. Then
& is m-centered and since {&} =N {E+: E e &} (Lemma 3.2), by Lemma 3.3 it
follows that &/ e€Z. [

For » = 2 this result is known, see [9, II1.4.1].

We now turn to compactness properties of A, {(X).

The reader might wonder why we work with 7, (X) and not with 1, (X), i.e. the
space with underlying set the set of all maximal n-centered systems topologized by
regarding it to be a subspace of 2%2*. The following lemma explains this.

3.5. Lemma. Let X be a meiric compactum with at least one non-isolated point. Then
An(X) ts compact iff n=2.

Proof. Take &7, € Aa(X) (n e N) so that o, — 7. It is clear that &7 is 2-centered.
Suppose that &7 ¢ A2 (X). Take D € 2% so that & U {D} is 2-centered while D¢ /.
There is an & > 0 so that B.(D) ¢ &. Since .27, — &7 there is an m € N such that
B¢(D) ¢ &, for all n = m. The maximality of &/, now implies that

Since &7, — &/ we conclude that F ¢ &/. This is a contradiction however since
EnD=4¢.
Let x be a non-isolated point of X and let z, (n € N) be a sequence converging

10 xz. We assume that z; = «; iff ¢ = §. We will only show that 13(X) is not com-
pact. The proof that 1,(X) is not compact for all » = 3 is similar. Define

Ly = {A €2X |A N {x, Zp+2, X1, xz}] = 3}
Then o7, € 13(X) and the sequence {&/,}, converges in 22" to &7, where
A ={Ae2X: {x,x;}cAv{zx,x2}CcA}.

It is clear that &7 ¢ A3(X) since &/ U {{z}} is 3-centered while {z} ¢ 7. This shows
that A3(X) is not compact. [

4. Mixers. A map p: X7+l — X is called an n-mizer provided that
w@z, ..,y =, ... 002 =422 ... 5,Y2,2)="""=x

for all z, y € X.This concept, for n=2,is due to van Mill and van de Vel [6]. Notice
that the function p: A5 (X)?+! — A, (X) described in Section 2 is an n-mixer.

4.1. Lemma. Let X be a metric continuum with an n-mixer . Then X is locally
connected.

Proof. Let U c X be open and let K c U be a component. We will show that K
is open. Take xz € K. Then

({x} x {o} x - x {2} x X) U ({&} X {&} X --- X {x} x X X {z})
U cpr U]



166 J. van ML ARCH, MATH.

and by the compactness of X there is a neighborhood V of & so that
EWM=TVXxVxXVTXxX)U(T XV XXV XXxV)
U oeee C#"'l[U] .
By the connectedness of X it follows that E(V) is connected. Consequently,
xeVculE(V)]cK. Hence K is open. [J

4.2. Remark. The technique of proof in Lemma 4.1 is the same as in {6, 1.1].
Let ¢t be an n-mixer. A subset 4 c X is called y-convex if for all 1,22, ..., 204164
and for each permutation = of {1,2,...,n 4 1} it is true that

B(Er@y, Ta@s - Tam+n) €A

We use the standard representations

Sn={(x0, ...,zn)ER""‘l:Zx?z 1},

=0
n

Brtl = {(x09"'sxn)eRn+1:le? g 1}'
i=0

The following Lemma is inspired by van Mill and van de Vel [6, Th. 1.3].

4.3. Lemma. Let X be a compact meiric space and lef y: Xn*+l — X be an n-mizer.
Then for each u-convex set A c X and i = 1 and mapping f: St — A there is a map
f: Bi*Y = A which extends f.

Proof. Before we prove the Lemma we first verify the following usefull Fact
(compare [6, Lemma 1.2]).

Fact. If xl, 2%, ..., 2%, 4 (i € N) are points of X such that the sequences (zl);cy
(j =n) all converge to ac X, then for each permutation = of {1,2,...,n} and
j =< n the sequence

(4 (x;_t(l), x;_v(z)’ e x;'.’(”, Yis x;.’(j'*’l), s x:ir(n)))iEN
converges to a.

Let U be a neighborhood of a. As in the proof of Lemma 4.1 we can find a neigh-
borhood V of a such that

EWV)=(VXV XXV XX)U(T XV XXV XXXV)
U"'CH—I[U].
Let i9 € N be such that zi e V for all 4 = ¢9 and § < n. Now, if ¢ = i the point
2 = (xj['(l), x;:!(2), e x;_t(a‘), Yi, x;;z(i+1), s x?(”))
belongs to E(V), whenece u(z;)eU.

Now let us proceed to the proof of the Lemma. Suppose that 4 ¢ X is u-convex
and let f: 8t — A4 be given (¢ = 1). Take w3, ..., Up+1 € St so that u; = u; iff ¢ = J.
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Define, for each j <n + 1 a function g;: B+l — 8¢ by

(o) =0 (es),
¢;(v) = the unique point of 8¢ — {u;} which lies on the straight line
] through v and w; (v ¢ 8°).

This leads us to a function
9= (g1, -, gns1) : B — (§t)n+1,
Notice that this function is not continuous. Define f: Bi+1 — X as the composition
Bt L (Siyn+l 5 Xn+1 £ X

where the map in the middle is (f, f, ..., f). Then f clearly extends f. Also, by a
straightforward application of the Fact, f is continuous. Finally, since 4 is y-convex,
flBi*1]c4. [T

We now come to the main result in this section.

4.4. Theorem. Let X be a metrizable continuum and let p: X7+l — X be an n-mixer.
If X has a basis of u-convex sets then X is an Absolute Retract.

Proof. Let d be a metric for X and let ¢ > 0. Let % be a finite cover of X by
u-convex sets so that {int U: U € %} covers X and each U € % has diameter at
most . Let ¥ be a finite open star refinement of {int U : U € %}. Define

A ={KcX:(3Ve¥ :K is a component of V)}.

By Lemma 4.1 each K € .4 is open and since |4 = X there is a finite subeol-
lection A~ c A so that \J# ' = X. Let A be a Lebesgue number for J¢™.

Now let P be a compact polyhedron and let Poc P be a subpolyhedron con-
taining all the vertices of P and let f: Py — X be continuous so that the partial
image of f of any simplex of P has diameter less than 1. Since, by Lemma 4.1, each
K e 47 is a locally compact locally connected and connected metric space we can
extend f to a map ¢g: P; — X where P; is a subpolyhedron of P which contains Py
and the 1-skeleton of P while moreover the partial image of g of any simplex of P
is contained in some U € %. Using Lemma 4.3 and the fact that each intersection
of p-convex sets is again u-convex we can extend g to a map f: P — X so that
for each simplex gc P there is a Ue% with flo]cU.

By a well known result of Lefschetz [2] it follows that X is an ANR. Since X is
Peano continuum (Lemma 4.1), Lemma 4.3 implies that X is C*°. However, a 0%
ANR is an AR. [

4.5. Corollary. Let X be a metrizable continuum. Then N, (X) is an Absolute Retract.

Proof. By Theorem 3.4, 7, (X) is connected. Therefore, by Theorem 4.2, we only
need to show that the n-mixer y for A, (X) described in Section 2 is stable in the
sense that there is a basis for A, (X) consisting of u-convex sets. Let d be a metric



168 J. van M ARCH, MATH.

for X. As in Section 1, p is the induced metric on 2**. Take L <7, (X) and ¢ > 0.
We claim that

U= {,.9,”"6'/Tn(X) Zg(g, g')< 6}

is p-convex, which suffices to prove the Corollary.

Take #1, L2,..., Lns1€U and let &: {1,2,...,n + 1} - {1,2,...,n+ 1} be a
permutation. Let 6 = max{o(&;, #):1 =i < n + 1}. Then § < e. Take Le 2.
Then Bs(L)e &; for all 1 =7 = n + 1 and consequently

Bs(L)epu(ZLry, Lrn@, - Lam+y) -

Also, take Eeu(ZLry, £n@)s ---» Lam+n). There is an index i < n 4 1 so that
Ee_?ﬂ(i). Since

o(&, ZLnw) =6
we conclude that Bs(E) € &. This implies that
(&, w(Zrw, Ln@; - Lamn)) =0,
ie. ul&ray, £ne@, - Zamn)eU. [

5. Proof of the main result. We now can prove the main result of this p-per.

5.1. Theorem. Let X be a metrizable continuum and let f: X — X be continuous.
Then for each n = 2 and & > 0 there is a maximal n-centered system &/ of closed
subsets of X so that o(&/, {Be2X: f~1(B)e A} < ¢. In addition, & can be taken
to be finitely generated.

Proof. Define f: 7, (X) = 7n(X) by
fief)={Be2X:{1(ByeA}.

A straightforward check shows that f is continuous. By Corollary 4.5, 7, (X) is an
AR and therefore, as is well known, has the fixed point property. Let &/ €7y (X)
be a fixed point of f. Since A, (X) is dense in 7, (X) we can find &£ €A, (X) so that
& and f(Z) are as close as we please. []

This result, for finitely generated maximal n-centered systems, is best possible.
Indeed, let T': S — 8! be a translation through an irrational angle. It is clear
that for each finite F c §1 there is a k = 1 so that T¥[F] N F = 0. It is now routine
to check that 7': 7, (81) =7, (81), where T is defined as in the proof of Theorem 5.1,
has no fixed point belonging to A, (S1).
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