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Recently, De Groot’s conjecture that cmp X = def X holds for every separable and metrizable 

space X has been negatively resolved by Pol. In previous efforts to resolve De Groot’s conjecture 

various functions like cmp have been introduced. A new inequality between two of these functions 

is established. Many examples which have been constructed so far in relation with the conjecture 

are obtained by attaching a locally compact space to a compact space. An upper bound for the 

compactness deficiency def of the resulting space is given. 

AMS (MOS) Subj. Class.: Primary 54D35, 54F45 

Unless stated otherwise, all spaces under consideration are separable and 

metrizable. 

0. Introduction 

In 1941 J. de Groot [7] proved the following theorem: 

Theorem. A space X is rimcompact (i.e., every point of X has arbitrarily small 

neighborhoods with compact boundary) if and only if X has a compactzjkation F(X) 

such that the dimension of the remainder F(X)\X does not exceed 0. 
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Looking for natural compactifications of manifolds Freudenthal [6] obtained a 

similar result. By this theorem the rimcompactness of a space X may be viewed as 

an internal characterization of the existence of a compactification F(X) of X the 

remainder F(X)\X of which has dimension ~0. The similarity of the definitions 

of rimcompactness and zero-dimensionality then naturally leads to the conjecture 

below. 

For any subset U of a space X let aU denote the topological boundary of U 

in X. 

The compactness degree cmp X of a space X is inductively defined as follows. 

(i) cmp X = -1 if and only if X is compact, 

(ii) cmp X c n if every point of X has arbitrarily small neighborhoods U whose 

topological boundary a U has cmp a U i n - 1. 

The compactness deJiciency def X of a space X is defined as the minimum of the 

numbers dim Y\X where Y varies over all compactifications of X. As all dimension 

functions agree on a separable and metrizable space there is no ambiguity here. 

Various examples of spaces X with cmp X = n or def X = n, n E N, are exhibited 

in [8]. See also [9]. It is a theorem that cmp X < def X for any space X. The problem 

whether the reverse inequality holds was posed by De Groot. 

Conjecture (J. de Groot [7,8]). For every (separable and metrizable) space X the 

equality cmp X = def X holds. 

Recently R. Pol resolved this conjecture in the negative. 

Example (R. Pol. [13]). There exists a (separable and metrizable) space P with 

cmp P=l and defP=2. 

In previous efforts to resolve De Groot’s conjecture various functions like cmp 

were introduced. In Section 1 a new inequality between two of these functions is 

established (Theorem 1). Many examples which have been constructed so far in 

relation with De Groot’s conjecture are obtained by attaching a locally compact 

space to a compact space. In Theorem 2 an upper bound for the compactness 

deficiency of the resulting space is given. This result is of interest as the above- 

mentioned example of Pol as well as an example of Van Mill (see Section 1) are 

of this type. 

1. The inequality Cmp<Skl 

The large inductive compactness degree Cmp is defined in a similar way as the 

large inductive dimension: 

(i) Cmp X = cmp X if X is rimcompact, 

(ii) for n 2 1, Cmp X < n if every non-empty closed set has arbitrarily small 

neighborhoods U whose topological boundary a U has Cmp a U s n - 1. 
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It can be proved [8] that for any space X we have 

cmpX<CmpX<defX. (1) 

This is a splitting of the original problem of De Groot. The space P of Pol’s example 

has Cmp P = 2. So the problem whether Cmp X = def X for every space X is still 

unresolved. Up to now only very little is known about this problem [8]. It should 

be noticed that a similar problem for completeness degree and completeness 

deficiency has been positively resolved [l]. See also [ll] where it is shown that for 

the obtaining of this positive result the restriction to metrizable spaces is essential. 

The analogous problem for a-compactness degree and deficiency, posed by Nagata 

[12], has been resolved in the negative [2]. 

Another splitting of De Groot’s problem is due to Sklyarenko [14]. A space X 

is said to have Sk1 X d n if X has a base 3 = {Bi: i E N} for the open sets such that 

for any n + 1 different indices iO,. . . , i, the intersection aB, I-I. . . n aBim is compact. 

It can be shown that for any space X we have 

cmpXsSklX<defX. (2) 

It should be noticed that slight modifications of the definition of Sk1 X can be found 

in the literature (e.g. [9, 141). At this stage of the development there seems to be 

little point in making a definite choice. 

The inequalities (1) and (2) are interrelated as follows: 

Theorem 1. Let X be a space. Then Cmp X G Sk1 X. 

The proof of Theorem 1 is by induction on Sk1 X. It is shown that, for every 

n 2 1, if Sk1 X s n, then Cmp X s n. The inductive step of the proof is provided by 

the following lemma: 

Lemma. Let X be a space with Sk1 X s n, n 2 1. For any closed set F and any open 

set U with F c U there exists an open set W such that F c W c cl W c U and 

SklaWsn-1. 

Proof. Let 3 = {&: i E N} be a countable base for the open subsets of X such that 

the intersection aB, n . . . n ?JB,~ is compact for any n + 1 different indices iO,. . . , i, E 

N. 

Consider the countable collection 9 = {(C,, Di): i E N} of all pairs of elements of 

3 such that cl Ci c Di and 

clD,c U or DinF=O. (3) 

Observe that {C,: i E N} is an open cover of the space X. Define Vi = 

Di\U (~1 Cj:j=O,. . .) i - l}, i EN. As is easily seen, ‘V = {Vi: i EN} is a locally finite 

open cover of X and for each i E N we have 

av,cHZ,u. . ’ u aC’_l u aD,. (4) 
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Now let W = IJ {V/i: cl V, c U}. Obviously W is an open set and in view of (3) we 

have F c W. Because ‘V is locally finite, cl W c U and 

aWclJ{aVi:cl vie U}. (5) 

As in view of (4) each 86 is the union of a finite collection of closed subsets of 

boundaries of elements of 98, from (5) it follows that a W, for some subset S of N, 

is the union of the locally finite collection { Ej: j E S}, where each Ej is a non-empty 

and closed subset of aZ$ Observe that here and also in the sequel of the proof the 

original indexing of 93 is used. 

For each j E S, a point pj E Ej is selected. Let P = {p,: j E S}. Observe that P is 

closed. Now let 93, = {&: i E IV,}, where N, c N, be the set of all B E W with aB n P = 

0. It is easily seen that 931 is a base for the open subsets of X and that for each 

B E %‘, the boundary 6tB is distinct from any boundary aBj, j E S. So, in particular, 

SnN,=@ 

Let % be a point-finite open cover of X such that each element of 021 meets at 

most finitely many members of {E,: j E S}. Finally let ?& = {Bi: i E IV,}, where N2 = 

N,, be the set of all BE %I such that cl Bc U for some U E % and let Se = 

{Bi n d W: i E IV*}. Obviously %Y is a base for the open sets of a W. We claim that %? 

witnesses the fact that Sk1 a W s n - 1. To this end, choose n different indices 

lo, . . . , ‘“-1 from N2 and consider the intersection T= daw(Bbn 8 W) n. . . n 

aaw( Bin_, n ~3 W). We shall show that T is compact. It is not hard to see that T is a 

closed subset of the set R = aB, n. . . n aBin_, n d W. As each cl Bi, c U for some 

UE%,j=O,..., n - 1, and 021 is point-finite and each member of % meets at most 

finitely many E,, where j E S, it follows that R = IJ {R n E,: j E F} for some finite 

subset F of S. For each j E F, the set R n Ej is a closed subset of “BP NOW R n aBj 

is compact, because the n + 1 indices j, io, . . . , in_, are distinct. It follows that R 

and, consequently, T are compact. 0 

2. An upper bound for def 

In the following theorem a situation is discussed which occurs in many examples 

which have been constructed in relation with De Groot’s problem (e.g. [8, 11, 131). 

Theorem 2. Let X = A v B, where A is closed and B is locally compact. Then def X s 

dimA+l. 

Remark. Under the conditions stated in the theorem one also has cmp X s dim A + 1. 

This follows from a much more general result [8, Theorem 3.3.21: If X = Au B, 

then cmp X c dim A + cmp B + 1. It also follows from Theorem 2 of course since 

cmp X s def X. 

Preliminary observation. Before embarking upon the proof of Theorem 2 we first 

make the following observation. It was shown by Bothe [3] that each n-dimensional 
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compacturn can be embedded in an (n + 1) -dimensional compact absolute retract. 

In Krasinkiewicz [lo] an elementary proof of this fact was presented. In fact, it 

follows from the proof in [lo], that if A is an n-dimensional compactum, then there 

is an (n + 1)-dimensional compact absolute retract Y, containing A as a subspace, 

andahomotopyH:Y~I~YsuchthatH,=idandH,(Y)nA=e)foralltE(O,l]. 

We need the following lemma: 

Lemma. Let X = A v B, where A is closed and dim A s n. Then there is a compactijica- 

tion 8X of X such that the closure of A in 6X is a compacturn of dimension in. 

Proof. Let -yA be a compactification of A such that dim ?A = dim A [5, 1.7.21. Let 

UX be any compactification of X. Assume that -yA c Q, where Q denotes the Hilbert 

cube. Since Q is an absolute retract, the embedding e: A + yA = Q can be extended 

to a mapping 5: X + Q. The mapping h: X + UX x Q, defined by h(x) = (x, e’(x)), is 

a topological embedding, which sends X onto the graph G of the mapping e’: X + Q 

[4,2.3.22]. Now X is identified with its topological copy G. Under this identification 

the action of e’ corresponds to the action of the restriction rr*lG, where 7~~ is the 

projection of aX x Q onto the second coordinate space. Let y’X be the closure of 

G in @X x Q. In addition, let y’A be the closure of A in y’X. It is clear that f = v21-y’A 

maps y’A onto yA. Let 6X be the adjunction space y’X uryA [4, p. 1271. It is 

easily seen that the quotient mapping y’X 0 -yA + 6X is a perfect mapping. It follows 

that 6X is a metrizable compacturn which satisfies all properties required. 0 

Proof of Theorem 2. Let X, A and B be as mentioned in the theorem and let 6X 

be as in the above lemma. In addition, let A’ denote the closure of A in 6X. For 

convenience, assume that A n B = 0. Since A’ is a compacturn of dimension at most 

n, we can find a compact absolute retract Y and a homotopy H such as in the 

preliminary observation. As B is locally compact and open in X, B is open in 6X 

[4,3.5.8]. Because Y is an absolute retract containing A’ as a subspace, the identity 

mapping of A’ can be extended to a continuous mapping f: 8X\ B + Y. Define 

f: 6X\B+ Ybyj(x) = H,(f(x)), w h ere t = d(x, A’). Clearly Tis continuous, whence 

a perfect mapping since 6X\B is compact. Observe that flA’= id and f(x)a A’ 

whenever x rZ A’. Now let yX = 6X uif(GX\B), the adjunction space [4, p. 1271. 

Observe that by the adjunction the set 6X\B is replaced by J( 6X\B) and that 

dim f( SX\ B) s n + 1. Because f is closed, the quotient mapping 6X @f( SX\ B) + 

yX is closed, whence perfect. It follows that yX is a (metrizable) compactification 

of X and dim(-yX\X)<dim~(SX\B)~n+l. 0 

Remarks. Let X be an n-simplex with an open face D removed. Write X = Au B, 

where A is the boundary of D and B = X\A. Then X, A and B satisfy the 

requirements of Theorem 2, whence def X s dim A + 1 = n. Actually def X = n [9]. 

This shows that the upper bound for def in Theorem 2 cannot be improved. 
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The example in Van Mill [ 1 l] also shows that in Theorem 2 the metrizability of 

X is essential. 
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