

Characterization of a certain subset of the Cantor set

by

Jan van Mill (Amsterdam)

Abstract. The Cantor set C contains a subset S which is topologically characterized by the following properties: (1) S is a zero-dimensional separable metric space which is the union of a (topologically) complete subspace and a σ -compact subspace, (2) S is nowhere σ -compact and, (3) if $U \subset S$ is open and nonempty and if $D \subset S$ is countable, then U - D is not complete. This implies that if aX and bX are zero-dimensional compactifications of $X = P \times Q$, i.e. the product of the irrationals and the rationals, then $(aX - X) \times C \approx (bX - X) \times C$.

0. Introduction. All topological spaces under discussion are separable metric. It is well-known that there are good usable topological characterizations of the space of rational numbers Q, the space of irrational numbers P, the Cantor set C, and the product $Q \times C$ (see, respectively, [11], [1], [5] and [1]). Recently, the author has obtained a characterization of $Q \times P$ [9]. This characterization is the following: $Q \times P$ is the unique zero-dimensional space which is the union of countably many closed and (topologically) complete subspaces and which in addition is nowhere complete and nowhere σ -compact.

In this paper we study complements of dense copies of $Q \times P$ in C. It turns out that there are only very few of these spaces. We show that if $a(Q \times P)$ and $b(Q \times P)$ are zero-dimensional compactifications of $Q \times P$ then the spaces $(a(Q \times P) - (Q \times P)) \times C$ and $(b(Q \times P) - (Q \times P)) \times C$ are homeomorphic. This is a consequence of the fact that there is only one zero-dimensional space S with the following properties:

- (1) S is the union of a complete subspace and a σ -compact subspace:
- (2) S is nowhere σ -compact;
- (3) if $U \subset S$ is open and nonempty and if $D \subset S$ is countable, then U D is not complete.

From this characterization it follows that any nonempty clopen subspace of S is homeomorphic to S. This implies that S is homogeneous, in fact, any homeomorphism between closed and nowhere dense subsets of S can be extended to an autohomeomorphism of S, [9].

1. Extending small homeomorphisms. It is an interesting result due to Ryll-Nardzewski, see [8], that any homeomorphism between nowhere dense closed

subsets of C extends to a homeomorphism of C. The aim of this section is to prove an estimated version of this result.

1.1. Lemma. Let $A,B\subset C$ be closed and nowhere dense and let $\varepsilon>0$. Then there is a homeomorphism $\varphi\colon C\to C$ such that $\varphi(B)\cap A=\emptyset$ and $d(\varphi,\mathrm{id})<\varepsilon$.

Proof. Let $C_1, C_2, ..., C_n \subset C$ be nonempty and clopen such that

$$(1) C_i \cap C_j = \emptyset if i \neq j;$$

(2)
$$\operatorname{diam}(C_i) < \varepsilon;$$

$$(3) A \cup B \subset \bigcup_{i=1}^n C_i.$$

For each $i \le n$ let $E_i \subset C_i$ be clopen and nonempty such that $E_i \cap (A \cup B) = \emptyset$ and let $\varphi_i : E_i \to C_i - E_i$ be any homeomorphism. Define $\varphi : C \to C$ by

$$\varphi(x) = \begin{cases} x & \text{if} \quad x \notin \bigcup_{i=1}^{n} C_i, \\ \varphi_i(x) & \text{if} \quad x \in E_i, \\ \varphi_i^{-1}(x) & \text{if} \quad x \in C_i - E_i. \end{cases}$$

It is clear that φ is as required.

We now come to the main result in this section

1.. TOREM. Let $A, B \subset C$ be closed and nowhere dense and let $\varphi: A \to B$ be a hon. norphism such that $d(\varphi, \mathrm{id}) < \varepsilon$. Then φ can be extended to a homeomorphism $\overline{\varphi}: C \to C$ such that $d(\overline{\varphi}, \mathrm{id}) < \varepsilon$.

Proof. Let $\delta = \frac{1}{4}(\varepsilon - d(\varphi, id))$. By Lemma 1.1 there is a homeomorphism $\xi \colon C \to C$ such that $A \cap \xi(B) = \emptyset$ and $d(\xi, id) < \delta$. Define $\eta \colon A \to \xi(B)$ by

$$\eta(x) = \xi(\varphi(x))$$

and by Ryll-Nardzewski's result previously cited we may extend η to a homeomorphism $\overline{\eta}$: $C \to C$. Let V be a clopen neighborhood of A such that

$$(1) V \cap \bar{\eta}(V) = \emptyset;$$

(2) if
$$x \in V$$
, then $d(x, \bar{\eta}(x)) < 3\delta + d(\varphi, id)$.

It is clear that such neighborhood exists since $A \cap \xi(B) = \emptyset$ and $d(\overline{\eta}(x), x) < d(\varphi(x), x) + \delta$ for all $x \in A$. Define $\varrho: C \to C$ by

$$\varrho(x) = \begin{cases} x & \text{if} \quad x \notin V \cup \overline{\eta}(V), \\ \overline{\eta}(x) & \text{if} \quad x \in V, \\ \overline{\eta}^{-1}(x) & \text{if} \quad x \in \overline{\eta}(V). \end{cases}$$

Notice that $\varrho|A=\eta$ and that $d(\varrho, \mathrm{id}) < 3\delta + d(\varphi, \mathrm{id})$. Now define $\overline{\varphi} \colon C \to C$ by $\overline{\varphi} = \xi^{-1} \circ \varrho$. Clearly, $\overline{\varphi}|A=\varphi$ and

$$d(\bar{\varphi}, id) < 4\delta + d(\varphi, id) = \varepsilon.$$

- 1.3. Remark. Notice that the estimated homeomorphism extension Theorem 1.2 is true for any metric d on C. There is also an estimated homeomorphism extension theorem for Z-sets in the Hilbert cube, but this theorem is valid only with respect to one of the standard convex metrics on the Hilbert cube, [4].
- 1.4. Remark. Theorem 1.2 is not stated in full generality. Using Theorem 3.1 of [9] it can be shown that Theorem 1.2 is true with C replaced by any strongly homogeneous zero-dimensional space (a space is called strongly. homogeneous if all nonempty clopen subspaces are homeomorphic).
- 1.5. Remark. The reason that we are interested in an estimated homeomorphism extension theorem is that in several constructions in this paper, we obtain a homeomorphism with certain properties as a limit of inductively constructed homeomorphisms. We can only ensure convergence to a homeomorphism if at each stage the next homeomorphism can be chosen arbitrarily close to the identity. The following result, due to Anderson [2], explains this.
- 1.6. Theorem (Inductive Convergence Criterion). Let X be a compact space and let $\{h_i\}_{i=1}^{\infty}$ be a sequence of homeomorphisms of X. Then $\lim_{i\to\infty}h_i\circ\ldots\circ h_1$ exists and is a homeomorphism provided that for any i:

(1)
$$d(h_{i+1}, id) < 2^{-i},$$

and

(2)
$$d(h_{i+1}, id) < 3^{-i} \inf \{ d(h_i \circ \ldots \circ h_1(x), h_i \circ \ldots \circ h_1(y)) : d(x, y) \ge 1/i \}.$$

2. A capsed for C. Let $K \subset C$ be a countable union of nowhere dense closed subsets of C. We say that K is a capset (abbreviation for set with the compact absorption property) for C if $K = \bigcup_{i=1}^{\infty} K_i$, for some tower $K_1 \subset K_2 \subset \ldots$ of compacta with the following property:

for each $\varepsilon > 0$, each integer m, and each nowhere dense closed $F \subset C$, there exists a homeomorphism $h: C \to C$ with $d(h, \mathrm{id}) < \varepsilon$, $h|K_m = \mathrm{id}$, and $h(F) \subset K_n$, for some $n \ge m$.

The idea of a capset for a given topological class of compacta is due independently to Anderson [3] and Bessaga & Pełczyński [6]. The following lemma follows directly from [6, 2.1].

2.1. Lemma. Let K and L be capsets for C and let $\varepsilon > 0$ be given. Then there is a homeomorphism $\varphi \colon C \to C$ such that $\varphi(K) = L$ and $d(\varphi, id) < \varepsilon$.

It is not entirely clear that capsets in C exist. However, by using precisely the same technique as in Curtis & van Mill [7, Theorem 2.1] and by using Theorem 1.2 instead of the estimated homeomorphism extension theorem in the Hilbert cube, the following result can be shown:

- 2.2. Lemma. Let $K \subset C$ be a dense copy of $Q \times C$. Then K is a capset for C. Consequently, Lemmas 2.1 and 2.2 imply the following
- 2.3. THEOREM. Let K, $L \subset C$ be dense copies of $O \times C$ and let $\varepsilon > 0$ be given. Then there is a homeomorphism $\varphi: C \to C$ such that $\varphi(K) = L$ and $d(\varphi, id) < \varepsilon$.
- 3. Closed subsets homeomorphic to $O \times C$. In [1], Alexandroff and Urysohn showed that all zero-dimensional, σ -compact, nowhere locally compact and nowhere countable spaces are homeomorphic to $Q \times C$ (see also [9]). In the remaining part of this paper we will make use of this characterization.

Let X be a space. Define

$$\varrho X = \{x \in X : x \text{ has a countable neighborhood}\}\$$

and

$$\sigma X = \{x \in X : x \text{ has a compact open neighborhood}\}\$$

respectively. Observe that both ρX and σX are open subsets of X and that ρX is always countable.

3.1. THEOREM. Let X be a σ -compact zero-dimensional space. If no closed subset of X is homeomorphic to $Q \times C$ then X can be written as $A \cup B$ where A is countable and B is topologically complete.

Proof. By transfinite induction, for each ordinal $\alpha < \omega_1$ define subsets S_{α} , $T_{\alpha} \subset X$ in the following way:

$$S_0 = \varrho X$$
 and $T_0 = \sigma (X - S_0)$,

$$S_{lpha} = \varrho \left(X - igcup_{eta < lpha} (S_{eta} \cup T_{eta})
ight) \quad ext{ and } \quad T_{lpha} = \sigma \left(X - \left(S_{lpha} \cup igcup_{eta < lpha} (S_{eta} \cup T_{eta})
ight)
ight).$$

By induction it is easy to show that $\bigcup_{\beta < \alpha} (S_{\beta} \cup T_{\beta})$ is open in X for each $\alpha < \omega_1$. Let $\beta < \omega_1$ be the first ordinal for which $S_{\beta} = \emptyset$ and $T_{\beta} = \emptyset$ (it is clear that such $\beta < \omega_1$ exists since X is separable metric).

Put $Y = X - \bigcup (S_{\alpha} \cup T_{\alpha})$. We claim that $Y = \emptyset$. For suppose that this is not true. Since $S_{\beta} = T_{\beta} = \emptyset$ and since Y is closed in X, the space Y is σ compact, nowhere locally compact and nowhere countable. Hence $Y \approx Q \times C$, which contradicts our assumptions on X.

Put $A = \bigcup S_{\alpha}$ and $B = \bigcup T_{\alpha}$. We claim that A and B are as required. It is clear that A is countable, so it suffices to show that B is (topologically)

complete. By induction we will show that $\bigcup T_{\alpha}$ is complete for all $\varkappa \leqslant \beta$. Since T_0 is locally compact, T_0 is complete. Assume that $\bigcup T_{\alpha}$ is complete for all μ $<\varkappa\leqslant\beta$. Since $\bigcup T_{\alpha}$ is open in $\bigcup T_{\alpha}$ for all $\mu<\varkappa$ and since a locally complete space is complete,

$$V = \bigcup_{\alpha < \kappa} T_{\alpha}$$

is an open complete subspace of $\bigcup T_{\alpha}$. Let Z be a (metric) compactification of $\bigcup_{\alpha \leq x} T_{\alpha}$. Then Z - V is σ -compact, since V is complete. Since T_{α} is closed in $\bigcup_{\alpha \leq x} T_{\alpha}$ and since T_x is locally compact, this implies that

$$Z - \bigcup_{\alpha \leqslant \varkappa} T_{\alpha} = ((Z - \bigcup_{\alpha < \varkappa} T_{\alpha}) - \overline{T}_{\varkappa}) \cup (\overline{T}_{\varkappa} - T_{\varkappa})$$

is σ -compact or, equivalently, $\bigcup_{\alpha \leq x} T_{\alpha}$ is complete.

- 4. A description of S. In this section we will show that spaces with the properties of S exist.
- 4.1. Lemma. Let X be a zero-dimensional compactification of $Q \times P$. Then $X-(Q\times P)$ is nowhere complete, nowhere σ -compact, and is the union of a complete and a σ -compact space.

Proof. For each $q \in Q$ let $A_q = (\{q\} \times P)^-$ and $B_q = A_q - (Q \times P)$. Then $E = X - \bigcup_{q \in Q} A_q$ is complete and $F = \bigcup_{q \in Q} B_q$ is σ -compact since each B_q is σ -compact. Clearly $X \setminus (Q \times P) = E \cup F$.

If $U \subset X$ is clopen and $U \cap (X - (Q \times P))$ is σ -compact, then $U \cap (Q \times P)$ is complete. This implies that $X - (Q \times P)$ is nowhere σ -compact, since $Q \times P$ is nowhere complete. Similarly $X-(Q\times P)$ is nowhere complete, since $Q\times P$ is nowhere σ -compact.

Before we give a space with the properties of S, observe that P is the unique zero-dimensional, complete and nowhere locally compact space, [1].

- 4.2. Lemma. There is a space S with the following properties:
- S is zero-dimensional;
- S is the union of a complete and a σ -compact subspace; (2)
- S is nowhere σ -compact;
- if $U \subset S$ is open and nonempty and if $D \subset S$ is countable, then U D is not complete.

Proof. Let $K \subset C$ be the union of countable many nowhere dense Cantor sets which is dense. By [1], $K \approx Q \times C$ and $C - K \approx P$. In addition, let $E \subset C$ be countable and dense. Then $E \approx Q$, [11], and $C - E \approx P$. Put

$$S = (C \times C) - ((C - K) \times E).$$

Since $(C-K) \times E \approx Q \times P$, by Lemma 4.1, S satisfies (1), (2) and (3). Now let $D \subset S$ be countable and let $U \subset S$ be clopen and nonempty. Since $K \times E$ is dense in S, there is an $e \in E$ such that $U \cap (K \times \{e\}) \neq \emptyset$. Observe that $U \cap (K \times \{e\}) \approx Q \times C$ since $Q \times C$ is strongly homogeneous. Since $Q \times C$ clearly contains uncountably many pairwise disjoint closed copies of Q, there is an uncountable family $\mathscr K$ of pairwise disjoint closed copies of Q in $U \cap (K \times \{e\})$. Since $\mathscr K$ is uncountable, some $G \in \mathscr K$ misses D. Then G is a closed (in S) copy of Q in $U \cap (K \times \{e\})$ (notice that $U \cap (K \times \{e\})$) is closed in S). Consequently, U - D is not complete. \blacksquare

Let \mathcal{S} denote the class of spaces satisfying (1), (2), (3) and (4) of Lemma 4.2.

4.3. Lemma. If $S \in \mathcal{S}$ and if $U \subset S$ is nonempty and clopen, then $U \in \mathcal{S}$. Proof. Obvious.

Since we will show later that, up to homeomorphism, \mathcal{S} contains precisely one space, which we call S, Lemma 4.3 implies that S is strongly homogeneous. As a consequence, S is homogeneous. In fact, any homeomorphism between closed and nowhere dense subsets of S extends to a homeomorphism of S, [9, 3.1].

4.4. Lemma. Let $S \in \mathcal{S}$ and let aS be a zero-dimensional compactification of S. Then $aS - S \approx Q \times P$.

Proof. By using the same technique as in the proof of Lemma 4.1 it easily follows that aS - S is nowhere complete and nowhere σ -compact. Since $S \in \mathcal{S}$, $S = E \cup F$, where E is complete and F is σ -compact. Let $aS - E = \bigcup_{i=1}^{\infty} K_i$, where each K_i is compact. For each $i \in N$ the space $K_i - F$ is clearly complete and closed in aS - S. Since $\bigcup_{i=1}^{\infty} (K_i - F) = aS - S$ we conclude that aS - S is the union of countably many closed and complete subspaces. Since $Q \times P$ is the unique nowhere complete, nowhere σ -compact space which is the union of countably many closed and complete subspaces, [9], this implies that $aS - S \approx Q \times P$.

We conclude this section with the following result which will be of crucial importance in the proof of our characterization of S.

4.5. Theorem. Let $S \in \mathcal{S}$. Then S contains a closed copy of $Q \times C$. Proof. Let aS be a zero-dimensional compactification of S. By Lemma 4.4, $aS - S \approx Q \times P$ hence $aS - S = \bigcup_{i=1}^{\infty} P_i$, where each P_i , is complete and closed in aS - S. For each $i \in N$ put $B_i = \overline{P}_i - P_i$. Then B_i is a closed and σ -compact subspace of S. Suppose that no B_i contains a closed copy of $Q \times C$. We will derive a contradition. Then, by Theorem 3.1, we can find disjoint $A_i, F_i \subset B_i$ with $A_i \cup F_i = B_i$ such that A_i is countable and F_i is complete $(i \in N)$. For each $i \in N$, we have that $\overline{P}_i - F_i$ is σ -compact and consequently $\bigcup_{i \in N} (\overline{P}_i - F_i)$ is σ -in $A_i \cap B_i \cap B_i$.

$$aS - \bigcup_{i \in N} (\bar{P}_i - F_i) = S - \bigcup_{i \in N} A_i$$

is complete, which is a contradiction since $\bigcup_{i \in \mathbb{N}} A_i$ is countable, and $S \in \mathscr{S}$.

- 5. A characterization of S. We will show that, topologically, $\mathscr S$ contains at most one space. Since any $S\in\mathscr S$ has a compactification homeomorphic to C, it suffices to show that whenever S, $T\in\mathscr S$ are dense in C, then there is a homeomorphism $\varphi\colon C\to C$ such that $\varphi(S)=T$. If $A\subset C$ then \overline{A} denotes the closure of A in C.
- 5.1. Lemma. Let $S \subset C$ be dense such that $S \in \mathcal{S}$. If $T \subset C S$ is closed (in C S), nowhere locally compact and complete, then there exists a closed and complete $F \subset C S$ such that
- (1) $T \subset F$ and T is nowhere dense in F;
- (2) $\bar{F} F \approx Q \times C$.

compact. Therefore

Proof. Let $E = \overline{T} - T$. In addition, let $\mathcal{D} = \{D_n: n \in N\}$ be a family of nonempty clopen subsets of S such that

- (3) $D_n \subset S E$ for all $n \in N$;
- (4) diam $D_n < 1/h$ for all $n \in N$;
- (5) if $n \neq m$ then $D_n \cap D_m = \emptyset$;
- (6) $\operatorname{cl}_{S}(\bigcup \mathscr{D}) = \bigcup \mathscr{D} \cup E$.

It is clear that such a family exists since E is a nowhere dense closed subset of S. Since, by Lemma 4.3 and Theorem 4.5, each nonempty clopen subspace of S contains a closed (in S) copy of $Q \times C$, for each $n \in N$ we can find a closed copy K_n of $Q \times C$ in D_n . Clearly

$$\operatorname{cl}_{S}(\bigcup_{n=1}^{\infty} K_{n}) = \bigcup_{n=1}^{\infty} K_{n} \cup E$$

and since E is σ -compact. $A = \bigcup_{n=1}^{\infty} K_n \cup E \approx Q \times C$. Notice that E is closed and nowhere dense in A. Put $F = \overline{A} \cap (C - S)$. Since A is nowhere locally compact, F is dense in \overline{A} , i.e. $\overline{F} - F = A \approx Q \times C$. Since E is nowhere locally compact, T is dense in \overline{E} , consequently $T \subset F$. Since E is nowhere dense in A, it easily follows that T is nowhere dense in F.

5.2. COROLLARY. Let $S \subset C$ be dense such that $S \in \mathcal{S}$. Then there is a sequence P_i $(i \in N)$ of closed and complete subspaces of C - S such that for all $i \in N$

(1)
$$P_i \subset P_{i+1}$$
 and $\bigcup_{i=1}^{\infty} P_i = C - S$;

- (2) P_i is nowhere dense in P_{i+1} ;
- $\bar{P}_i P_i \approx O \times C$.

88

Proof. By Lemma 4.4, $C-S \approx Q \times P$. Consequently, there is a family $\{E_i: i \in N\}$ of closed copies of P in C-S such that $\bigcup E_i = C-S$. From Lemma

5.1 it is clear that inductively one can construct closed copies P_i ($i \in N$) of P in C-S such that for each $i \in N$

$$\bigcup_{j=1}^{i} P_j \cup \bigcup_{j=1}^{i} E_j$$

is a closed nowhere dense subset of P_{i+1} while moreover $\bar{P}_i - P_i \approx Q \times C$. We now come to the main result in this paper.

5.3. THEOREM. Let S, $T \subset C$ be dense such that S, $T \in \mathcal{S}$. Then for each $\varepsilon > 0$ there is a homeomorphism $\varphi \colon C \to C$ such that $\varphi(S) = T$ and $d(\varphi, id) < \varepsilon$.

Proof. Inductively we will construct a sequence of homeomorphisms $h_i: C \to C$ and a sequence of homeomorphisms $g_i: C \to C$ such that

$$\varphi = \lim_{n \to \infty} g_n^{-1} \circ h_n \circ \dots \circ g_1^{-1} \circ h_1$$

is as required. Without further mentioning, it is understood that at each stage the next homeomorphism is constructed in accordance with the Inductive Convergence Criterion 1.6 while moreover

$$\sum_{i=1}^{\infty} d(h_i, id) + \sum_{i=1}^{\infty} d(g_i, id) < \varepsilon.$$

By Corollary 5.2 there are sequences P_i $(i \in N)$ and R_i $(i \in N)$ of closed and complete subspaces of, respectively, C-S and C-T such that for all $i \in N$

(1)
$$P_i \subset P_{i+1}$$
, $R_i \subset R_{i+1}$, $\bigcup_{i=1}^{\infty} P_i = C - S$ and $\bigcup_{i=1}^{\infty} R_i = C - T$;

- P_i is nowhere dense in P_{i+1} and R_i is nowhere dense in R_{i+1} ;
- $\bar{P}_i P_i \approx \bar{R}_i R_i \approx O \times C$.

Suppose that we have to construct h_1 in such a way that $d(h_1, id) < \delta_1$ for certain $\delta_1 > 0$. Find an integer n_1 such that $d(x, \bar{R}_{n_1}) < \frac{1}{3}\delta_1$ for all $x \in \bar{P}_1$. It is clear that there is a finite disjoint clopen cover E_1, \ldots, E_k of \bar{P}_1 such that each E_i has diameter at most $\frac{1}{3}\delta_1$. For each $1 \le j \le k$ pick a point $x_j \in E_j$ and a point $y_j \in \overline{R}_{n_1} - \{y_1, \dots, y_{j-1}\}$ such that $d(x_j, y_j) < \frac{1}{3}\delta_1$. In addition, for each $1 \le j \le k$ pick a clopen (in \bar{R}_{n_1}) set $F_j \subset \bar{R}_{n_1}$ of diameter at most $\frac{1}{3}\delta_1$ such that $y_i \in F_j$ and such that the family $\{F_1, \ldots, F_k\}$ is pairwise disjoint. Fix $1 \le j \le k$. Notice that $E_i \approx F_i \approx C$ and that

$$E_j - P_j \approx F_j - R_j \approx Q \times C$$

consequently, by Theorem 2.3, we can find a homeomorphism ξ_j : $E_j \to F_j$ such that $\xi_j(E_j \cap P_j) = F_j \cap R_j$. Define $\psi: \overline{P}_1 \to \overline{R}_n$, by $\psi(x) = \xi_j(x)$ if $x \in E_j$. Notice that ψ is an embedding such that $d(\psi, id) < \frac{1}{3}\delta_1 + \frac{1}{3}\delta_1 + \frac{1}{3}\delta_1 = \delta_1$. In addition, $\psi(P_1) = R_{n_1} \cap \psi(\bar{P}_1)$. By Theorem 1.2 we can extend ψ to a homeomorphism $h_1: C \to C$ with $d(h, id) < \delta_1$. Notice that h_1 has the following properties

(4)
$$d(h, id) < \delta_1;$$

(5)
$$h_1(P_1) = R_{n_1} \cap h_1(\bar{P}_1).$$

This defines h_1 .

Suppose that we have to construct g_1 in such a way that $d(g_1, id) < \mu_1$. Find an integer $m_1 > 1$ such that $d(x, h_1(\bar{P}_{m_1})) < \frac{1}{4}\mu_1$ for all $x \in \bar{R}_{n_1}$. We wish to construct g_1 in such a way that $g_1(\bar{R}_{n_1}) \subset h_1(\bar{P}_{m_1})$ and $g_1(R_{n_1}) \subset h_1(P_{m_1})$ while moreover $g_1|h_1(\bar{P}_1)=g_1^{-1}|h_1(\bar{P}_1)=\mathrm{id}$. Then, since $h_1(P_1)\subset R_{n_1}$, also $g_1^{-1}h_1(P_1)\subset R_{n_1}$. To this end, let $\mathscr D$ be an open cover of $\bar R_{n_1}-h_1(\bar P_1)$ by disjoint, compact, nonempty subsets such that for each $D \in \mathcal{D}$

diam
$$D < \min \{d(D, h_1(\bar{P}_1)), \frac{1}{4}\mu_1\}.$$

For each $D \in \mathcal{D}$ pick a point $x(D) \in h_1(\bar{P}_m) - h_1(\bar{P}_1)$ such that d(x(D), D) < 0 $\min \{2d(D, h_1(\bar{P}_1)), \frac{1}{2}\mu_1\}$, and with $x(D) \neq \hat{x}(D')$ if $D \neq D'$. This is possible since $h_1(\overline{P}_1)$ is nowhere dense in $h_1(\overline{P}_{m_1})$. In addition, for each D, choose a clopen Cantor set (clopen in $h_1(\bar{P}_{m_1})$) $C(\bar{D}) \subset h_1(\bar{P}_{m_1}) - h_1(\bar{P}_1)$ containing $x(\bar{D})$ such that

$$\dim(C(D)) < \min\{d(x(D), h_1(\bar{P}_1)), \frac{1}{4}\mu_1\},\$$

and such that $C(D) \cap C(D') = \emptyset$ if $D \neq D'$. Now, for each $D \in \mathcal{D}$ choose an arbitrary homeomorphism $f_D: D \to C(D)$. By Theorem 2.3 we may assume that $f_D(D \cap R_{n_1}) = C(D) \cap h_1(P_{m_1})$. Define an embedding $f: \overline{R}_{n_1} \to h_1(\overline{P}_{m_1})$ by

$$f(x) = \begin{cases} f_{D}(x) & \text{if} \quad x \in D \in \mathcal{D}, \\ x & \text{if} \quad x \in h_{1}(\overline{P}_{1}). \end{cases}$$

Clearly f is an embedding and $d(f, id) < \frac{1}{4}\mu_1 + \frac{1}{2}\mu_1 + \frac{1}{4}\mu_1 = \mu_1$. By Theorem 1.2 we can extend f to a homeomorphism $g_1: C \to C$ such that $d(g_1, id) < \frac{1}{4}\mu_1$. Notice that g_1 has the following properties

(6)
$$g_1|h_1(\bar{P}_1)=\mathrm{id};$$

(7)
$$g_1(R_{n_1}) \subset h_1(P_{m_1}).$$

Continuing in this way inductively, it is easy to construct a sequence of homeomorphisms $\{h_n: C \to C\}_n$ and a sequence of homeomorphisms $\{g_n: C \to C\}_n$ and sequences of integers $m_0 < m_1 < \dots$ and $n_1 < n_2 < \dots$, with

90

 $m_0 = 1$, such that for all $i \in N$

(8)
$$g_i^{-1} \circ h_i(P_{m_{i-1}}) \subset R_{n_i};$$

(9)
$$g_i^{-1} \circ h_i(P_{m_i}) \supset \mathbf{R}_{n_i};$$

(10) if
$$k \ge i+1$$
 then $g_k^{-1} \circ h_k | (g_i^{-1} \circ h_i)(P_{m_i}) = id$.

Therefore, if we put

$$\varphi = \lim_{n \to \infty} g_n^{-1} \circ h_n \circ \dots \circ g_1^{-1} \circ h_1$$

then, by (8), (9) and (10), $\varphi(C-S) = C-T$.

- 5.4. Remark. In the proof of the above theorem we have used ideas from [7, 2.1] and [6, 2.1].
- 5.5. COROLLARY., Let X be zero-dimensional and both complete and σ -compact. Then $X \times S \approx S$.
 - Proof. Clearly, $X \times S$ satisfies the properties of S which characterize S.
- 5.6. COROLLARY. Let $a(O \times P)$ and $b(O \times P)$ be zero-dimensional compactifications of $O \times P$ and let X be any nowhere countable zero-dimensional space which is both complete and σ -compact. Then

$$(a(Q \times P) - (Q \times P)) \times X \approx (b(Q \times P) - (Q \times P)) \times X.$$

Proof. Let $U_1 \subset a(Q \times P) - (Q \times P)$ and $U_2 \subset X$ be nonempty and open and let $D \subset U_1 \times U_2$ be countable. Since U_2 is uncountable, we can find a point $e \in U_2$ such that $(U_1 \times \{e\}) \cap D = \emptyset$. Let $E \subset O \times P$ be a closed homeomorphism of P such that $\bar{E} - E \subset U_1$. Then $\bar{E} - E$ is closed in U_1 and is not complete. Consequently

$$(\bar{E}-E)\times\{e\}\subset U_1\times U_2$$

is a closed subset of $U_1 \times U_2$ which is not complete and which obviously misses D. This easily implies that

$$(a(Q \times P) - (Q \times P)) \times X \approx S.$$

Similarly $(b(Q \times P) - (Q \times P)) \times X \approx S$. Consequently,

$$(a(Q \times P) - (Q \times P)) \times X \approx (b((Q \times P) - (Q \times P))) \times X.$$

6. Perfect images of S. A closed map $f: X \to Y$ is called perfect if f is onto and if preimages of compact subsets of Y are compact. In addition, a map $f: X \to Y$ is called *irreducible* if f is onto and if $f(A) \neq Y$ for any proper closed $A \subset X$. In this section we show that if X is any nowhere complete, nowhere σ -compact space which is the union of a complete and a σ -compact subspace. then there is a perfect map $f: S \to X$.

The following lemma is well-known.

6.1. Lemma. Let X be a space. Then there is a zero-dimensional space Y and a perfect irreducible map $\pi: Y \to X$

Proof. Let γX be a compactification of X and let $f: C \to \gamma X$ be irreducible. It is easily seen that $Y = f^{-1}(X)$ and $\pi = f \mid Y$ is as required.

We now come to the main result in this section.

6.2. Theorem. Let X be nowhere complete, nowhere σ -compact space which is the union of a σ-compact and a complete subspace. Then there is a perfect map $f: S \to X$.

Proof. Let Y be zero-dimensional and let $\pi: Y \to X$ be perfect and irreducible, Lemma 6.1. Using the fact that π is both perfect and irreducible it easily follows that Y is also nowhere complete, nowhere σ -compact, and the union of a complete and a σ -compact subspace. Hence by Theorem 5.3, $Y \times C \approx S$. The rest is routine.

6.3. Remark. By a more complicated construction, using ideas from van Mill & Woods [10], it can be shown that there even is a perfect irreducible map $\pi: S \to X$.

References

- [1] P. Alexandroff and P. Urvsohn, Über nulldimensionale Punktmengen, Math. Ann. 98 (1928), pp. 89-106.
- [2] R. D. Anderson, On topological infinite deficiency, Michigan Math. J. 14 (1967), pp. 365-383.
- [3] On sigma-compact subsets of infinite-dimensional spaces, unpublished manuscript.
- [4] D. W. Curtis and J. van Mill, A fake topological Hilbert space, Trans. Amer. Math. Soc. 272 (1982), pp. 311-321.
- [5] L. E. J. Brouwer, On the structure of perfect sets of points, Proc. Acad. Amsterdam 12 (1910), pp. 785-794.
- [6] C. Bessaga and A. Pełczyński, Selected Topics in Infinite-dimensional Topology, Polish Scientific Publishers, Warszawa 1975.
- [7] D. W. Curtis and J. van Mill, Zero-dimensional countable dense unions of Z-sets in the Hilbert cube, Fund. Math. 118 (1983), pp. 103-108.
- [8] B. Knaster and M. Reichbach, Notion d'homogénéité et prolongements des homéomorphies, Fund. Math. 40 (1953), pp. 180-193.
- [9] J. van Mill, Characterization of some zero-dimensional separable metric spaces. Trans. Amer. Math. Soc. 264 (1981), pp. 205-215.
- [10] and R. G. Woods, Perfect images of zero-dimensional separable metric spaces. Canad. Math. Bull. 25 (1982), pp. 41-47.
- [11] W. Sierpiński, Sur une propriété topologique des ensembles denombrables denses en soi, Fund. Math. 1 (1920), pp. 11-16.

SUBFACULTEIT WISKUNDE VRIJE UNIVERSITEIT De Boelelaan 1081 Amsterdam The Netherlands

Accepté par la Rédaction le 2.2.1981