A METHOD FOR CONSTRUCTING ORDERED CONTINUA

Klaas Pieter HART and Jan van MILL

Subfaculteit Wiskunde en Informatica, Vrije Universiteit, Amsterdam, Netherlands

We present a method for constructing ordered continua. We illustrate our method by constructing (i) a new order-homogeneous non-reversible continuum, and (ii) an ordered continuum with a minimal set of continuous self-maps.

```
AMS (MOS) Subj. Class.: 54B25, 54C05, 54F05, 54F20, 54G15ordered continuum<br/>non-reversibleorder-homogeneous<br/>trivial continuous maps
```

0. Introduction

In recent years some types of topological spaces were constructed having only the 'necessary'' continuous self-maps (of a special kind). Examples of this type are: a topological group having no other continuous self-maps other than the translations and the constant maps [5] and an infinite-dimensional inner-product space with only trivial bounded linear operators (an operator A is trivial if for some scalar λ , $A - \lambda I$ has finite dimensional range) [6]. For older results of this type see [3, 7]. We pursue this line a little further by constructing an ordered continuum with only the necessary continuous self-maps: for an explanation of 'necessary' in this context see Section 5. Actually our main result is a general method for constructing ordered continua, of which the above-mentioned continuum is an illustration. A second example is presented in Section 4 (this example came first in time), which is an order-homogeneous non-reversible ordered continuum. The first (real) example of this type was constructed by Shelah [8]. Our example is totally different from Shelah's (see Section 4 for an explanation) and, in our opinion, somewhat simpler.

The paper is organized as follows: Section 1 contains the necessary definitions and preliminaries. Section 2 concerns special subsets of the unit interval [0, 1]. The construction presented there is very much like the one in [4]. In Section 3 we show how to construct ordered continua from families of subsets of [0, 1]. In Sections 4 and 5 we construct the continua mentioned above using the method of Section 3, with input from Section 2.

1. Definitions and preliminaries

Our notation and terminology is fairly standard, see e.g. [1, 2].

1.0. An ordered continuum is a compact, connected linearly ordered topological space, equivalently, a complete and densely linearly ordered set equipped with the order topology. Two ordered continua K and L are *isomorphic* if there exists an order-preserving bijection $f: K \to L$; if there exists an order-reversing bijection $f: K \to L$ then K and L are *anti-isomorphic*.

Usually the ordering relation is denoted by \leq , we are sure this will not cause confusion. There is one exception: if $\prod_{i \in \omega} X_i$ is a product of linearly ordered sets then $\leq |$ denotes the lexicographic order: $x \leq | y$ iff for some $n, x_i = y_i$ for $i \in n$ and $x_n \leq y_n$.

1.1. A set $A \subseteq [0, 1]$ is a *BB-set* if A and its complement intersect every Cantor set of [0, 1] (BB stands for *Bi-Bernstein*).

1.2. We fix some notation:

(i) if X is a set then $X^{<\omega}$ denotes $\bigcup_{n \in \omega} X^n$,

(ii) If $x \in X^{\omega}$ then $x \upharpoonright n = \langle x_0, \ldots, x_{n-1} \rangle$,

(iii) If s is a finite sequence of points, say $\langle s_0, \ldots, s_{n-1} \rangle$, and x is a point then $\langle s, x \rangle = \langle s_0, \ldots, s_{n-1}, x \rangle$,

(iv) $\langle \rangle$ denotes the empty sequence,

(v) finally, the symbol \approx is used to denote both homeomorphism of topological spaces and isomorphism of ordered sets.

2. Subsets of [0, 1]

This section contains some results on the existence of some special subsets of [0, 1] and their properties. We start with our principal tool for constructing various subsets of [0, 1]. For convenience we adopt the following conventions: if \mathscr{G} is a group of autohomeomorphisms of \mathbb{R} then a set A, where $A \subseteq [0, 1]$, will be called \mathscr{G} -invariant if for all $a \in A$, $\mathscr{G}(a) \cap [0, 1]$ where $\mathscr{G}(a) = \{g(a): g \in \mathscr{G}\}$. Let f be a function such that dom f and range f are subsets of \mathbb{R} . If \mathscr{G} is a group of autohomeomorphisms of \mathbb{R} define $S(f, \mathscr{G}) = \{x \in \text{dom } f: f(x) \notin \mathscr{G}(x)\}$. We call $f \mathscr{G}$ -singular if $f(S(f, \mathscr{G}))$ has cardinality 2^{ω} . For every \mathscr{G} -singular f we choose a set $C(f, \mathscr{G}) \subseteq \mathbb{R}$ such that $f \upharpoonright C(f, \mathscr{G})$ is one-to-one while moreover $f(C(f, \mathscr{G})) = f(S(f, \mathscr{G}))$. Observe that the cardinality of $C(f, \mathscr{G})$ equals 2^{ω} . The sets $C(f, \mathscr{G})$ remain fixed throughout the remaining part of this paper.

2.0. Theorem. Let \mathscr{G} be a countable group of autohomeomorphisms of \mathbb{R} , let \mathscr{F} be a family of functions such that $|\mathscr{F}| \leq 2^{\omega}$ and dom f, range $f \subseteq [0, 1]$ for all $f \in \mathscr{F}$, and let B be a subset of [0, 1] of cardinality less than 2^{ω} . Then there exists a pairwise disjoint family $\{A_{\alpha}\}_{\alpha \in 2^{\omega}}$ of \mathscr{G} -invariant BB-subsets of [0, 1] which all miss B and a BB-set $V \subseteq [0, 1] \setminus \bigcup_{\alpha \in 2^{\omega}} A_{\alpha}$ such that if $f \in \mathscr{F}$ is \mathscr{G} -singular then $|C(f, \mathscr{G}) \cap A_{\alpha}| = 2^{\omega}$ and $|f(C(f, \mathscr{G}) \cap A_{\alpha}) \cap V| = 2^{\omega}$, for every $\alpha \in 2^{\omega}$.

Proof. We assume of course that every $f \in \mathscr{F}$ is \mathscr{G} -singular. Let $\{f_{(\alpha,\beta)}: \langle \alpha, \beta \rangle \in 2^{\omega} \times 2^{\omega}\}$ be a listing of \mathscr{F} such that each function occurs 2^{ω} times in each row $\{f_{\langle \alpha,\beta \rangle}: \beta \in 2^{\omega}\}$. Let $\{K_{\langle \alpha,\beta \rangle}: \langle \alpha, \beta \rangle \in 2^{\omega} \times 2^{\omega}\}$ be a similar listing of the set of all Cantor sets in [0, 1]. In addition, let $B' = \bigcup_{b \in B} \mathscr{G}(b)$. Observe that $|B'| < 2^{\omega}$.

We shall find points $x(\alpha, \beta, 0)$, $x(\alpha, \beta, 1)$, $y(\alpha, \beta, 0)$, $y(\alpha, \beta, 1) \in [0, 1] \setminus B'$ such that:

(1) $x(\alpha, \beta, 0) \in C(f_{(\alpha,\beta)}, \mathcal{G}) \text{ and } y(\alpha, \beta, 0) = f_{(\alpha,\beta)}(x(\alpha, \beta, 0)).$

(2) $x(\alpha, \beta, 1), y(\alpha, \beta, 1) \in K_{\langle \alpha, \beta \rangle}$.

(3) if $(\alpha, \beta, i) \neq (\alpha', \beta', i')$, where $\alpha, \beta, \alpha', \beta' \in 2^{\omega}$ and $i, i' \in 2$, then the collection $\{\mathscr{G}(x(\alpha, \beta, i)), \mathscr{G}(x(\alpha', \beta', i')), \mathscr{G}(y(\alpha, \beta, i)), \mathscr{G}(y(\alpha', \beta', i'))\}$ is pairwise disjoint. We then let

$$A_{\alpha} = \bigcup \{ \mathscr{G}(x(\alpha, \beta, i)) \colon \beta \in 2^{\omega}, i \in 2 \} \cap [0, 1], \quad \alpha \in 2^{\omega}, i \in 2 \}$$

and

$$V = \{ y(\alpha, \beta, i) \colon \langle \alpha, \beta \rangle \in 2^{\omega} \times 2^{\omega}, i \in 2 \}.$$

By definition the A_{α} are G-invariant, by (2) every A_{α} meets every Cantor set of [0, 1], hence the properties of $A_{\alpha+1}$ show that A_{α} is a BB-set, for by (3)

$$\alpha \neq \gamma \rightarrow A_{\alpha} \cap A_{\gamma} = \emptyset.$$

By (3) it also follows that V intersects every Cantor set in [0, 1] and misses every A_{α} , whence V is also a BB-set. Let $f \in \mathcal{F}$ and $\alpha \in 2^{\omega}$. Let $J(f, \alpha) = \{\beta : f = f_{\langle \alpha, \beta \rangle}\}$. Then $C(f, \mathcal{G}) \cap A_{\alpha} \supseteq \{x(\alpha, \beta, 0) : \beta \in J(f, \alpha)\}$ and this last set has cardinality 2^{ω} , so $|C(f, \mathcal{G}) \cap A_{\alpha}| = 2^{\omega}$. Furthermore, $f(C(f, \mathcal{G}) \cap A_{\alpha}) \cap V \supseteq \{y(\alpha, \beta, 0) : \beta \in J(f, \alpha)\}$ and so $|f(C(f, \mathcal{G}) \cap A_{\alpha}) \cap V| = 2^{\omega}$. So $\{A_{\alpha}\}_{\alpha \in 2^{\omega}}$ is as required.

Let us construct the points $x(\alpha, \beta, i)$, $y(\alpha, \beta, i)$ for α , $\beta \in 2^{\omega}$ and $i \in 2$. Fix a well-ordering <| of $2^{\omega} \times 2^{\omega}$ in type 2^{ω} . Assume that $\langle \alpha, \beta \rangle \in 2^{\omega} \times 2^{\omega}$ and that $x(\gamma, \delta, i)$ and $y(\gamma, \delta, i)$ are found for $\langle \gamma, \delta \rangle < |\langle \alpha, \beta \rangle$ and $i \in 2$, such that (1), (2) and (3) are fulfilled for all $\langle \gamma, \delta \rangle < |\langle \alpha, \beta \rangle$. Let

$$H = \bigcup \{ \mathscr{G}(x(\gamma, \delta, i)) : \langle \gamma, \delta \rangle < | \langle \alpha, \beta \rangle, i \in 2 \} \cup \bigcup \{ \mathscr{G}(y(\gamma, \delta, i)) : \langle \gamma, \delta \rangle < | \langle \alpha, \beta \rangle \}.$$

Then $|H| < 2^{\omega}$. Put $f = f_{(\alpha,\beta)}$. Now $|C(f, \mathcal{G})| = 2^{\omega}$ and $f \upharpoonright C(f, \mathcal{G})$ is one-toone so $|x \in C(f, \mathcal{G}): x, f(x) \notin H \cup B'\}| = 2^{\omega}$. Pick $x(\alpha, \beta, 0)$ from this set and let $y(\alpha, \beta, 0) = f(x(\alpha, \beta, 0))$. Furthermore, $|K_{(\alpha,\beta)}| = 2^{\omega}$ and the cardinality of $H \cup B' \cup \mathcal{G}(x(\alpha, \beta, 0)) \cup \mathcal{G}(y(\alpha, \beta, 0))$ is less than 2^{ω} , so we can pick $x(\alpha, \beta, 1) \in K_{(\alpha,\beta)} \setminus (H \cup B' \cup \mathcal{G}(x(\alpha, \beta, 0)) \cup \mathcal{G}(y(\alpha, \beta, 0)))$ and $y(\alpha, \beta, 1) \in$ $K_{(\alpha,\beta)} \setminus (H \cup B' \cup \mathcal{G}(x(\alpha, \beta, 0) \cup \mathcal{G}(y(\alpha, \beta, 0))).$

Now for $z = x(\alpha, \beta, 0)$, $x(\alpha, \beta, 1)$, $y(\alpha, \beta, 0)$, or $y(\alpha, \beta, 1)$ we have $z \notin H \cup B'$ so since \mathscr{G} is a group, $\mathscr{G}(z) \cap (H \cup B') = \emptyset$. It is also easily seen that the collection $\{\mathscr{G}(x(\alpha, \beta, 0)), \mathscr{G}(x(\alpha, \beta, 1)), \mathscr{G}(y(\alpha, \beta, 0)), \mathscr{G}(y(\alpha, \beta, 1))\}$ is pairwise disjoint. This completes the construction. \Box **2.1. Corollary.** Let \mathscr{G} be a countable group of autohomeomorphisms of \mathbb{R} , let \mathscr{F} be a family of functions such that $|\mathscr{F}| \leq 2^{\omega}$ and dom f, range $f \subseteq [0, 1]$ for all $f \in \mathscr{F}$. Then there exists a family $\{A_{\alpha}\}_{\alpha \in 2^{\omega}}$ of \mathscr{G} -invariant BB-subsets of [0, 1] with the property that for distinct α , $\beta \in 2^{\omega}$ we have that $A_{\alpha} \cap A_{\beta} = \mathscr{G}(0) \cup \mathscr{G}(1)$, and a BB-set $V \subseteq [0, 1] \setminus \bigcup_{\alpha \in 2^{\omega}} A_{\alpha}$ such that if $f \in \mathscr{F}$ is \mathscr{G} -singular then $|C(f, \mathscr{G}) \cap A_{\alpha}| = 2^{\omega}$ and $|f(C)f, \mathscr{G}) \cap A_{\alpha} \cap V| = 2^{\omega}$, for every $\alpha \in 2^{\omega}$.

Proof. Apply Theorem 2.0 with $B = \mathscr{G}(0) \cup \mathscr{G}(1)$ to get V and pairwise disjoint A_{α} 's. Then $\{A_{\alpha} \cup (\mathscr{G}(0) \cup \mathscr{G}(1)): \alpha \in 2^{\omega}\}$ and $V \setminus (\mathscr{G}(0) \cup \mathscr{G}(1))$ are as required. \Box

2.2. Remark. Let $\{A_{\alpha}\}_{\alpha \in 2^{\omega}}$ and V be as in Theorem 2.0 or Corollary 2.1. In addition, let $J \subseteq 2^{\omega}$ be non-empty and put $A_J = \bigcup_{\alpha \in J} A_{\alpha}$. Then the properties of V show that A_J is a BB-set, and also if $f \in \mathcal{F}$ is \mathcal{G} -singular then $|f(A_J) \cap V| = 2^{\omega}$. Simply pick $\alpha \in J$ then $f(A_{\alpha}) \cap V \subseteq f(A_J) \cap V$.

We now give some applications of Theorem 2.0 to get the sets we need to build our continua.

2.3. Example. There exists a BB-set $A \subseteq [0, 1]$ containing 0 and 1 such that $[0, 1] \setminus A$ is isomorphic to each interval $(x, y) \setminus A$ and such that if $f: A \rightarrow [0, 1]$ is monotonically non-increasing and $|\text{range } f| = 2^{\omega}$ then $|f(A) \setminus A| = 2^{\omega}$.

Proof. Let \mathscr{G} be the group of all homeomorphisms of \mathbb{R} of the form $x \to px + q$, with $p, q \in Q$ and p > 0 (as usual, Q denotes the set of rational numbers). Let

 $\mathcal{F} = \{f: [0, 1] \rightarrow [0, 1]: f \text{ is monotonically non-increasing}\}$

Observe that \mathscr{G} is a countable group and that $|\mathscr{F}| \leq 2^{\omega}$ since each $f \in \mathscr{F}$ has only countably many points of discontinuity. Let $\{A_{\alpha}\}_{\alpha \in 2^{\omega}}$ and V be as in Corollary 2.1, and put $A = A_0$. Observe that 0, $1 \in A$.

(1) Let $x, y \in [0, 1]$ with x < y. If $x, y \in Q$ then $\varphi: t \to (y-x)t + x$ maps $[0, 1] \setminus A$ isomorphically onto $(x, y) \setminus A$ (G-invariance of $[0, 1] \setminus A$). Otherwise let $\langle q_n \rangle_{n \in \mathbb{Z}}$ be a sequence in $(x, y) \cap Q$ such that $q_n \to x$ if $n \to -\infty$ and $q_n \to y$ if $n \to \infty$. All intervals with rational endpoints are isomorphic so we can map $(q_0, q_1) \setminus A$ isomorphically onto $(1/2, 2/3) \setminus A$, $(q_{-1}, q_0) \setminus A$ onto $(1/3, 1/2) \setminus A$, etc. The combination of those mappings yields an isomorphism between $(x, y) \setminus A$ and $[0, 1] \setminus A$.

(2) Let $f: A \to [0, 1]$ be non-decreasing and extend f to $\overline{f}: [0, 1] \to [0, 1]$ which is non-increasing, e.g., $\overline{f}(x) = \sup\{f(a): a \in A, a \leq x\}$. Then $\overline{f} \in \mathcal{F}$. Now if $|\text{range } f| = 2^{\omega}$ then $|\text{range } \overline{f}| = 2^{\omega}$ so we have a set $C \subseteq [0, 1]$ of cardinality 2^{ω} on which f is one-to-one. The set $\{x \in [0, 1]: f(x) \in \mathcal{G}(x)\}$ is countable: every $g \in \mathcal{G}$ is strictly increasing so for each $g \in \mathcal{G}, g(x) = \overline{f}(x)$ for at most one $x \in [0, 1]$. So without loss of generality $\overline{f}(x) \notin \mathcal{G}(x)$ for every $x \in C$. Since $f \upharpoonright C$ is one-to-one, we conclude that \overline{f} is \mathcal{G} -singular. But then $|C(\overline{f}, \mathcal{G}) \cap A| = 2^{\omega}$ and $|\overline{f}(A) \setminus A| = 2^{\omega}$, since $\overline{f}(A) \cap V \subseteq \overline{f}(A) \setminus A$. Since \overline{f} extends f, we find that $|f(A) \setminus A| = 2^{\omega}$. For later use we mention the following. If $f:(x, y) \cap A \to [0, 1]$ is non-increasing and $|\text{range } f| = 2^{\omega}$ then $|f((x, y) \cap A) \setminus A| = 2^{\omega}$. This follows from the observation that $(x, y) \cap A$ is isomorphic to $A \setminus \{0, 1\}$ (same proof as for $[0, 1] \setminus A$).

We now exhibit BB-sets which have practically no non-trivial monotone self-maps.

2.4. Example. There exists a family $\{A_{\alpha}\}_{\alpha \in 2^{\omega}}$ of BB-sets of [0, 1] and a set $V \subseteq [0, 1] \setminus \bigcup_{\alpha \in 2^{\omega}} A_{\alpha}$ such that:

(1) $\alpha \neq \beta \rightarrow A_{\alpha} \cap A_{\beta} = \{0, 1\}.$

(2) If $f:(x, y) \cap A_{\alpha} \to [0, 1]$ is non-decreasing or non-increasing and if for some $C \subseteq (x, y) \cap A, |C| = 2^{\omega}, f \upharpoonright C$ is one-to-one and $\forall x \in C, f(x) \neq x$, then $|f(A_{\alpha}) \cap V| = 2^{\omega}$.

Proof. Apply Corollary 2.1 with $\mathcal{G} = \{id\}$ and

 $\mathscr{F} = \{f: f \text{ is non-decreasing or non-increasing, dom } f \text{ is a closed}$ subinterval of [0, 1] and range $f \subseteq [0, 1]\}.$

Corollary 2.1 gives us $\{A_{\alpha}\}_{\alpha \in 2^{\omega}}$ and V such that the A_{α} 's pairwise intersect in $\mathscr{G}(0) \cup \mathscr{G}(1) = \{0, 1\}$. The rest follows as in Example 2.3. \Box

We conclude with a proposition on monotone maps from BB-sets.

2.5. Lemma Let $A \subseteq [0, 1]$ be a BB-set and $f: A \rightarrow X$ a monotone map where X is any linearly ordered set. Then $|f(A)| \leq \omega$ or $|f(A)| = 2^{\omega}$.

Proof. Let $B = \{x: f^{-1}(x) \text{ contains more than one point}\} = \{x: f^{-1}(x) \text{ is a non-degenerate interval of } A\}$. Then $|B| \le \omega$ since A is separable. Let $G = [0, 1] \setminus \bigcup_{x \in B} \overline{f^{-1}(x)}$ (closure in [0, 1]). Then G is a G_{δ} -subset of [0, 1] and f is one-to-one on $G \cap A$ and

 $f(A) = B \cup f(G \cap A).$

Now either $|G| \le \omega$ in which case $|f(A)| \le \omega$, or $|G| = 2^{\omega}$ in which case $|G \cap A| = 2^{\omega}$ (since A is a BB-set) so $|f(A)| = 2^{\omega}$. \Box

2.6. Proposition. Let $A \subseteq [0, 1]$ be a BB-set and let

 $X_A = \{ \langle x, i \rangle \in [0, 1] \times \{0, 1\} : x \in A \to i = 0 \}$

ordered lexicographically, i.e. X_A is the compact LOTS obtained by splitting the points of $[0,1]\setminus A$. Let $f: X_A \to X$ be a monotone map where X is any linearly ordered set. Then $|f(X_A)| \leq \omega$ or $|f(X_A)| = 2^{\omega}$.

Proof. By Lemma $2.5, |f(A)| \le \omega$ or $|f(A)| = 2^{\omega}$. We show that $|f(X_A)| \le \omega$ if $|f(A)| \le \omega$. Let $F = \bigcup_{z \in f(A)} f^{-1}(z) \cap A$ (closure in [0, 1]). In addition, let $B = \{x \in [0, 1]: x \text{ is a boundary point of some } f^{-1}(z) \cap A, z \in f(A)\}$ and $C = [0, 1] \setminus F$. Then B and C are countable: B is countable since f(A) is countable and each $f^{-1}(z) \cap A$ can have

at most two boundary points and C is a G_{δ} -set disjoint from A. Let $x \in [0, 1] \setminus A$ and suppose $f(\langle x, 0 \rangle) \notin f(A)$ or $f(\langle x, 1 \rangle) \notin f(A)$. Then $x \notin f^{-1}(z) \cap A$ for all $z \in f(A)$, since otherwise by monotonicity of f, we have that $f(\langle x, 0 \rangle) = f(\langle x, 1 \rangle) = z$. So $x \in B \cup$ C. We conclude that

$$f(X_A) = f(A) \cup \bigcup \{ \{ f(\langle x, 0 \rangle), f(\langle x, 1 \rangle) \} \colon x \in B \cup C \}$$

is countable.

2.7. Remark. For later use we note that also $\{x \in [0, 1] \setminus A: f(\langle x, 0 \rangle) \neq f(\langle x, 1 \rangle)\}$ is contained in $B \cup C$ and that this set is countable too.

3. Continua from subsets of [0, 1]

In this section we associate with each collection \mathcal{A} of subsets of [0, 1] having the property that 0, $1 \in A$ for every $A \in \mathcal{A}$, an ordered continuum $L_{\mathcal{A}}$. For later use we will identify some special subspaces of these continua.

The idea is as follows: start with [0, 1] and let $A \subseteq [0, 1]$ contain 0 and 1, replace each point of $[0, 1] \setminus A$ by [0, 1], inside of each of these copies of [0, 1] take a set containing 0, 1 and replace the points in the complement by [0, 1], etc. This gives an inverse sequence of ordered continua with monotone bonding maps (collapsing the inserted intervals) whose limit will be the ordered continuum $L_{\mathcal{A}}$ (\mathcal{A} is the set of chosen subsets of [0, 1]). For notational purposes we shall give a different description of $L_{\mathcal{A}}$ as a subset of the lexicographically ordered Hilbert cube $[0, 1]^{\omega}$.

3.0 Definition. Let \mathscr{A} be a collection of subsets of [0, 1] with the property that 0, $1 \in A$ for every $A \in \mathscr{A}$. Assume that \mathscr{A} is indexed (not necessarily faithfully) by $[0, 1]^{<\omega}$. We put

 $L_{\mathcal{A}} = \{ \mathbf{x} \in [0, 1]^{\omega} : \text{ if } x_n \in A_{x \upharpoonright n} \text{ for some } n \text{ then } x_i = 0 \text{ for } i > n \};$

we order $L_{\mathcal{A}}$ lexicographically.

3.1. Lemma. $L_{\mathcal{A}}$ is an ordered continuum.

Proof. We have to show that $\langle |$ is a dense and complete order on $L_{\mathscr{A}}$. We first make the following remark: if $x \in L_{\mathscr{A}}$ and $n \in \omega$ then $x^n = \langle x \upharpoonright n, 0, 0, 0, \dots \rangle \in L_{\mathscr{A}}$. For if $x_i \in A_{x \upharpoonright i}$ for some $i \in n$ then $x^n = x \in L_{\mathscr{A}}$, and otherwise, since $x_i^n = 0$ for $i \ge n$, we have $(x_i^n \in A_{x^n \upharpoonright i} \rightarrow x_j^n = 0)$ for $j > i \ge n$; so $x^n \in L_{\mathscr{A}}$.

(1) < is dense.

Let x < | y, say $x \upharpoonright n = y \upharpoonright n$ and $x_n < y_n$ for some *n*. Since $y_n \neq 0$ we have $y_i \notin A_{y \upharpoonright i}$ for $i \in n$. Pick $z \in (x_n, y_n)$. Then $z = \langle x \upharpoonright n, z, 0, 0, \ldots \rangle \in L_{\mathcal{A}}$, by the same argument as above and x < | z < | y.

(2) < is complete.

Let $C \subseteq L_{\mathscr{A}}$. If $C = \emptyset$ then $\mathbf{0} = \langle 0, 0, 0, \ldots \rangle = \min L_{\mathscr{A}} = \sup C$. So assume $C \neq \emptyset$. We show that the usual strategy for finding a supremum in $[0, 1]^{\omega}$ also yields a supremum in $L_{\mathscr{A}}$. Let $C_0 = \{x_0 : x \in C\}$ and $c_0 = \sup C_0$. Now if $c_0 \notin C_0$ then $\langle c_0, 0, 0, \ldots \rangle = \sup C$. Observe that this point belongs to $L_{\mathscr{A}}$. If $c_0 \notin C_0$ let $C_1 = \{x_1 : x \in C, x_0 = c_0\}$ and $c_i = \sup C_i$. If $c_1 \notin C_1$ then $\langle c_0, c_1, 0, 0, \ldots \rangle = \sup C$; observe that $\langle c_0, c_1, 0, 0, \ldots \rangle \in L$. Continue this process. If the process stops at *n* then $\langle c_0, c_1, \ldots, c_n, 0, 0, \ldots \rangle = \sup C$. Observe that this point belongs to $L_{\mathscr{A}}$. If the process does not stop then $\langle c_0, c_1, \ldots, c_n, \ldots \rangle = \max C$.

In case \mathscr{A} has only one element A we will write L_A instead of $L_{\{A\}}$.

We will now study some subspaces of $L_{\mathcal{A}}$ which we will encounter when checking the various properties of $L_{\mathcal{A}}$. Although some of the results are valid for general subsets of [0, 1], we assume in view of our applications that every $A \in \mathcal{A}$ is a BB-set containing 0 and 1.

3.2. Definition. Let $B_{\mathcal{A}} = \{ x \in L_{\mathcal{A}} : \forall n \in \omega, x_n \notin A_{x \upharpoonright n} \}.$

3.3. Lemma. As a subspace of $L_{\mathcal{A}}$, $B_{\mathcal{A}}$ is homeomorphic to the zero-dimensional Baire space of weight 2^{ω} (i.e. the product of countably many discrete spaces of cardinality 2^{ω}).

Proof. For each $s \in [0, 1]^{<\omega}$ let $f_s: [0, 1] \setminus A_s \to \mathbb{R}$ be a bijection. Define $f: B_{\mathscr{A}} \to \mathbb{R}^{\omega}$ by

$$f(\mathbf{x}) = \langle f_{\langle \cdot \rangle}(\mathbf{x}_0), f_{\langle \mathbf{x}_0 \rangle}(\mathbf{x}_1), \ldots, f_{\mathbf{x} \upharpoonright \mathbf{n}}(\mathbf{x}_n), \ldots \rangle.$$

It is straightforward to check that f is a bijection. For $x \in B_{\mathcal{A}}$ and $n \in \omega$ let

$$B(\mathbf{x}, \mathbf{n}) = \{ \mathbf{y} \in B_{\mathscr{A}} \colon \mathbf{y} \upharpoonright \mathbf{n} = \mathbf{x} \upharpoonright \mathbf{n} \}.$$

For $x \in \mathbb{R}^{\omega}$ and $n \in \omega$ let

$$C(\mathbf{x}, n) = \{ \mathbf{y} \in \mathbb{R}^{\omega} \colon \mathbf{y} \upharpoonright n = \mathbf{x} \upharpoonright n \}.$$

The collection $\{C(x, n): x \in \mathbb{R}^{\omega}, n \in \omega\}$ generates the Baire-space topology on \mathbb{R}^{ω} , furthermore f(B(x, n)) = C(f(x), n) for all x and n, so $\{B(x, n): x \in B_{\mathcal{A}}, n \in \omega\}$ induces this same topology on $B_{\mathcal{A}}$. On the other hand, define for $x \in B_{\mathcal{A}}$ and $n \in \omega$ the points x(n) and y(n) by

$$\begin{aligned} \mathbf{x}(n) &\upharpoonright n = \mathbf{y}(n) \upharpoonright n = \mathbf{x} \upharpoonright n; \quad \mathbf{x}(n)_n = 0, \quad \mathbf{y}(n)_n = 1; \\ \mathbf{x}(n)_i &= \mathbf{y}(n)_i = 0 \quad \text{for } i > n. \end{aligned}$$

Then $B(\mathbf{x}, n) = (\mathbf{x}(n), \mathbf{y}(n)) \cap B_{\mathcal{A}}$ for all *n*, while moreover

$$x = \sup_{n \in \omega} x(n)$$
 and $x = \inf_{n \in \omega} y(n)$.

So $\{B(x, n): x \in B_{\mathcal{A}}, n \in \omega\}$ generates the subspace topology of $B_{\mathcal{A}}$. \Box

Again $B_A = B_{\{A\}}$. The space B_A will be used in Section 4.

3.4. Definition. Let $n \in \omega$ and $s \in [0, 1]^n$ such that $s_i \notin A_{s \uparrow i}$ for $i \in n$. Put

$$I_{s} = \{ x \in L_{A} : x \upharpoonright n = s \} = [\langle s, 0, 0, \ldots \rangle, \langle s, 1, 0, 0, 0, \ldots \rangle]$$

and

$$A(s) = \{ x \in I_s \colon x_n \in A_s \}.$$

3.5. Lemma. (1) A(s) and A_s are isomorphic and homeomorphic.

(2) $\overline{A(s)}$ is isomorphic and homeomorphic to the LOTS X_{A_s} defined in Remark 2.7.

Proof. (1) The map $f_s: A(s) \rightarrow A_s$ defined by $f_s(x) = x_n$ is both an isomorphism and a homeomorphism.

(2) The same holds for $g_s: \overline{A(s)} \to X_{A_s}$ defined by $g_s(x) = \langle x_n, x_{n+1} \rangle$, for it is easily seen that $\overline{A(s)} = \{x \in I_s: (x_n \in A_s) \lor (x_n \notin A_s \land x_{n+1} \in \{0, 1\})\}$. \Box

If \mathscr{A} has only one element A we use A_s to denote A(s). This occurs only in Section 4.

3.6. Remark. Notice that in Lemma 3.5 $\overline{A(s)} \setminus A(s)$ is homeomorphic to

$$([0,1]\backslash A_s \times \{0\}) \cup ([0,1]\backslash A_s \times \{1\}) \subseteq X_{A_{s'}}$$

As both $[0, 1] \setminus A_s \times \{0\}$ and $[0, 1] \setminus A_s \times \{1\}$ carry the Sorgenfrey topology we see that $\overline{A(s)} \setminus A(s)$ is a union of two subspaces of the Sorgenfrey-line.

We collect some results on $L_{\mathcal{A}}$ which will be of use to us in the next sections. First some notation. For $n \in \omega$ we let

$$A_n = \{ \mathbf{x} \in L_{\mathscr{A}} \colon x_n \in A_{\mathbf{x} \upharpoonright n} \land \forall i \in n, \, x_i \notin A_{\mathbf{x} \upharpoonright i} \}.$$

Note that

$$A_n = \bigcup \{A(s): s \in [0, 1]^n \land \forall i \in n, s_i \notin A_{s \uparrow i}\},\$$

so in particular, $A_0 = A(\langle \rangle)$. Also note that

$$\bigcup_{n\in\,\omega}A_n=L_{\mathscr{A}}\setminus B_{\mathscr{A}}$$

3.7. Proposition. Both $\bigcup_{n \in \omega} A_n$ and $B_{\mathcal{A}}$ are dense in $L_{\mathcal{A}}$.

Proof. Let x < |y| in $L_{\mathcal{A}}$, say $x \upharpoonright n = y \upharpoonright n$ and $x_n < y_n$. Pick $a \in (x_n, y_n) \cap A_{x \upharpoonright n}$ and $b \in (x_n, y_n) \setminus A_{x \upharpoonright n}$. Put $a = \langle x \upharpoonright n, a, 0, 0, \ldots \rangle$ and $b = \langle x \upharpoonright n, b, 0, 0, \ldots \rangle$. Then $a \in (x, y) \cap A_n$ and $b \in (x, y) \cap B_{\mathcal{A}}$. \Box

3.8. Proposition. Let $s \in [0, 1]^n$ be such that $s_i \notin A_{s \uparrow i}$ for $i \in n$. Let $D \subseteq [0, 1]$ and let $f: D \rightarrow I_s$ be continuous. Then $\{x \in [0, 1] \setminus A_s: f(D) \cap I_{(s,x)} \neq \emptyset\}$ is countable.

Proof. Let $D_1 = \{x \in [0, 1] \setminus A_s : f(D) \cap I_{\langle s, x \rangle}^{\circ} \neq \emptyset\}$ (here ° denotes interior). Then D_1 is countable since

$$\{f^{-1}(I^{\circ}_{\langle s, x\rangle}): x \in D_1\}$$

is a pairwise disjoint family of open subsets of D. Let $D_2 = \{x \in [0, 1] \setminus A_s: \langle s, x, 1, 0, 0, 0, \ldots \rangle \in f(D)\}$. By Lemma 3.5 and Remark 3.6 we have that $E_2 = \{\langle s, x, 1, 0, 0, \ldots \rangle: x \in D_2\}$ is homeomorphic to a D_2 as subspace of the Sorgenfrey-line. Let \mathcal{B} be a countable basis for [0, 1]. For each $x \in D_2$ pick $B_x \in \mathcal{B}$ such that $\langle s, x, 1, 0, 0, \ldots \rangle \in f(B_x \cap f^{-1}(E_2)) \subseteq \{\langle s, y, 1, 0, 0, \ldots \rangle: y \in D_2 \land y \ge x\}$. If $x \neq y$ then $B_x \neq B_y$, whence D_2 is countable. Similarly, $D_3 = \{x \in [0, 1] \setminus A_s: \langle s, x, 0, 0, \ldots \rangle \in f(D)\}$ is countable We conclude that

$$\{x \in [0, 1] \setminus A_s: f(D) \cap I_{(s,x)} \neq \emptyset\} = D_1 \cup D_2 \cup D_3$$

is countable. 🛛

Observe that $\{x \in [0, 1] \setminus A_s: f(D) \cap I_{(s,x)} \neq \emptyset\} = \pi_n f(D) \cap ([0, 1] \setminus A_s)$ (here π_n is the projection onto the *n*th factor of $[0, 1]^{\omega}$ of course).

4. An order-homogeneous non-reversible continuum

Let $A \subseteq [0, 1]$ be the BB-set from Example 2.3. We claim that $L_{\mathcal{A}}$ is as required. We first show that L_A is order-homogeneous.

4.0. Lemma. B_A is isomorphic to each sum of finitely many copies of itself.

Proof. It suffices to show that $B_A \approx B_A + B_A$ where $B_A + B_A$ denotes the ordered union of two disjoint copies of B_A . Let $a \in A$. Then $[0,1] \setminus A = (0,a) \setminus A \cup (a,1) \setminus A \approx [0,1] \setminus A + [0,1] \setminus A$. So

$$B_A \approx ([0,1] \setminus A) \times ([0,1] \setminus A)^{\mathbb{N}} \approx ([0,1] \setminus A + [0,1] \setminus A) \times ([0,1] \setminus A)^{\mathbb{N}}$$
$$\approx B_A + B_A. \quad \Box$$

4.1. Lemma. B_A is isomorphic to each clopen initial and final segment of itself.

Proof. Let C be a clopen initial segment and $D = B_A \setminus C$. Let $C_0 = \{x_0 : x \in C\}$ and $D_0 = \{x_0 : x \in D\}$. Assume $C_0 \cap D_0 = \emptyset$. If C_0 has no maximum then $C_0 \approx [0, 1] \setminus A$ and hence $B_A \approx C_0 \times ([0, 1] \setminus A)^{\mathbb{N}} = C$. If C_0 has a maximum, say a_0 , then

$$C = \{\mathbf{x} \in B_A : x_0 < a_0\} + \{\mathbf{x} \in B_A : x_0 = a_0\}$$
$$= (0, a_0) \setminus A \times ([0, 1] \setminus A)^{\mathbb{N}} + \{a_0\} \times ([0, 1] \setminus A)^{\mathbb{N}}$$
$$\approx B_A + B_A$$

(Lemma 4.0). If $C_0 \cap D_0 \neq \emptyset$, then, as is easily seen, $C_0 \cap D_0 = \{a_0\}$ for some $a_0 \in [0, 1] \setminus A$. Let $C_1 = \{x_1 : x \in C \land x_0 = a_0\}$ and $D_1 = \{x_1 : x \in D \land x_0 = a_0\}$. If $C_1 \cap D_1 = \emptyset$ and C_1 has no maximum then $C \approx ((0, a_0) \setminus A \times ([0, 1] \setminus A)^{\mathbb{N}}) + (\{a_0\} \times C_1 \times ([0, 1] \setminus A)^{\mathbb{N}}) \approx B_A + B_A \approx B_A$ (Lemma 4.0). If $C_1 \cap D_1 = \emptyset$ and C_1 has a maximum a_1 then $C \approx ((0, a_0) \setminus A \times ([0, 1] \setminus A)^{\mathbb{N}}) + (\{a_0\} \times ([0, 1] \setminus A)^{\mathbb{N}}) + (\{a_0\} \times \{a_1\} \times ([0, 1] \setminus A)^{\mathbb{N}}) \approx B_A + B_A + B_A \approx B_A$ (Lemma 4.0). If $C_1 \cap D_1 \neq \emptyset$, say $C_1 \cap D_1 = \{a_1\}$, continue. If the process stops we find that C is isomorphic to a sum of finitely many copies of B_A and hence to B_A ; if the process does not stop we find a point $\langle a_0, a_1, \ldots \rangle \in C \cap D$ which is impossible.

We can of course show simultaneously that $D \approx B_A$. \Box

4.2. Lemma. B_A is isomorphic to each interval $(x, y) \cap B_A$.

Proof. If $x, y \in \bigcup_{n \in \omega} A_n$ then $(x, y) \cap B_A$ is clopen in B_A , and a clopen final segment of the clopen initial segment $(0, y) \cap B_A$ of B_A . So applying Lemma 4.1 twice we see that $B_A \approx (x, y) \cap B_A$. If x and y are arbitrary find sequences $\langle p_n \rangle_{n \in \mathbb{Z}}$ in $(x, y) \setminus B_A$ and $\langle q_n \rangle_{n \in \mathbb{Z}}$ in $L_A \setminus B_A$ respectively, such that $p_n \downarrow x, q_n \downarrow 0$ (if $n \to -\infty$) and $p_n \uparrow y, q_n \uparrow 1$ (if $n \to \infty$). Now map $(p_n, p_{n+1}) \cap B_A$ isomorphically onto $(q_n, q_{n+1}) \cap B_A$ for each $n \in \mathbb{Z}$. The combination of these maps is an isomorphism of $(x, y) \cap B_A$ onto B_A . \Box

4.3. Theorem. L_A is order homogeneous.

Proof. Let x < |y| in L_A and let $f: B_A \to B_A \cap (x, y)$ be an isomorphism (Lemma 4.2). As B_A is dense in L_A (Proposition 3.7), f extends to a unique isomorphism $\overline{f}: L_A \to [x, y]$. \Box

Next we show that L_A is very strongly non-reversible.

4.4. Theorem. Let $f: L_A \rightarrow L_A$ be continuous and non-increasing. Then f is constant. In particular, there cannot be an order-reversing autohomeomorphism of L_A .

Proof. (1) $\pi_0 f(\bigcup_{n \in \omega} A_n)$ is countable.

We identify, using Lemma 3.5, A_s and A and \overline{A}_s and X_A for each *s*. Let $s \in ([0, 1] \setminus A)^{<\omega}$. By Proposition 3.8 $|\pi_0 f(A_s) \setminus A| \le \omega$ (we use the case n = 0). By Example 2.3 $|\pi_0 f(A_s)| < 2^{\omega}$, and so by Lemma 2.5 $|\pi_0 f(A_s)| \le \omega$. We also conclude that by Proposition 2.6 $|\pi_0 f(\overline{A}_s)| \le \omega$.

Furthermore, if $x \in [0, 1] \setminus A$ and $\pi_0 f$ is constant on I_{s^*x} then $\pi_0 f(I_{s^*x}) \subseteq \pi_0 f(\bar{A}_s)$, and the number of $x \in [0, 1] \setminus A$ for which $\pi_0 f$ is not constant on I_{s^*x} is by Remark 2.7 at most countable; call this set T_s . Summarizing we have that $|\pi_0 f(\bar{A}_s)| \leq \omega$ and

$$\pi_0 f\bigg(I_s \cap \bigcup_{n \in \omega} A_n\bigg) \subseteq \pi_0 f(\bar{A}_s) \cup \bigcup_{x \in T_s} \pi_0 f\bigg(I_{s^*x} \cap \bigcup_{n \in \omega} A_n\bigg).$$

Let $T \subseteq ([0, 1] \setminus A)^{<\omega}$ be the union of the following sets:

$$T_0 = \{ \langle \rangle \}, \qquad T_{n+1} = \bigcup_{s \in T_n} \{ s \, x : x \in T_s \}.$$

Then T is countable and $\pi_0 f(\bigcup_{n \in \omega} A_n) \subseteq \bigcup_{s \in T} \pi_0 f(\bar{A}_s)$ so indeed $|\pi_0 f(\bigcup_{n \in \omega} A_n)| \leq \omega$.

(2) $\pi_0 f(\bigcup_{n \in \omega} A_n)$ consists of one point.

Suppose not and let p < q be distinct points of this set. Pick a point $r \in (p, q) \setminus (A \cup \pi_0 f(\bigcup_{n \in \omega} A_n))$. It follows that $J = (\langle r, 0, 0, \ldots \rangle, \langle r, 1, 0, 0, \ldots \rangle)$ is disjoint from $f(\bigcup_{n \in \omega} A_n)$ and hence disjoint from $\overline{f(\bigcup_{n \in \omega} A_n)} \supseteq f(L_A)$. But $f(L_A)$ contains points on the left and on the right of J and must therefore be disconnected contradicting the continuity of f.

(3) Denote the point from (2) by x_0 . If $x_0 \in A$ then f is constant with value $\langle x_0, 0, 0, \ldots \rangle$. If $x_0 \in [0, 1] \setminus A$ then f maps L_A into I_{x_0} and we find x_1 such that $\pi_1 f(L_A) = \{x_1\}$. If $x_1 \in A$ then $f \equiv \langle x_0, x_1, 0, 0, \ldots \rangle$; if not, continue. If this process stops at n then $f \equiv \langle x_0, x_1, \ldots, x_n, 0, 0, \ldots \rangle$; otherwise we find $x \in B_A$ (with coordinates $x_0, x_1, \ldots,$ etc.) such that $f \equiv x$. \Box

Our continuum is different from Shelah's [8] for the following reason: Shelah's continuum is an Aronzajn continuum, hence it contains an uncountable subset without any uncountable subset isomorphic to a subset of \mathbb{R} . Our continuum has the property that every uncountable subset contains an uncountable subset isomorphic to a subset of \mathbb{R} . To see this, let $D \subseteq L_A$ be uncountable. For each $n \in \omega$ let

$$T_n = \{s \in ([0,1] \setminus A)^n \colon D \cap I_s \neq \emptyset\},\$$

and let $T = \bigcup_{n \in \omega} T_n$. Then T is a tree if we define $s \le t \Leftrightarrow s \le t$.

Case 1. Some T_n is uncountable.

Let *n* be the first integer for which T_n is uncountable; since $T_0 = \{\langle \rangle\}, n > 0$. Pick $s \in T_{n-1}$ such that $T_s = \{t \in T_n : s \le t\}$ is uncountable. For each $t \in T_s$, pick $d_t \in I_t \cap D$. Then $\{d_i : t \in T_s\}$ is isomorphic to the uncountable subset $\{t_{n-1} : t \in D_s\}$ of [0, 1].

Case 2. Every T_n is countable.

Let $T' = \{s \in T : I_s \cap D \text{ is uncountable}\}$. Then T' is a subtree of T.

Subcase 2.1. For some $s \in T'$ we have that $D \cap A_s$ is uncountable.

Define f_s as in the proof of Lemma 3.5. Then $f_s(D \cap A_s)$ is isomorphic to $D \cap A_s$ and $f_s(D \cap A_s)$ is an uncountable subset of [0, 1].

Subcase 2.2. For all $s \in T'$ we have that $D \cap A_s$ is countable.

Consider $D' = D \setminus (\bigcup_{s \in T \setminus T'} I_s \cup \bigcup_{s \in T'} A_s)$. Then D' is uncountable because $\bigcup_{s \in T \setminus T'} I_s \cup \bigcup_{s \in T} A_s$ is countable and $D' \subseteq B_A$. For every $s \in T'_n = \{t \in T': t \in T_n\}$ the set $\{t \in T'_{n+1}: s \leq t\}$ is countable and ordered by $t' \leq t \Leftrightarrow t'_n \leq t_n$. Since every countable subset of [0, 1] is isomorphic to a subset of Q, We can embed the set of branches of T' into the lexicographic product Q^ω , which itself is embeddable into \mathbb{R} . As every element of D' determines a branch of T', we see that D' is embeddable into \mathbb{R} .

5. An ordered continuum with a minimum set of continuous self-maps

In this section we present an ordered continuum with only the necessary continuous self-maps. To see what this means, let X be an ordered continuum. Then for x < y in X there exists a continuous map $f_{xy}: X \to X$ defined by

$$f_{xy}(z) = \begin{cases} x & \text{if } z \leq x, \\ z & \text{if } x \leq z \leq y, \\ y & \text{if } y \leq z. \end{cases}$$

Let us call such a map a *canonical retraction*. Thus whatever properties X may have, it will always have the canonical retractions among its continuous self-maps. The continuum which we construct in this section will have no continuous self-maps besides the canonical retractions.

Let \mathscr{A} and V be as in Example 2.5. Index \mathscr{A} in a one-to-one way by $[0, 1]^{<\omega}$, and let $L = L_{\mathscr{A}}$. Then L is as required. The following lemma will be the key in showing this.

5.1. Lemma. Let p < |q| in L, and let $f: [p, q] \rightarrow L$ be continuous and monotonically non-decreasing, such that $f([p, q]) \cap [p, q] = \emptyset$. Then f is constant.

Proof. (1) For some $s \in [0, 1]^n$, $p = \langle s, 0, 0, ... \rangle$ and $q = \langle s, 1, 0, 0, ... \rangle$, so $[p, q] = I_s$.

In this case we can use virtually the same proof as in Theorem 4.4. The only problem is to show that if t extends s and if $m \in \omega$ then $\pi_m f(A(t))$ is countable. To begin with note that n > 0 because of the condition on f. Let m = 0 and let t extend s. Consider $\overline{f} = \pi_0 \circ f \circ f_t^{-1}: A_t \to [0, 1]$ (here f_t is defined as in the proof of Lemma 3.5). By Proposition 3.8, $\overline{f}(A_t) \setminus A_{\langle \rangle}$ is countable hence $\overline{f}(A_t) \cap V$ is countable. Next assume that $|\overline{f}(A_t) \cap A_{\langle \rangle}| = 2^{\omega}$. Now since $A_t \cap A_{\langle \rangle} = \{0, 1\}$ we see that for a set $C \subseteq A_t$ of cardinality $2^{\omega}, \overline{f} \upharpoonright C$ is one-to-one while moreover $\overline{f}(x) \neq x$ for every $x \in C$. But then, using an extension $f^*: [0, 1] \to [0, 1]$ of \overline{f} . Example 2.4 ensures that $|\overline{f}(A_t) \cap V| = 2^{\omega}$, which is impossible. Hence $|\overline{f}(A_t)| \leq |\overline{f}(A_t) \setminus A_{\langle \rangle}| + |\overline{f}(A_t) \cap A_{\langle \rangle}| < 2^{\omega}$ and so by Lemma 2.5, $\overline{f}(A_t) = \pi_0 f(A(t))$ is countable. So $\pi_0 f$ is constant, say with value x_0 , hence $f \equiv \langle x_0, 0, 0, \ldots \rangle$ or $f(I_s) \subseteq I_{\langle x_0 \rangle}$. Repeat the process to find a constant value for f. At stage i+1, because $f(I_s) \cap I_s = \emptyset$, we know that for all t extending s we have that $t \neq \langle x_0, \ldots, x_i \rangle$, so by the above reasoning with $A_{\langle x_0, \ldots, x_i \rangle}$ in place of $A_{\langle \rangle}, \pi_{i+1}f(A(t))$ is countable.

(2) For some $s \in [0, 1]^n$ and $p, q \in [0, 1], p = \langle s, p, 0, 0, ... \rangle$ and $q = \langle s, q, 0, 0, ... \rangle$. Let $x \in [p, q] \setminus A_s$. Then by (1), f is constant on $I_{\langle s, x \rangle}$ say with value r_x . Define

Let $x \in [p, q] \setminus A_s$. Then by (1), f is constant on $I_{(s,x)}$ say with value I_x . Denie $\overline{f}: [p, q] \to L$ by

$$\begin{cases} \bar{f}(a) = f(\langle s, a, 0, 0, \ldots \rangle) & \text{for } a \in [p, q] \cap A_s, \\ \bar{f}(x) = \mathbf{r}_x & \text{for } x \in [p, q] \setminus A_s. \end{cases}$$

Since f is continuous, \overline{f} is continuous. But $\overline{f}([p, q])$ is separable and L contains no separable intervals, so \overline{f} is constant. But then f is constant.

(3) **p** and **q** are arbitrary.

Find *n* such that $s := p \upharpoonright n = q \upharpoonright n$ and $p_n < q_n$. Then *f* is constant on the interval $[\langle s, p_n, 1, 0, 0, \ldots \rangle, \langle s, q_n, 0, 0, \ldots \rangle]$ by the same method as in (2). Also by (2), *f* is constant on the interval $[\langle s, q_n, \ldots, q_{n+i}, 0, 0, \ldots \rangle, \langle s, q_n, \ldots, q_{n+i+1}, 0, 0, \ldots \rangle]$ for each $i \ge 0$, and consequently, *f* is constant on $[\langle s, p_n, 1, 0, 0, \ldots \rangle, q]$. We also have that *f* is constant on $[\langle s, p_n, \ldots, p_{n+i}, p_{n+i+1}, 0, 0, \ldots \rangle, \langle s, p_n, \ldots, p_{n+i}, 1, 0, \ldots \rangle]$ for each $i \ge 0$ such that $p_{n+i+1} < 1$, and consequently *f* is constant on the interval $[p, \langle s, p_n, 1, 0, 0, \ldots \rangle]$. We conclude that *f* is constant on [p, q].

From this lemma we now deduce:

5.1. Lemma. Let $f: L \to L$ be a continuous monotonically non-decreasing map. If for some $a \in L$ we have $f(a) \mid > a$ then f(x) = f(a) for all $x < \mid a$, and dually if for some $a \in L$ we have that $f(a) < \mid a$ then f(x) = f(a) for all $x \mid > a$.

Proof. Let $x = \inf\{y \le a: f(y) = f(a)\}$. Suppose 0 < |x. Then as f is continuous f(x) = f(a) and for some $z < |x, f([z, x]) \subseteq (a, 1]$. Hence $f([z, x]) \cap [z, x] = \emptyset$ and hence f is constant on [z, x] (Lemma 5.0), but then z < |x| and f(z) = f(x) = f(a), a contradiction. So x = 0. \Box

We can now show:

5.2. Lemma. Let $f: L \rightarrow L$ be monotonically non-decreasing and continuous. Then f is a canonical retraction.

Proof. Let $f(\mathbf{0}) = \mathbf{p}$ and $f(\mathbf{1}) = \mathbf{q}$. We show that $f = f_{\mathbf{p},\mathbf{q}}$. Let $\mathbf{x} \in (\mathbf{0}, \mathbf{p})$. Then $f(\mathbf{x}) \ge \mathbf{p} \ge \mathbf{x}$ so $f(\mathbf{x}) = f(\mathbf{0}) = \mathbf{p}$. Let $\mathbf{x} \in (\mathbf{q}, \mathbf{1})$. Then similarly, $f(\mathbf{x}) = \mathbf{q}$. Let $\mathbf{x} \in (\mathbf{p}, \mathbf{q})$. If $f(\mathbf{x}) \ge \mathbf{x}$ then $f(\mathbf{0}) = f(\mathbf{x}) \ge \mathbf{x} \ge \mathbf{p}$, contradiction. Similarly $f(\mathbf{x}) < |\mathbf{x}|$ is impossible. So indeed $f = f_{\mathbf{q},\mathbf{q}}$. \Box

With each continuous function $f: L \rightarrow L$ we associate four monotone functions as follows:

$$f_1(\mathbf{x}) = \sup\{f(\mathbf{y}): \mathbf{y} \leq | \mathbf{x}\}, \qquad f_2(\mathbf{x}) = \inf\{f(\mathbf{y}): \mathbf{y} \leq | \mathbf{x}\},$$

$$f_3(\mathbf{x}) = \sup\{f(\mathbf{y}): \mathbf{y} \mid \geq \mathbf{x}\}, \qquad f_4(\mathbf{x}) = \inf\{f(\mathbf{y}): \mathbf{y} \mid \geq \mathbf{x}\}.$$

It is straightforward to check that these functions are continuous, that f_1 and f_4 are non-decreasing, that f_2 and f_3 are non-increasing and that $f_4 \leq |f \leq |f_1|$ and $f_2 \leq |f \leq |f_3|$. We now get:

5.3. Theorem. If $f: L \rightarrow L$ is continuous, then f is a canonical retraction.

Proof. Almost the same proof as in Theorem 4.4 will show that every non-increasing continuous self-map is constant. Let $f: L \rightarrow L$ be continuous. Then f_2 and f_3 are

constant, and so, since $f_2(0) = f(0)$ and $f_3(1) = f(1)$, we conclude that for all $x \in L$,

$$f(\mathbf{0}) \leq |f(\mathbf{x})| \leq |f(\mathbf{1})|.$$

But then $f_1(0) = f_4(0) = f(0)$ and $f_1(1) = f_4(1) = f(1)$, so $f_1 = f_4 = f_{f(0), f(1)}$ (Lemma 5.2). Hence $f = f_{f(0), f(1)}$, since $f_4 \leq |f| \leq |f_1|$. \Box

6. Some additional remarks

In this section we collect some additional results which can be proved in virtually the same way as in Sections 4 and 5.

6.0. To begin with, let $\{A_{\alpha}\}_{\alpha \in 2^{\omega}}$ and V be as in the proof of Example 2.3. Consider the family $\{A_J: J \subseteq 2^{\omega}, J \neq \emptyset\}$ from Remark 2.2. Then each continuum L_{A_J} is order-homogeneous and non-reversible. It can be shown that for $J \neq J'$ we have L_{A_J} and $L_{A_{J_1}}$ are non-isomorphic. By pairing of sets J_1 and J_2 for which $L_{A_{J_1}}$ is isomorphic to $L_{A_{J_2}}$ with the reverse order, we get a family of $2^{2^{\omega}}$ order-homogeneous non-reversible continua such that no two continua are isomorphic or anti-isomorphic.

6.1. A similar remark applies to the example of Section 5. To get $2^{2^{\omega}}$ non-isomorphic continua with only trival continuous self-maps, simply permutate the family $\{A_{\langle x \rangle}: x \in [0, 1] \setminus A_{\langle x \rangle}\}$. Different permutations yield different continua and the number of these permutations is $2^{2^{\omega}}$.

6.2. If we let $\mathscr{G} = \{\text{id}, x \to 1 - x\}$ and $\mathscr{F} = \{f: \text{dom } f = [x, y] \subseteq [0, 1], \text{ range } f \subseteq [0, 1]$ and f is monotonically non-decreasing or non-increasing} and apply Corollary 2.1 to get $\{A_{\alpha}\}_{\alpha \in 2^{\omega}}$ and V. Then we get an ordered continuum L with precisely one reversing map φ and such that whenever $f: L \to L$ is continuous then:

(1) f is a canonical retraction, or

(2) we can find $p \le |q| < |r| < |s|$ in L such that $0 \le |x| < |p| < f(x) = p$, $p \le |x| < |q| < f(x) = x$, $q \le |x| < |r| < f(x) = q$, $r \le |x| < |s| < f(x) = \varphi(x)$ and $s \le |x| < |1| < f(x) = \varphi(s)$, or

(3) we can find a $g: L \rightarrow L$ satisfying (1) or (2) such that $f = \varphi \circ g$.

Use a two-to-one indexing such that for $s \in [0, 1]^{<\omega}$, $A_s = A_{ss}$, (where $s'_i = 1 - s_i$). Then $\varphi: L \to L$ defined by

$$\varphi(\mathbf{x}) = \begin{cases} \langle 1 - x_0, 1 - x_1, \ldots \rangle & \text{if } \mathbf{x} \in B_{\mathcal{A}}, \\ \langle 1 - x_0, 1 - x_n, 0, 0, \ldots \rangle & \text{if } \mathbf{x} \in A_n (n \in \omega), \end{cases}$$

is the reversing map.

References

- [1] R. Engelking, General Topology (PWN, Warszawa, 1978).
- [2] K. Kunen, Set Theory: An Introduction to Independence Proofs (North-Holland, Amsterdam, 1980).
- [3] K. Kuratowski, Sur la puissance de l'ensemble des 'nombres de dimension' de M. Fréchet, Fund. Math. 34 (1925) 201-208.
- [4] J. van Mill, Strong local homogeneity does not imply countable dense homogeneity, Proc. Amer. Math. Soc. 84 (1982) 143-148.
- [5] J. van Mill, A topological group having no homeomorphisms other than translations, Trans. Amer. Math. Soc. 280 (1983) 491-498.
- [6] J. van Mill, An infinite-dimensional pre-Hilbert space all bounded linear operators of which are simple, Coll. Math. to appear.
- [7] T. Ohkuma, Sur quelques ensembles ordonnés linéairement, Fund. Math. 43 (1955) 326-337.
- [8] S. Shelah, Decomposing uncountable squares to countably many chains, J. Combin. Theory Ser. A 21 (1976) 110-114.