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An almost fixed point theorem for metrizable continua 

By 

JAN VAN I~ILL 

0. Introduction. Let X be a topological space. A collection d of closed subsets of 
X has the n-intersection property (n > 1) provided that  any subfamily of d of 
n elements has nonempty intersection. Whenever a system d of closed sets is maximal 
with respect to the n-intersection property we say that  d is a maximal n-centered 
system. The motivation for this paper arose from the observation that if X is a 
metrizable continuum and if ]:X--> X is continuous then there is a maximal 2- 
centered system ~ '  so that  ~ = {A e 2 x : f - l (A)  e ~gt} (see [4,Th.4] and [9, I I  4.5]) 
(M. van de Vel has recently given an elementary, though nontrivial, proof of a 
similar assertion ibr arbitrary continua; see [8], and also [7]). This result suggests 
the question whether one can obtain a similar result for maximal n-centered systems 
with n > 2. Obviously we cannot expect the same result for systems of closed sets 
maximal with respect to the finite intersection property, for if .~" is such a system 
and ~ =  {A e 2x: / - l (A)  e ~ }  then n ~" is a fixed point of ]. Unfortunately the 
same method of proof as in the maximal 2-centered system case does not work for 
n > 2. In  fact, we do not know whether the result can be generalized but we can 
prove that  for each n > 2 there is a maximal n-centered system d so that  d and 
{ A e 2 Z : / - l ( A ) e d }  are as "close" as we please. To make this explicit we first 
have to define a notion of closeness for systems of closed sets. There is a very natural 
way to do this. I t  turns out, see Section 1, that  each maximal n-centered system d 
in X is closed when regarded to be a subset of the hyperspace 2 x of X. Hence such 
a system is a point of 22x. In  the same way f ( d ) =  {A e 2 x : / - l ( A ) e d }  is a 
point of 22x. Since 2 ex can be metrized, in a natural way, by the Hausdorff distance 
it is natural to say that  d and f(.ar have distance e in case d and f ( d )  have 
distance s in 22x. Let us say that  a maximal n-centered system ,ar is finitely generated 
whenever there is a finite subset F c X so that  { A n  F : A  e ~a~'} is n-centered. 
Our main result is that  if X is a metric continuum and if ]: X -* X is continuous 
then for each s > 0 and n ~ 2 there is a finitely generated maximal n-centered 
system ~r in X so that  ~r and f ( ~ )  have distance less than s in 22~. By an ex- 
ample we show that  for finitely generated maximal n-centered systems this result 
is best possible. 

I am indebted to Marcel van de Vel for some helpful suggestions. 
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1. Preliminaries. Let (X, d) be a compact metric space. Put 

U~(A) = {x e X : d(x, A)  < ~}, 

B~(A) : { x e X : d ( x , A )  ~ ~} 

for all ~ 0  and A c X .  
The hyperspace 2 x of X is the space of all nonempty closed subsets of X topologized 

by the Hausdorff distance dH, i.e. 

dH(A, B) : inf{e > 0 : A c U~(B) & B c Ue(A)}. 

The hyperspace of 2x is metrized by dHu which is denoted, for simplicity, by ~, 
For information concerning hyperspaees see I~adler [3]. 

1.1. Lemma. Let n ~ 2 and let ~4 be a maximal n-centered system in X .  Then 
J~' c 2 X is closed. 

Proo f .  Suppose that  B ~ ~r By maximality of ~r there is a subfamily # of ,~4 
of cardinality n --  1 so that  B n CI # ---- 0. Take s > 0 so that  

U~(B) n n g = o. 

Then {D e 2 x : dn (D, B) < e} is a neighborhood of B in 2 x which misses d .  []  

I f  ~r c 2 x put ~r = {B E 2 x : 3A e ~4 with A c B}. The proof of the following 
simple lemma is left to the reader, 

].2. Lemma. Let ,~,  ~ c 2 x be closed so that . ~  ---- ~ ?  and ~ = ~ t .  Then 

(~ ,  ~) ---- in/(~ > 0 : (VF e 5 ~" : B~ (F) e ~) & (V G e ~ : B~ (G) e 5 ~)}. 

Define an operator F :  22"~-> 22~ by Fb~r162 

[] 

1.3. Lemma. 2' is well de/ined and continuous. 

P r o o f .  Suppose that  B ~ d ? .  For each A e ~ let U(A) be an open set in X 
so that  A n U(A):4:0 and U ( A ) - ~  B----O. By the compactness of d there is a 
finite subcollection # c d so that  for each A e J we have that  A n U(E) ~= 0 
for some E e #. Then 

{C e 2 x : C n U (E)- -~ 0 for each E e g~} 

is an open neighborhood of B which misses d~.  Hence d ? is closed. 
The continuity of F is an easy exercise which is left to the reader (use Lemma 1.2). 

[] 

1.4. Corollary. { d e  2 2X : d = d r }  is closed in 2 2x. [] 

2. Finitely generated maximal n-centered systems. Let X be a compact metric 
space. For each n ~ 2 define 

~ n  (X) ---- { d  ~ 2 2x : ,~ is n-centered and d ~ ~r 
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2.1. Lemma. ~,en (X) is closed in 22X. 

This Lemma easily follows from Corollary 1.4. 
Define a function /~ : ,.~n (X) n+l --> .Wn (X) by 

/~ ( a l l  . . . . .  J~r = {B ~ 2 x : 3i ~ n + 1 so tha t  B e d j  for all ~" 4= i}. 

I t  is clear tha t /~  is well-deEned. 

2.2. Lemma. /~ is continuous. 

P r o o f .  Take d i e  ~Wn(X) (i ~ n + 1) and let d'/m (m ~ M) be a sequence of points 
in .Wn(X) converging to d i  (i ~ n + 1). Choose ~ > 0 and let m0 e 5J be so tha t  

for all m _--_m0 and i ~ n  -J- 1. Fix m ~ m 0  and take E aju(d'lm . . . . .  ~ + l ) .  Then 
there is an i ~ n + 1 so tha t  E ~ d'/m for all ] 4= i. Since e ( # i ,  ~r < ~, by  Lem- 
ma 1.2, it follows tha t  B~ (E) ~ d j  for all ] 4= i and consequently 

B~(E) ~ # (~41 . . . . .  ~zn+l) . 

In  the same way one shows tha t  if  

A e / ~ ( d l  . . . . . .  ~4n+1) then B ~ ( A ) e / ~ ( # ~ , . . . ,  ~ + 1 ) .  

By Lemma 1.2 we conclude tha t  

. . . .  . . . ,  # ~  ))_-__~, 

which proves continuity of/~. [] 

Notice tha t /~  is symmetric, i.e. 

/~ ( d ~  . . . . .  ~ '~+l)  = / ~  ( d ~  (~) . . . . . .  ~ (~+1)) 

for each permutat ion 7~ of {1, 2 . . . . .  n ~-1}. Also #(.~/ . . . . .  ~ ' )  ~ - ~ '  for each 
. c /E .~ fn(X ). Hence/~ is a (n + 1)-mean in the sense of Aumann [1]. 

The following Lemma is a trivial though fundamental  observation. 

2.3. Lemma. Take ~ ,  ~ ~ .Wn (X). Then # (~ri, ~ . . . . . .  ~/, dY) = ~' .  

I t  is precisely this observation which makes our construction work. 
As noted in the introduction, a maximal  n-centered system ~4 in X is called 

/initely generated if there is a finite set F c X so tha t  

{A ~ F : A  e ~ ' }  

is n-centered. There are many  maximal n-centered systems d in X which are finitely 
generated. For example, let F c X be a set of precisely n + 1 points. Then 

is a finitely generated maximal  n-centered system in X. 
Let a n (X) ---- { ~  e .Wn (X) : ~r is a finitely generated maximal n-centered system}. 

I f  ~r e an(X)  then a finite set F c X is called a center for ,~r provided tha t  
{A (~ F : A e ~ }  is n-centered. 

Archly der Mathematik 40 J_ 1 
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2.4. Lemma. Let ~r ~ A n ( X ) .  

(i) I / F  is a center/or .~r then {A ~ .F : A �9 s / }  c d .  

(ii) I f  F and G are centers/or ~4 then so is F ~ G. 

P r o o f .  For  (i), take  A �9 ~r so tha t  A n F ~ ~4. By  maximal i ty  of  ~4 there is 
a subfamily d ~ of  ~r of  cardinal i ty n - -  1 so t h a t  

(AnF)nfS#=O. 

However,  this contradicts  the fact  t ha t  F is a center for ~r 

Now assume tha t  bo th  F and G are centers for ~4. By  (i) {A (~ F : A e ~4} c ~r 
Hence, also by  (i), {(A (~ F) (~ G : A e.~/} c d .  This proves tha t  

{An  (F n G) : A �9 ~ }  

is n-centered, i.e. F ( ~ G  is a center  for ~r [ ]  

We will show t h a t  if X is a cont inuum and  ff Wn (X) denotes the closure of  A n (X) 
is 2 ~ then  /217n(X) n+l] : - ~ n ( X ) ,  where # is defined above. We first need a sim- 
ple Lemma.  

2.5. Lemma.  Let d i e A n ( X )  and let Fi be a center /or ~/~ (i ~ n + l). I /  
( F 1 , . . . ,  Fn+l} is Tairwise disjoint then i~ (~41 . . . . .  ~r e An (X). 

P r o o f .  We will first show t h a t / 2  (all . . . . .  ~4n+1) is a maximal  n-centered system. 
Suppose not,  then  there is some B e 2 x so t h a t  

/2 (~r . . . . .  ~r u {B} 

is n-centered bu t  B ~/~(~1 . . . . .  ~n+l) .  Wi thou t  loss of  generali ty B r ~'I and 
B ~ d 2 .  Take E ~ e d l  and E ~ 2  ( i = < n - - 1 )  so tha t  

n - - 1  n - - 1  

i = l  i = l  

Lemma 2.4(i) implies t ha t  we m a y  assume tha t  E~ c F1 and E~ c_F2 for each 
i --< n - -  1. Define 

G i - ~ E ~ w E ~ u O { F t : 3 < = j < = n + I  and ] 4 = i + 2 }  

for all i 
disjoint, 

n - -  1. Clearly G~ ~/2 (~41 . . . . .  tin+l). Since {FI . . . . .  Fn+l} is pairwise 

n--1  n- -1  

i = i  i = 1  

which contradicts  the fact  t h a t / 2  (.~1 . . . . .  ~r u {B} is n-centered. 
n + l  

Hence /2 (~r . . . . .  t in+l)  is maximal .  I t  is clear t ha t  ~.J F~ is a center for 

/2 (,~r . . . . .  t in+l) ,  hence /~ (dx  . . . .  , tin+x) ~ A n (X). [ ]  
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2.6. Corollary. Let X be a continuum. Then/~[-~-n(X) n+l] =Wn(X).  

P r o o f .  Clearly Wn(X) c#[~n(X)n+l]. Choose e > 0 and let (~ > 0 be so tha t  
if ~ ( ~ ,  d~ )  < ~ for each i __< n -? 1 then 

i �9 

Suppose tha t  .Sf =/~(~41 . . . .  , ~'~+1) where afft e-An(X) for each i ~ n q-1 .  For 
each i - -<_n~-I  take #~e/\n(X) so t ha t  ~ (d~ ,~r189  In  addition, let E~ be 
a center for #z. By  induction we will construct for each i g n + 1 a point d~ e A n (X) 
with center E~ such tha t  

(a) e(d~t ,@~)<�89 for all i ~ n + l ;  

(b) E ~ n ~ . E ~ = O .  

t t t t 

Define #1 = 5~1 and E 1 = El .  Suppose tha t  #i and E i are defined for all ] < i ~ n + 1. 
Suppose tha t  Et----{el . . . .  ,era} where e k ~ e ~  if /c=~l. Choose 0 < S o < � 8 9  so 
tha t  the family 

{U~~ : ~ <- m} 

is pairwise disjoint. For each k ~ m take a point y~ e Ueo(e~)- E~. Define 

and 
~ " =  {A e 2 x :  ~ F s ~ "  with F c A } .  

I t  is clear that  ,~ '  e A n (X) and tha t  {yl . . . . .  Ym} is a center for ,~-'. Define d~ = .~" 
and E~ = {yl . . . . .  ym}- I t  is clear tha t  our inductive hypotheses are satisfied. 

Notice tha t  ~ (~4~, 6;~) < �89 ~ + �89 ~ = 6 so tha t  

e ( ~ ( ~  . . . . .  ~.+~),  ~ ( ~  . . . .  , ~+~) )  < ~. 

Since {E~ : i ~ n + 1} is pairwise disjoint, /u(d~l . . . . .  ozn+~) c A , ( X )  (Lemma 2.5). 
We conclude tha t  ~ ( ~ ,  A n ( X ) ) <  e. Therefore -~eWn(X).  []  

3. Some topological properties of Wn (X). In  this section we give some topological 
properties of -En (X) which are of crucial importance throughout the remaining par t  
of this paper. Our main result is tha t  7n (X) is connected if X is. The proof uses 
a similar trick as in [5, Th. 2.1]. 

Throughout the remaining par t  of this section X is a compact connected metric 
space and/~ is defined as in Section 2. 

A subset A cTn (X) is called convex if for all ~/1, ,~r . . . . .  d n  e A and ~ eW,a (X) 
we have tha t  

/z (~r d 2  . . . . .  ~r ~)  c A .  

For each A s 2  x put  A + =  { d e X n ( X ) : A e d } .  

3.1. Lemma. l / A  ~ 2 x then A + is convex. 

Ii* 
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P r o o f .  Take d l  . . . .  , d n e A  + and Me-~n(X). Since 

{Ce 2 x : C e d i  for all i --< n) c/~ (a l l , .  . . . .  ~'n, M) 

by definition o f / z  we conclude tha t  A e # (all,  . . . ,  t in ,  M), or, equivalently, 

/2 (d l  . . . . .  t in ,  M) e A  + . []  

3.2. Lemma. I f  ~" e An(X) and i/ G is a center for ~" then 

{ ~ } = N ( A + : A ~ d ) ,  where ~ r  ( F ( h G : F e ~ } .  

P r o o f .  Suppose not. Take 2 e n { A+ : A e d )  - ( .~) .  Then 2 ~= ~-  and con- 
sequently there is a B e ~ such tha t  B ~ ~ .  By maximali ty  of ~" there are 
A~, A2 . . . . .  A n - l e d  (Lemma 2.4(i)) so tha t  B n A1 n ... (bAn-1 = O. Since 2 
is n-centered, by  Lemma 2.1, there must  be an i g n - - 1  so tha t  Ai 4 2 ,  or, 
equivalently, ~ ~ A +. Contradiction. [] 

Define an embedding ~: X-->22x by  ~ ( x ) =  (A e 2 X : x e A } .  Notice that  
[X] c A n (X). Now inductively define subspaces Z~ (i e ~)  of ~n (X) as follows: 

n- I - i  ZI :~ [X] ,  Zi+I=#[Z~ ]. 
oo 

Notice tha t  Zi cZ~+l CTn(X) for all i e M (Corollary 2.6). Pu t  Z = ~ J Z i -  

3.3. Lemma. Let .~r be a finite n-centered system o/closed subsets of X .  Then 

N {A+:A e d }  (~Z ~=0. 

P r o o f .  We will prove this by induction on I d l .  I f  I~41 ~ n then there is nothing 
to prove. Suppose that  the s ta tement  is true for all n-centered systems ,~  of closed 
subsets of X of cardinality at most  i, where n _--< i. Let {A1 . . . . .  At+l} c 2 x be 
n-centered. By induction hypothesis, for each ] <= n + 1 there is a point 

~ eCI {A+ : ]r _--<i + 1 &lcd=j) n Z .  

Take l e  N so tha t  (~'1 . . . . .  ~qZn+l) cZl .  Since ]A + n {~41 . . . . .  ~r _>-- n by the 
convexity of the sets A + (Lemma 3.1) it  follows tha t  

i + 1  

( . ~  . . . . . .  ~/~+~) e ('1 A~. 
k = l  

By definition, /z (~4~, . . . ,  ~r oZ.  We conclude tha t  
i + 1  

r ~ A + n Z d r  [] 

We can now prove the main result in this section. 

3.4. Theorem. Let X be a metric continuum. Then -~n (X) is connected. 

P r o o f .  Define Z as above. Since Z~ is connected, by the continuity of F it follows 
tha t  Z~ is connected for all i e ~ ,  hence Z is connected. We claim tha t  x n (X) c Z 
which shows tha t  Wn(X) is connected since ^n(X)  is dense in-~n(X). 
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Take ~ e A n ( X )  and let F be a center for d .  Pu t  6r {A C ~ F : A  e . . ~ } .  Then 
d ~ is n-centered and since {.at} = O {E +: E e #} (Lemma 3.2), by Lemma 3.3 it 
follows tha t  ~ ' e Z .  [] 

For n ~ 2 this result is known, see [9, III.4.1].  
We now turn to compactness properties of ^n(X).  
The reader might wonder why we work with T,n (X) and not with An (X), i.e. the 

space with underlying set the set of all maximal  n-centered systems topologized by  
regarding it to be a subspace of 22x. The following lemma explains this. 

3.5. Lemma. Let X be a metric compactum with at least one non-isolated point. Then 
An (X)  is compact i / /  n = 2. 

P r o o f .  Take ouch e 22(X) (n e N) so tha t  ~ n  - ->d .  I t  is clear tha t  d is 2-centered. 
Suppose tha t  d ~  Ae(X). Take D e 2 x so tha t  ~r w {D} is 2-centered while D ~ d .  
There is an ~ > 0 so tha t  Be(D) r d .  Since ~'n - - > d  there is an m e N such tha t  
Be (D) r ~ n  for all n => m. The maximali ty  of ~r now implies tha t  

E = X - -  U~ (D) e ~r (n >-- m).  

Since d n - *  ~r we conclude tha t  E e ~ .  This is a contradiction however since 
E n D = O .  

Let  x be a non-isolated point of X and let xn (n e ~)  be a sequence converging 
to x. We assume tha t  x~ ---- x 1 iff i ---- j. We will only show tha t  Aa (X) is not  com- 
pact.  The proof tha t  A, (X) is not compact for all n ~ 3 is similar. Define 

s],~ = {A e 2 x  : IA c~ {x, x.+2, xl ,  x2}] __> 3}. 

Then ~r e Aa (X) and the sequence {~r converges in 22x to ~r where 

d = {A ~ 2x: {x, xl} cA v {x, x~} c A }  

I t  is clear tha t  ~r r Aa(Z) since ~r w {{x}} is 3-centered while {x} ~ ~r This shows 
tha t  As(X) is not  compact.  []  

4. Mixers. A m a p / z :  X n+l --> X is called an n-mixer provided that  

f f ( x , x ,  . . . , x , y )  = f f ( x , x  . . . . .  x , y , x )  ---- f f ( x , x  . . . . .  x , y , x , x )  . . . . .  x 

for all x, y e X. This concept, for n --= 2, is due to van Mill and van de Vel [6]. lgotice 
tha t  the function if: Wn(X)n+l--->-Kn(X) described in Section 2 is an n-mixer. 

4.1. Lemma. Let X be a metric cont inuum with an n-mixer i z. Then X is locally 
connected. 

P r o o f .  Let  U c X be open and let K c U be a component. We will show tha t  K 
is open. Take x ~ K. Then 

({x} x {x} x . . .  x {x} x x )  u ({x} x {x} x - - -  x {x} x x x {x}) 
,,J . - -  c f f -~  [ U ]  
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and by  the compactness of  X there is a neighborhood V of  x so tha t  

E(V) = ( V •  V •  x V x X ) t 3  ( V x  V x . . -  x V x X  x V) 

u . . .  c/~-~ [U] .  

By the eonnectedness of  X it follows tha t  E ( V )  is connected. Consequently, 
x e V =/~ [E (V)] = K. Hence K is open. [ ]  

4.2. R e m a r k .  The technique of  proof  in L e m m a  4.1 is the same as in [6, 1.1]. 
Let /~ be an  n-mixer. A subset A c X is called ~.convex if for all xl ,  x2, . . . ,  xn+l e A 

and for each permuta t ion  ~r of  {1, 2 . . . .  , n ~ 1 } it is t rue  tha t  

~u (x~(1), x~(~) . . . .  , x:~(n+~)) ~ A .  

We use the  s tandard  representations 

Sn- '={ ( x ~  : ~ x ~  1}, 

B ~ + ~ =  x0 . . . .  , x ~ ) s R ~ + ~ :  x ~ = < l  . 
i = 0  

The following Lemma is inspired by  van  Mill and van  de Vel [6, Th. 1.3]. 

4.3. Lemma.  Let X be a compact metric sTace and let t~ : X n+l --> X be an n.mixer. 
T h e n / o r  each l~-convex set A r X and i >= 1 and mapping ] : S ~ -~ A there is a map 
f :  B ~+1 --> A which extends [. 

P r o o f .  Before we prove the L e m m a  we first verify the  following nsefull Fac t  
(compare [6, Lemma 1.2]). 

Fact. I f  xl, ~ . . . . .  x~, yt (i e N) are points  of  X such t h a t  the sequences (x~)~ e N 
(j ~ n) all converge to a e X,  then for each pe rmuta t ion  ~r of  {1, 2 . . . .  , n} and 
?" ~ n the sequence 

converges to a. 

Le t  U be a neighborhood of  a. As in the proof  of  L e m m a  4.1 we can find a neigh- 
borhood V of  a such t h a t  

E(V) = ( V x  V x - - .  •  x X ) u ( V x V x . . ,  x V •  
u . . .  c~-l[U]. 

Let  i0 ~ N be such tha t  x i e V for all i ~ i0 and ] ~ n. Now, if i ~ i0 the  pohlt  

belongs to E ( V ) ,  whence /~(z~)e U. 

Now let us proceed to the proof  of  the Lemma.  Suppose tha t  A c X is #-convex 
and let ]: S ~ --> A be given (i >= 1). Take ul  . . . .  , un+l ~ S t so tha t  ut ~ uj iff i = ]. 
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Define, for each ?" ~ n + 1 a function gj : B i+1 --> S * by 

{ g j ( v ) = v  ( v � 9  

gl(v) = the unique point of S t - -  {uj} which lies on the straight line 
through v and u t (v ~ S~). 

This leads us to a function 

g = (gl . . . . .  g . + l )  : B ~+1 --> (S~) n§ �9 

Notice that  this function is not continuous. Define f :  B *+1 --> X as the composition 

B~+I ~ (8~)~+1 - +  X ~ + I  _~ X ,  

where the map in the middle is (/, 1, . . . , / ) .  Then f clearly extends ]. Also, by a 
straightforward application of the Fact, ] is continuous. Finally, since A is/z-convex, 

f[B~+I] c A. []  

We now come to the main result in this section. 

4.4. Theorem. Let X be a metrizable cont inuum and let/Z : X n+l --> X be an n-mixer.  
I / X  has a basis o /# -convex  sets then X is an Absolute Retract. 

P r o o f .  Let d be a metric for X and let e > 0. Let ~ be a finite cover of X by 
#-convex sets so that  {int U:  U e ~} covers X and each U �9 ~ has diameter at 
most e. Let ~r be a finite open star refinement of {int U : U �9 ~/}. Define 

J~f = {K c X : (3 V �9 $f  : K is a component of V) }. 

By Lemma 4.1 each K �9 ~f  is open and since I, JYl  ---- X there is a finite subcol- 
lection 3 f "c  3~ so that  [J 3~'---- X. Let t be a Lebesgue number for 9t ~'. 

Now let P be a compact polyhedron and let P0 c P be a subpolyhedron con- 
taining all the vertices of P and let ]: P0 --> X be continuous so that  the partial 
image of ] of any simplex of P has diameter less than 2. Since, by Lemma 4.1, each 
K �9 9~"' is a locally compact locally connected and connected metric space we can 
extend / to a map g: P1 --> X where P1 is a subpolyhedron of P which contains P0 
and the 1-skeleton of P while moreover the partial image of g of any simplex of P 
is contained in some U �9 o//. Using Lemma 4.3 and the fact tha t  each intersection 
of/z-convex sets is again /z-convex we can extend g to a m a p / :  P --> X so that  
for each simplex a c P there is a U �9 ag with f [a]  r U. 

By a well known result of Lefschetz [2] it follows that  X is an A N R .  Since X is 
Peano continuum (Lemma 4.1), Lemma 4.3 implies that  X is C ~176 However, a C ~ 
A N R  is an A R .  [] 

4.5. Corollary. Let X be a metrizable continuum. Then Tn  (X) is an Absolute Retract. 

Proo f .  By Theorem 3.4, Wn (X) is connected. Therefore, by Theorem 4.2, we only 
need to show that  the n-mixer/Z for -Kn (X) described in Section 2 is stable in the 
sense that  there is a basis for -En (X) consisting of/z-convex sets. Let d be a metric 
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for X.  As in Section 1, ~o is the induced metric on 22x. Take ~q~e-~n(X) and e > 0. 
We claim t h a t  

U = {~ ' eWn(X) :~ (~ ,  ~e') < ~} 

is #-convex,  which suffices to prove the Corollary. 
Take ~q' l ,~2, . . . ,~q~n+leV and let r~: { 1 , 2 , . . . , n +  1 } - + { 1 , 2  . . . . .  n §  be a 

permutat ion.  Let  8 = m a x { ~ ( ~ i ,  ~ )  : 1 ~ i ~ n + 1}. Then (5 < e. Take L e ~ .  
Then  B~ (L) e ~ i  for all 1 ~ i ~ n + 1 and consequently 

B~ (L) e/~ ( ~  (D, ~ ~> . . . . .  ~e~ (~+D). 

Also, take  Ee /~ (~n(~) ,  .~en(2) . . . . .  ~q~(n+D). There is an index i ~ n § 1 so tha t  
E e -~n (~). Since 

we conclude tha t  B~ (E) e ~ .  This implies t ha t  

i.e. /~(s (~), ~n(2) . . . .  , .5#n(~+~)) ~ U. [ ]  

5. Proof of the main result. We now can prove the main  result of  this p ' p e r .  

5.1. Theorem. Let X be a metrizable continuum and let ]: X--> X be continuous. 
Then ]or each n ~ 2 and e > 0 there is a maximal n-centered system d o[ closed 
subsets o] X so that ~ ( d ,  {B e 2x : [-1 (B) e d } )  < ~. In  addition, d can be taken 
to be ]initely generated. 

P r o o f .  Define f :  -En(X) --->-En(X) by  

f ( d )  = {B e 2x: / -1  (B) e d }  

A straightforward check shows tha t  f is continuous. B y  Corollary 4.5, Wn (X) is an 
A R  and therefore, as is well known, has the fixed point  property.  Let  ,~ 'eWn(X) 
be a fixed point  o f f .  Since An(X) is dense in Wn(X) we can find .LCeAn(X) so tha t  
. ~  and f ( ~ )  are as close as we please. [ ]  

This result, for finitely generated maximal  n-centered systems, is best possible. 
Indeed,  let T :  S 1 -+ S 1 be a t ranslat ion th rough  an irrational angle. I t  is clear 
t ha t  for each finite F c S 1 there is a k ~ 1 so tha t  T~ [F]  f~ F = 0. I t  is now routine 
to check tha t  T :  Wn (S a) -->Wn ($1), where iV is defined as in the proof  of Theorem 5.1, 
has no fixed point  belonging to A n ($1). 
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