PROPERTY C AND FINE HOMOTOPY EQUIVALENCES

JAN VAN MILL AND JERZY MOGILSKI

ABSTRACT. We show that within the class of metric σ-compact spaces, proper fine homotopy equivalences preserve property C, which is a slight generalization of countable dimensionality. We also give an example of an open fine homotopy equivalence of a countable dimensional space onto a space containing the Hilbert cube.

1. Introduction. In this note we shall study the behaviour of some “dimensionality properties” of infinite-dimensional spaces under fine homotopy equivalences. Let us recall that a map $f: X \to Y$ is a fine homotopy equivalence if for every open cover \mathcal{U} of Y there exists a map $g: Y \to X$ such that $f \circ g$ is \mathcal{U}-homotopic to id_Y and $g \circ f$ is $f^{-1}(\mathcal{U})$-homotopic to id_X. Let us mention that a closed map $f: X \to Y$ of an ANR X onto an ANR Y is a fine homotopy equivalence if: (a) all fibers of f are contractible or (b) f is a cell-like map, i.e. f is a proper map with fibers of trivial shape (see [Ha1 and To]). We are interested in countable dimensional spaces (a space X is countable dimensional if X is a countable union of finite dimensional sets) and spaces having property C (a metric space X has property C, abbreviated $X \in C$, iff given any sequence $(\varepsilon_n)_{n=1}^{\infty}$ of positive real numbers, there exists an open cover \mathcal{U} of X such that $\mathcal{U} = \bigcup_{n=1}^{\infty} \mathcal{U}_n$, where \mathcal{U}_n is a pairwise disjoint family with $\text{diam}(U) < \varepsilon_n$ for every $U \in \mathcal{U}_n, n \in \mathbb{N}$). Note that each metric, countable dimensional space has property C and that a space containing a topological copy of the Hilbert cube $Q = [-1, 1]^{\infty}$ does not have property C (for details see [Ha2]).

Because fine homotopy equivalences do not raise finite dimension, the following question was posed by D. Henderson and G. Kozlowski.

Question 1. Do cell-like maps, which are fine homotopy equivalences, preserve countable dimension?

In this note we will show that within the class of σ-compact spaces, proper fine homotopy equivalences preserve property C and we give an example of an open fine homotopy equivalence α of the space $\sigma = \langle (x_i) \in l_2: x_i = 0\text{ for all but finitely many } i \rangle$ onto the space $\Sigma = \langle (x_i) \in l_2: \sum_{i=1}^{\infty} |i x_i|^2 < \infty \rangle$. The map $\alpha: \sigma \to \Sigma$ “raises” dimension because σ is countable dimensional but Σ contains the Hilbert cube Q and hence $\Sigma \not\in C$.

Received by the editors May 4, 1983.
1980 Mathematics Subject Classification. Primary 54F45; Secondary 55P10.
Key words and phrases. Fine homotopy equivalence, countable dimension, property C, sigma compact linear spaces, Hilbert cube.
2. The main result. In this section we formulate and prove our main result.

2.1. THEOREM. Let X be a σ-compact metric space with property C and let $f : X \to Y$ be a proper fine homotopy equivalence of X onto a metric space Y. Then $Y \in C$.

PROOF. Because every space which is the countable union of compacta with property C, has property C itself, it is enough to prove that each compact subset of Y has property C. Let A be a compact subset of Y and let $B = f^{-1}(A)$. Let ρ be an extension on Y of a given metric on A. Define a compatible metric d on X by the formula $d(x_1, x_2) = \delta(x_1, x_2) + \rho(f(x_1), f(x_2))$, where δ is a compatible metric on X and $x_1, x_2 \in X$. Observe that $\rho(f(x_1), f(x_2)) \leq d(x_1, x_2)$ for every $x_1, x_2 \in X$. Now choose a sequence $(\varepsilon_n)_{\gamma}^\infty$ of positive real numbers. Since $X \in C$, there is an open cover \mathcal{V} of X such that $\mathcal{V} = \bigcup_{n=1}^\infty \mathcal{V}_n$, where \mathcal{V}_n is a pairwise disjoint family consisting of sets of diameter less than $\varepsilon_n/3$. Because B is compact we can choose a finite subfamily \mathcal{V}' of \mathcal{V} which covers B. Let $n_0 = \min(n \in \mathbb{N} : \mathcal{V}' \subset \bigcup_{m<n} \mathcal{V}_m)$ and let $W = \bigcup \mathcal{V}'$. Then $f(W)$ is a neighborhood of A in Y. Let $g : Y \to X$ be a map such that $\rho(f \circ g, \text{id}_Y) < \eta$, where $\eta = \frac{1}{3} \min(\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_{n_0})$, and $g(A) \subset W$. Then $\mathcal{Q} = g^{-1}(\mathcal{V}')$ is a cover of A. We will show that the cover \mathcal{Q} has the properties required in the definition of property C for the sequence $(\varepsilon_n)_{\gamma}^\infty$ and the metric ρ. To this end, first observe that $\mathcal{Q} = \bigcup_{n=1}^{n_0} g^{-1}(\mathcal{V}_n \cap \mathcal{V}')$ and that $g^{-1}(\mathcal{V}_n \cap \mathcal{V}')$ is a pairwise disjoint family for $n = 1, 2, \ldots, n_0$. Let $V \in \mathcal{V}_n \cap \mathcal{V}'$. We shall prove that $\text{diam}_\rho g^{-1}(V) < \varepsilon_n$. Take $y_1, y_2 \in g^{-1}(V)$ and for $i = 1, 2$ let $x_i = g(y_i)$. Then

$$\rho(y_1, y_2) \leq \rho(y_1, fg(y_1)) + \rho(fg(y_1), fg(y_2)) + \rho(y_2, fg(y_2))$$

$$< 2\eta/3 + \rho(f(x_1), f(x_2))$$

$$\leq 2\eta/3 + d(x_1, x_2) < 2\eta/3 + \varepsilon_n/3 < \varepsilon_n.$$

We conclude that $\text{diam}_\rho g^{-1}(V) < \varepsilon_n$. Observe that the cover $\mathcal{Q}' = \mathcal{Q} \cup \emptyset$ has the properties required in the definition of property C for the sequence $(\varepsilon_n)_{\gamma}^\infty$ and the metric ρ. □

REMARK. In the proof of the theorem we used only the fact that the map f is approximately right invertible, i.e., given an open cover \mathcal{Q} of Y there exists a map $g: Y \to X$ such that $f \circ g$ is $\overline{\mathcal{Q}}$-close to id_Y.

G. Kozlowski [Ko] proved that a proper map $f : X \to Y$ between ANR’s is a fine homotopy equivalence iff f is a hereditary shape equivalence, i.e., $\text{Sh}(f^{-1}(A)) = \text{Sh}(A)$ for each compact set A in Y. This result is used in the proof of the following

2.2. COROLLARY. Let X be a σ-compact space with property C and let $f : X \to Y$ be a hereditary shape equivalence. Then Y has property C.

PROOF. Without losing generality, we can assume that X and Y are compact. By the Freudenthal Expansion Theorem, see e.g. Borsuk [Bo], X is the inverse limit of finite dimensional ANR’s, say $X = \text{lim}_{\leftarrow} (X_n, f_n)$, with each X_n an ANR. Let M be the infinite mapping cylinder of the sequence (X_n, f_n) with a copy of X attached at its end. Then $M \in \text{ANR}$ and $M \in C$ (observe that we added a countable dimensional set to X). Let $\mathcal{E}_f = \{f^{-1}(y) : y \in Y\} \cup \{\text{points}\}$, then \mathcal{E}_f is a cell-like decomposition of M. Let $p_f : M \to M/\mathcal{E}_f$ be the quotient map. Because f is a hereditary shape
equivalence, \(M/\tilde{\sigma}_f \in \text{ANR} \) and \(p_f \) is a fine homotopy equivalence [Ko]. By Theorem 2.1, \(M/\tilde{\sigma}_f \in C \) and since \(Y \) embeds in \(M/\tilde{\sigma}_f, \ Y \in C \). \(\square \)

3. The example. In this section we construct an example of an open fine homotopy equivalence of \(\sigma \) onto \(\Sigma \).

3.1. EXAMPLE. There exists a map \(\alpha: \sigma \to \Sigma \) such that:

(1) \(\alpha \) is "onto",
(2) \(\alpha \) is open,
(3) point inverses of \(\alpha \) are homeomorphic to \(\sigma \),
(4) \(\alpha \) is a fine homotopy equivalence.

PROOF. Let \(\beta: K \to Q \) be an open map of the universal Menger curve \(K \) onto the Hilbert cube such that \(\beta^{-1}(q) \) is homeomorphic to \(K \) for each \(q \in Q \) (see [An]). Let \(2^K_f \) and \(2^Q_f \) denote the hyperspaces of finite subsets of \(K \) and \(Q \), respectively. By [Cu], \(2^K_f \) is homeomorphic to \(\sigma \) and \(2^Q_f \) is homeomorphic to \(\Sigma \). Let \(\alpha: 2^K_f \to 2^Q_f \) be the map defined by \(\alpha((k_1, k_2, \ldots, k_n)) = (\beta(k_1), \beta(k_2), \ldots, \beta(k_n)) \). Then \(\alpha \) satisfies (1)–(4). The conditions (1) and (2) are satisfied because the map \(\alpha \) is open and onto. We will check (3). Take distinct \(q_1, q_2, \ldots, q_n \in Q \), arbitrarily. Observe that

\[
\alpha^{-1}((q_1, q_2, \ldots, q_n)) = \left\{ A_1 \cup A_2 \cup \cdots \cup A_n : A_i \subset \beta^{-1}(q_i) \text{ is finite and nonempty} \right\}
\approx 2^K_f \times 2^K_f \times \cdots \times 2^K_f \approx \sigma^n \approx \sigma.
\]

It is not hard to check that \(\alpha \) is a UV\(\alpha \)-map, i.e., given \(y \in \Sigma \) and a neighborhood \(U \) of \(y \), there is a neighborhood \(V \subset U \) of \(y \) such that \(\alpha^{-1}(V) \) is contractible in \(\alpha^{-1}(U) \).

By [Ha1], \(\alpha \) is a fine homotopy equivalence.

3. Questions. At the end of this note, we state some open problems.

Question 2. Let \(f: X \to Y \) be a closed fine homotopy equivalence such that \(X \in \text{ANR} \). If \(X \in C \), does it follow that \(Y \in C \)? This is true for \(\sigma \)-compact \(X \).

Question 3. Let \(f: W \to V \) be an affine map of a \(\sigma \)-compact convex subset \(W \subset l_2 \) onto a subset \(V \subset l_2 \). If \(W \in C \), does it follow that \(V \in C \)?

REFERENCES

[Ha1] W. E. Haver, Mappings between ANR’s that are fine homotopy equivalences, Pacific J. Math. 58 (1975), 457–461.

SUBFACULTEIT WIJKUNDE, VRIJE UNIVERSITEIT, DE BOELELAAN 1081, AMSTERDAM, THE NETHERLANDS

MATHEMATISCH INSTITUUT, UNIVERSITEIT VAN AMSTERDAM, ROETERSTRAAT 15, AMSTERDAM, THE NETHERLANDS

INSTITUTE OF MATHEMATICS, UNIVERSITY, PKIN, 00 - 901 WARSAW, POLAND

DEPARTMENT OF MATHEMATICS, LOUISIANA STATE UNIVERSITY, BATON ROUGE, LOUISIANA 70803