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A METHOD FOR CONSTRUCTING ORDERED CONTINUA 

Klaas Pieter HART and Jan van MILL 
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We present a method for constructing ordered continua. We illustrate our method by constructing 

(i) a new order-homogeneous non-reversible continuum, and (ii) an ordered continuum with a 

minimal set of continuous self-maps. 
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0. Introduction 

In recent years some types of topological spaces were constructed having only 

the ‘necessary” continuous self-maps (of a special kind). Examples of this type are: 

a topological group having no other continuous self-maps other than the translations 

and the constant maps [5] and an infinite-dimensional inner-product space with 

only trivial bounded linear operators (an operator A is trivial if for some scalar A, 

A-AI has finite dimensional range) [6]. For older results of this type see [3, 71. 

We pursue this line a little further by constructing an ordered continuum with only 

the necessary continuous self-maps: for an explanation of ‘necessary’ in this context 

see Section 5. Actually our main result is a general method for constructing ordered 

continua, of which the above-mentioned continuum is an illustration. A second 

example is presented in Section 4 (this example came first in time), which is an 

order-homogeneous non-reversible ordered continuum. The first (real) example of 

this type was constructed by Shelah [S]. Our example is totally different from 

Shelah’s (see Section 4 for an explanation) and, in our opinion, somewhat simpler. 

The paper is organized as follows: Section 1 contains the necessary definitions 

and preliminaries. Section 2 concerns special subsets of the unit interval [0, 11. The 

construction presented there is very much like the one in [4]. In Section 3 we show 

how to construct ordered continua from families of subsets of [0, I]. In Sections 4 

and 5 we construct the continua mentioned above using the method of Section 3, 

with input from Section 2. 

1. Definitions and preliminaries 

Our notation and terminology is fairly standard, see e.g. [l, 21. 
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1.0. An ordered continuum is a compact, connected linearly ordered topological 

space, equivalently, a complete and densely linearly ordered set equipped with the 

order topology. Two ordered continua K and L are isomorphic if there exists an 

order-preserving bijectionf: K + L; if there exists an order-reversing bijectionf: K + 

L then K and L are anti-isomorphic. 

Usually the ordering relation is denoted by G, we are sure this will not cause 

confusion. There is one exception: if ni,,Xj is a product of linearly ordered sets 

then <I denotes the lexicographic order: x <I y iff for some n, xi = yi for i E n and 

x, < Y,. 

1.1. A set A G [Q, l] is a BB-set if A and its complement intersect every Cantor set 

of [0, l] (BB stands for Bi-Bernstein). 

1.2. We fix some notation: 

(i) if X is a set then X’” denotes IJ,,, X”, 

(ii) If XEX” then x 1 n =(x0,. . . ,x,_,), 

(iii) If s is a finite sequence of points, say (so,. . . s,_,), and x is a point then 

(5 x) = (s0,. . f , h-1, x), 
(iv) ( ) denotes the empty sequence, 

(v) finally, the symbol = is used to denote both homeomorphism of topological 

spaces and isomorphism of ordered sets. 

2. Subsets of IO, 11 

This section contains some results on the existence of some special subsets of 

[0, l] and their properties. We start with our principal tool for constructing various 

subsets of [0, 11. For convenience we adopt the following conventions: if 9? is a 

group of autohomeomorphisms of 03 then a set A, where AS [0, I], will be called 

%-invariant if for all a E A, %(a) n [0, l] where ‘3?(a) = {g(u): g E %}. Let f be a 

function such that domf and rangef are subsets of IR. If 9 is a group of 

autohomeomorphisms of R define S(f; 9) = { x E domf: f(x) E s(x)}. We call f 5% 

singular if f(S(f; 9)) has cardinality 2”. For every Y-singular f we choose a set 

C(f; 3) CR such that .f 1 C(f, 9) . IS one-to-one while moreover f(C(f; 9)) = 

f(S(f; 9)). Observe that the cardinality of C(S, 3) equals 2”. The sets C(f; 9) 

remain fixed throughout the remaining part of this paper. 

2.0. Theorem. Let 99 be a countable group of autohomeomorphisms of R, let 9 be a 

family of functions such that 191 s 2” and domJT range f c_ [0, l] for all f E 9, and 

let B be a subset of [0, l] of cardinality less than 2”. Then there exists a pairwise 

disjoint family {Aa}niZw of %invariant BB-subsets of [0, l] which all miss B and a 

BB-set Vc [0, 1]\UuG2w A, such that iffe9iis Y-singular then IC(f, 9)nA,I=2" 

and If(C(f; %)nA,)n V/=2”, for every (YES”‘. 
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Proof. We assume of course that every f~ 9 is %-singular. Let {Ja,p): (a!, /3) E 2” x 

2”) be a listing of 9 such that each function occurs 2” times in each row {ha,P): p E 

2”). Let {K,,,,,: (LY, /3) E 2” x2”) be a similar listing of the set of all Cantor sets in 

[0, 11. In addition, let B’= UhtBy(b). Observe that IB’I < 2”. 

We shall find points x(a,/?,O), ~(a,& l), y((~,p,O), ~(a,/?, 1)~[0, l]\B’ such 

that: 

(I) x(a, P. 0) E C(f,,,,,, 9) and Y(a, P, 0) =&&~(a, P, 0)). 

(2) x(a, P, I), Y(% P, I) E K,,,,,. 
(3) if (cz, p, i) # ( LY’, p’, i’), where (Y, p, (Y’, /?‘E 2” and i, i’E 2, then the collection 

{%(~(a, p, i)), %(~(a’, /3’, i’)), 9(y(q p, i)), 3?(y(a’, p’, i’))} is pairwise disjoint. 

We then let 

and 

V={y(cY, p, i): (cl,P)E2” x2”, iE2). 

By definition the A, are %-invariant, by (2) every A, meets every Cantor set of 

[0, 11, hence the properties of A,,, show that A, is a BB-set, for by (3) 

a# y+A,nA,=@ 

By (3) it also follows that V intersects every Cantor set in [0, l] and misses every 

A,, whence V is also a BB-set. Let f~ 5 and (Y E 2”. Let J(L a) ={P:f=hO,~)}. 

Then C(f; 9) n A, 2 {~(a, p, 0): /I E J(J; a)} and this last set has cardinality 2”, so 

1 C(f, 9) n A, I= 2”. Furthermore, f(C(f; 9) n A,) n Vz {~(a, P, 0): P E J(J; a)> 
and so If(C(f; 9) n A,) n VI = 2”. So {A,},,z~ is as required. 

Let us construct the points ~(a, p, i), y(a, p, i) for (Y, p E 2” and i E 2. Fix a 

well-ordering <I of 2” x 2”’ in type 2”. Assume that ( LY, p) E 2” x 2” and that x( y, S, i) 

and y( -y, 6, i) are found for ( y, 6) <I ((Y, /3) and i E 2, such that (l), (2) and (3) are 

fulfilled for all (7, 6) <I (a, p). Let 

Then 1~1~2”‘. Put f=hu,p,. Now IC(f, %)I =2” and f ] C(f, 9) is one-to- 

one so IXE C(f; 9): x,f(x)a HuB’}I=2”. Pick x((u, p, 0) from this set and 

let y((~, /3,0) =f(x((~, p, 0)). Furthermore, IK~~,~,~ = 2” and the cardinality 

of H u B’ u 9(x( a, j3,O)) u %(y( a, p, 0)) is less than 2”, so we can pick 

~(a, P, I) E G,,,\(H u B’u y(x(a, P, 0)) u %(~(a, P, 0))) and Y(D, P, l)E 

G,,,\(H u B’u %(~(a, P, 0) u %(~(a, P, I) u %(~(a, P, 0))). 
Now for z = ~(a, p, 0), x((Y, p, l), y( (Y, p, 0), or y((~, p, 1) we have z G! H u B’ so 

since 9 is a group, 9?(z) n (H u B’) = 0. It is also easily seen that the collection 

{%(~(a, p, 0)), %?(x(Lu, p, l)), %?(Y(cu, p, 0)), %(~(a, p, 1))) is pairwise disjoint. This 

completes the construction. 0 
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2.1. Corollary. Let 9 be a countable group of autohomeomorphisms of R, let 9 be a 

family of functions such that 191 s 2” and domf; range f E [0, l] for all f E 5% Then 

there exists a family {Aa}aEZ~ of S-invariant BB-subsets of [0, l] with the property 

that for distinct a, /3 E 2” we have that A, n A, = S(O) u Y(l), and a BB-set VE 

II09 u\u,,,- A,, such that if f E 9 is %-singular then IC(f; 9) n A, I= 2” and 

1 f (C)f; 3) n A,) n VI = 2”, for every a E 2”. 

Proof. Apply Theorem 2.0 with B = Y?(O) u %( 1) to get V and pairwise disjoint A,‘s. 

Then {A, u (S(0) u %( 1)): (Y E 2”) and V\( S(O) u %( 1)) are as required. !J 

2.2. Remark. Let {A } oL cltZ~ and V be as in Theorem 2.0 or Corollary 2.1. In addition, 

let J c_ 2” be non-empty and put A, = Unc, A,. Then the properties of V show that 

A, is a BB-set, and also if f E 9 is (e-singular then If(A,) n VI = 2”. Simply pick 

CYEJ then f(A,)n Vcf(A,)n V. 

We now give some applications of Theorem 2.0 to get the sets we need to build 

our continua. 

2.3. Example. There exists a BB-set A c [0, I] containing 0 and 1 such that [0, l]\A 

is isomorphic to each interval (x, y)\A and such that iff: A+ [0, l] is monotonically 

non-increasing and lrange f I= 2” then /f (A)\AI = 2”. 

Proof. Let 99 be the group of all homeomorphisms of R of the form x + px + q, 

with p, q E Q and p > 0 (as usual, Q denotes the set of rational numbers). Let 

9 = {f: [0, l] + [0, 11: f is monotonically non-increasing} 

Observe that 9 is a countable group and that 191 G 2” since each f E 5 has only 

countably many points of discontinuity. Let {Au}as2~ and V be as in Corollary 2.1, 

and put A = A,,. Observe that 0, 1 E A. 

(1) Let x, y~[0, l] with x<y. If x, yE Q then cp: t+(y-x)t+x maps [0, l]\A 

isomorphically onto (x, y)\A (%-invariance of [0, l]\A). Otherwise let (qn)ntn be 

a sequence in (x, y) n Q such that qn + x if n + ---CO and qn + y if n + CO. All intervals 

with rational endpoints are isomorphic so we can map (qO, q,)\A isomorphically 

onto (1/2,2/3)\A, (q_I, q,J\A onto (1/3,1/2)\A, etc. The combination of those 

mappings yields an isomorphism between (x, y)\A and [O, l]\A. 

(2) Let ,f: A + [0, l] be non-decreasing and extend f to 7: [0, l] + [0, l] which is 

non-increasing, e.g., f(x) = sup{ f (a): a E A, a G x}. Then 7 E 9. Now if (range f I= 2”’ 

then lrangefl= 2” so we have a set C E [0, l] of cardinality 2” on which f is 

one-to-one. The set {x E [0, 11: f(x) E ‘S(x)} . IS countable: every gE 99 is strictly 

increasing so for each g E 9, g(x) =T(x) for at most one x E [0, 11. So without loss 

of generality f(x) & Y?(x) for every x E C. Since f 1 C is one-to-one, we conclude 

that fis %-singular. But then IC(f, 9) n Al = 2” and If(A)\AI = 2”, sincef(A) n V s 

f(A)\A. Since f extends f; we find that If(A)\AI = 2”. 
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For later use we mention the following. If f: (x, y) n A + [0, l] is non-increasing 

and Irange j-1 = 2” then If( (x, y) n A)\AI = 2”. This follows from the observation that 

(x, y) n A is isomorphic to A\{O, 1) (same proof as for [0, l]\A). 
We now exhibit BB-sets which have practically no non-trivial monotone self-maps. 

2.4. Example. There exists a family {Aa}otZw of BB-sets of [0, l] and a set Vc 

[O, lI\U,,,- A, such that: 

(1) (Y # p + A, n A, = (0, 1). 

(2) Zff: (x, y) n A, + [0, l] is non-decreasing or non-increasing and if for some 

CG(x,y)nA,IC[=2”,fr C’ Isone-to-oneand Vx E C,f(x) # x, then If(A,) n VI = 2”. 

Proof. Apply Corollary 2.1 with 3 = {id} and 

9 = {f: f is non-decreasing or non-increasing, domf is a closed 

subinterval of [0, l] and rangefG [0, 11). 

Corollary 2.1 gives us {An}aeZw and V such that the A,‘s pairwise intersect in 

Y?(O) u 97(l) = (0, l}. The rest follows as in Example 2.3. q 

We conclude with a proposition on monotone maps from BB-sets. 

2.5. Lemma Let A E [0, l] be a BB-set and f: A + X a monotone map where X is any 

linearly ordered set. Then If(A)) G w or (f(A) I= 2”. 

Proof. Let B = {x:f’(x) contains more than one point} = {x:f’(x) is a non- 

degenerate interval of A}. Then 1~1~ w since A is separable. Let G= 

[0, l]\Ux,J’(x) (closure in [0, 11). Then G is a G8-subset of [0, l] and f is 

one-to-one on G n A and 

f(A)=Buf(GnA). 

Now either I GI < o in which case If( s w, or ICI = 2” in which case I G n Al = 2” 

(since A is a BB-set) so (f(A)1 = 2”. 0 

2.6. Proposition. Let AS [0, l] be a BB-set and let 

ordered lexicographically, i.e. X, is the compact LOTS obtained by splitting the points 

of [0, l]\A. Let f: X, + X be a monotone map where X is any linearly ordered set. 

Then If(XA)lSw or Jf(X,)l=2”. 

Proof. By Lemma2.5, If(A)1 <worIf(A)I=2”.WeshowthatIf(X,)]swif]f(A)Is 

w. Let F = U ..f(AlfP’(z) n A ( 1 c osure in [0, 11). In addition, let B = {x E [0, 11: x is 

a boundary point of some f’(z) n A, z~f(A)} and C=[O,l]\F. Then B and C 

are countable: B is countable since f(A) is countable and each f’(z)nA can have 
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at most two boundary points and C is a G,-set disjoint from A. Let XE [0, l]\A 

and suppose f((x, 0)) af(A) or f((x, 1)) $f(A). Then xEf’(z) n A for all z~f(A), 

since otherwise by monotonicity ofJ; we have thatj((x, 0)) =f((x, 1)) = z. So XE B u 

C. We conclude that 

f(&) =f(A) u U{{f((x, O)),f((x, I))]: x E B u 0 

is countable. 0 

2.7. Remark. For later use we note that also {x E [0, l]\A:f((x, 0)) #f((x, 1))) is 

contained in B u C and that this set is countable too. 

3. Continua from subsets of 10, 11 

In this section we associate with each collection ti of subsets of [0, l] having the 

property that 0, 1 E A for every A E & an ordered continuum L,ti. For later use we 

will identify some special subspaces of these continua. 

The idea is as follows: start with [0, l] and let AS [0, l] contain 0 and 1, replace 

each point of [0, l]\A by [0, 11, inside of each of these copies of [0, l] take a set 

containing 0, 1 and replace the points in the complement by [0, 11, etc. This gives 

an inverse sequence of ordered continua with monotone bonding maps (collapsing 

the inserted intervals) whose limit will be the ordered continuum L,d (xl is the set 

of chosen subsets of [0, 11). For notational purposes we shall give a different 

description of L,, as a subset of the lexicographically ordered Hilbert cube [0, 11”. 

3.0 Definition. Let ti be a collection of subsets of [0, l] with the property that 0, 

1 E A for every A E sf. Assume that A is indexed (not necessarily faithfully) by 

[0, l]<,. We put 

L.,={xg[O, 11”‘: if x,EA,,, for some n then xi = 0 for i > n}; 

we order L.,q lexicographically. 

3.1. Lemma. L,d is an ordered continuum. 

Proof. We have to show that <I is a dense and complete order on L,d. We first make 

the following remark: if XE L, and n E w then X” =(x r n, 0, 0, 0, . . _) E L&. For if 

x, E A,,; for some i E n then x” =x E L,fl, and otherwise, since xr = 0 for i Z= n, we 

have (x: E A,,,,, +xT=O) forj>ian; so xnE L,d. 

(1) <) is dense. 

Letx</y,sayxrn=yrnandx,<y,forsomen.Sincey,#Owehavey,~Ag,, 

for ig n. Pick ZE (x,, y,). Then z =(x r n, z, O,O, . . .)E L,d, by the same argument as 

aboveandx<lz<ly. 

(2) <I is complete. 
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LetCcL,,.IfC=0thenO=(O,O,O,. . .) = min L.d = sup C. So assume C f 0. We 

show that the usual strategy for finding a supremum in [0, 11” also yields a supremum 

in L,& Let C, = {x0: x E C} and c,, = sup C,. Now if c,& C, then (c,,, 0, 0, . .) = sup C. 

Observe that this point belongs to L.ti. If cg E C,, let C, = {x1: x E C, x0 = co} and 

ci = sup C,. If c1 G C, then (co, c,, 0, 0, . . .) = sup C ; observe that (co, cl, 0, 0, . . .) E L. 
Continue this process. If the process stops at n then (co, c,, . . . , c,, 0, 0, . . .) = sup C. 
Observe that this point belongs to L,,. If the process does not stop then 

(co, c,, . . . , c,,, . . .) = max C. 0 

In case ti has only one element A we will write LA instead of LiA,. 
We will now study some subspaces of L,, which we will encounter when checking 

the various properties of Ld. Although some of the results are valid for general 

subsets of [0, 11, we assume in view of our applications that every A E sd is a BB-set 

containing 0 and 1. 

3.2. Definition. Let B,& = {n E L,d: Vn E w, x, G A,,,}. 

3.3. Lemma. As a subspace of L,, B,d is homeomorphic to the zero-dimensional Baire 

space of weight 2” (i.e. the product of countably many discrete spaces of cardinality 2‘“). 

Proof. For each s E [0, l]<U let f,: [0, l]\A, + IR be a bijection. Define f: B,d + R" by 

f(x)=(fc,(Xo),~~)(X*),- -*,.L,rl(X">, . . J. 

It is straightforward to check that f is a bijection. For x E Bbd and n E w let 

B(x,n)={y~B,,~:yIn=xrn}. 

For xE[w” and HEW let 

C(x,n)={yERW:yrn=xrn}. 

The collection { C(x, n): x E R”, n E w} generates the Baire-space topology on R”, 

furthermore f(B(x, n)) = C(f(x), n) for all x and n, so {B(x, n): XE B,d, n E w} 

induces this same topology on B. rr’. On the other hand, define for XE B,, and n E w 

the points x(n) and y(n) by 

x(n)rn=y(n)rn=xrn; 

X(n),=y(n)i=O for i> n. 

Then B(x, n)=(x(n),y(n))n B,d for 

x=supx(n) and x=11_!. 

x(n), = 0, y(n), = 1; 

all n, while moreover 

v(n). 
ntw r, c w 

So { B(x, n): x E Bd, n E w} generates the subspace topology of Bd. 0 

Again BA = BTAI. The space B, will be used in Section 4. 
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3.4. Definition. Let n E w and s E [0, I]” such that si & Asri for i E n. Put 

I, = {x E L,: x 1 n = s} = [(s, 0, 0, . . .), (s, 1, 0, 0, 0, . . J] 

and 

A(s) = {x E I.$: x, E A,}. 

3.5. Lemma. (1) A(s) and A, are isomorphic and homeomorphic. 

(2) A(s) is isomorphic and homeomorphic to the LOTS X,< de$ned in Remark 2.7. 

Proof. (1) The map fs: A(s) + A, defined by S,(x) = x, is both an isomorphism and 

a homeomorphism. 

(2) The same holds for g,: A(s) + XAs defined by g,(x) =(x,, x,,+J, for it is easily 

seen that A(s) = {XE IT: (x, E A,) v (x, g A, AX,+, E (0, 1))). 0 

If & has only one element A we use A, to denote A(s). This occurs only in 

Section 4. 

3.6. Remark. Notice that in Lemma 3.5 A(s)\A(s) is homeomorphic to 

(LO, 11\4 x(01) u W, II\& xi111 s XA<. 

As both [0, l]\As x (0) and [0, l]\As x {l} carry the Sorgenfrey topology we see that 

A(s)\A(s) is a union of two subspaces of the Sorgenfrey-line. 

We collect some results on Ld which will be of 

First some notation. For n E w we let 

A,={xEL~:x,EA,,.AV~E~,X~CZGA~,~}. 

Note that 

A,=IJ{A(s): SE[O, l]“~V/i~n,S,&A,li}, 

so in particular, A0 = A(( )). Also note that 

U A, = -&\B,. 
new 

use to us in the next sections. 

3.7. Proposition. Both IJ,,, A,, and B.g are dense in Ld 

Proof. Let x <I y in L&, say x r n =y r n and x, <y,. Pick a E (x,, y,,) n A,,, and 

b E (x,, ~n)\A,,,z. PUta=(xIn,a,O,O ,... )andb=(x]n,b,O,O ,... ).ThenaE(x,y)n 

A, and b~(x,y)nB,. 0 

3.8. Proposition. Let s E [0, 11” be such that si & A,lifor i E n. Let D s [O, 11 and let 

f: D + I, be continuous. Then {x E [0, l]\A,: f(D) A I,,,, # 0) is countable. 
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Proof. Let D, = {XE [0, l]\A,:f(D) n 1&X, # @} (here ’ denotes interior). Then D, 

is countable since 

is a pairwise disjoint family of open subsets of D. Let D, = {x E [0, l]\ 

A,: (s, x, l,O, O,O, . . .)E~(D)}. By Lemma 3.5 and Remark 3.6 we have that 

E, = {(s, x, l,O, 0,. . .): x E D2} is homeomorphic to a Dz as subspace of the 

Sorgenfrey-line. Let 93 be a countable basis for [0, 11. For each x E D2 pick B, E 98 

such that (s, x, l,O, 0,. . .>~f(B,nf’(E,))c{(s,y, l,O, 0,. . .>: yg D,~ysx]. 

If x#y then B, f B,, whence D2 is countable. Similarly, D,= 

ix E [O, II\&: (s, x, (40,. . .) ~f(D)l is countable We conclude that 

{XE [O, 1l\A.,:f(D) n Lxjf0) = D, u D,u 03 

is countable. 0 

Observe that {x E [0, l]\A,: f(D) n Zcr,xl # 0) = r,,f(D) n ([0, l]\A,) (here rr,, is the 

projection onto the nth factor of [0, 11”’ of course). 

4. An order-homogeneous non-reversible continuum 

Let A c [0, l] be the BB-set from Example 2.3. We claim that L,d is as required. 

We first show that LA is order-homogeneous. 

4.0. Lemma. BA is isomorphic to each sum ofjinitely many copies of itselJ 

Proof. It suffices to show that B,,,= BA + BA where B,+ BA denotes the ordered 

union of two disjoint copies of B,+ Let a E A. Then [0, l]\A = (0, a)\A u 

(a, l)\A = [0, l]\A+ [0, l]\A. So 

BA = (LO, lI\A) x (LO, lI\A)” = ([O, lI\A + LO, lI\A) x (LO, lI\A)” 

-BA+BA. 0 

4.1. Lemma. BA is isomorphic to each clopen initial and$nal segment of itself: 

Proof. Let C be a clopen initial segment and D = BA\C. Let Co = {x0: x E C} and 

Do = {x0: x E D}. Assume C, n D, = 0. If C,, has no maximum then C,, = [0, l]\A 

and hence BA = Co x ([0, l]\A)” = C. If C, has a maximum, say a,, then 

C={~~B~:x~<a,}+{x~B,:x,=a,} 

= (0, ad\A x 00, lI\A)” + iad x (LO, ll\A)” 

=BA+BA 
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(Lemma 4.0). If C,,n D, # 0., then, as is easily seen, Con Do = {a,} for some ago 

[0, l]\A. Let C, = {x,: x E C A x,, = a,} and D, = {x,: x E D A x,, = a,}. If C, n D, = 0 

and C, has no maximum then C=((O, a,)\A X([O, l]\A)N)+({uO} XC, X 

([0, l]\A)“) = B/, + BA = BA (Lemma 4.0). If C, n D, = 0 and C, has a maxi- 

mum a, then C = ((0, a,)\A x (LO, lI\A)“) + ({a~) X(@, a,)\A x (LO, lI\A)“) + 
({a,} x{ul} x ([0, l]\A)“) = BA+ BA+ BA = BA (Lemma 4.0). If C, n D, # 0, say C, n 

D, = {a,}, continue. If the process stops we find that C is isomorphic to a sum of 

finitely many copies of BA and hence to B A; if the process does not stop we find a 

point (uo, a,, . . .) E C n D which is impossible. 

We can of course show simultaneously that D= BA. 0 

4.2. Lemma. BA is isomorphic to each interval (x, y) n BA. 

Proof. Ifx,yEIJncw A, then (x, y) n B, is clopen in BA, and a clopen final segment 

of the clopen initial segment (0, y) n BA of B,+ So applying Lemma 4.1 twice we 

see that BA = (x, y) n B,+ If x and y are arbitrary find sequences (P~),,~~ in (x, y)\B, 

and (q&z in LA\BA respectively, such that p,,$x, q,,JO (if n + -CO) and p,,ly, q,,Tl 

(if n + CO). Now map (p,, pntl) n BA isomorphically onto (q”, q,,+,) n BA for each 

n E Z. The combination of these maps is an isomorphism of (x, y) n BA onto B,. 0 

4.3. Theorem. LA is order homogeneous. 

Proof. Let x <I y in LA and letf: BA + BA n (x, y) be an isomorphism (Lemma 4.2). 

As BA is dense in LA (Proposition 3.7), f extends to a unique isomorphism f: LA -+ 

[X>Yl. 0 

Next we show that LA is very strongly non-reversible. 

4.4. Theorem. Let f: L,+ LA be continuous and non-increasing. Then f is constant. 

In particular, there cannot be an order-reversing uutohomeomorphism of LA. 

Proof. (1) n-&U,,,, A,) is countable. 

We identify, using Lemma 3.5, A, and A and A, and X,, for each s. Let 

s E ([0, l]\A)‘“. By Proposition 3.8 \T,,~(A,)\A\ G w (we use the case n = 0). By 

Example 2.3 1 rof( A,)1 < 2”, and so by Lemma 2.5 Irrof(A,)l 4 o. We also conclude 

that by Proposition 2.6 ]~~f(&)l c w. 

Furthermore, if x E [0, l]\A and rr,J is constant on I,-, then vJ( I,-,) G r&A,), 

and the number of x E [0, l]\A for which r,,f is not constant on I,-, is by Remark 

2.7 at most countable; call this set T,. Summarizing we have that I~of(A,~)J s w and 
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Let Tc_ ([0, l]\A)<” be the union of the following sets: 

To= {( )}, T,,, = IJ {SIX: x E TV}. 
.s c r,, 

Then T is countable and ~ofOJ,,, 4) c UzsT mJl%) so indeed 
‘“g-;Un;~‘l zs w. 

TO ,,EW A,) consists of one point. 

Suppose not and let p < q be distinct points of this set. Pick a point rE 

(P, q)\(A u TO&J,,, A,)). It follows that J = ((r, O,O, . . .), (r, 1, 0, 0, . . .)) is disjoint 

from NJ,,, A,) and hence disjoint from J(U,,, A,,) zf(LA). But f( LA) contains 

points on the left and on the right of .I and must therefore be disconnected 

contradicting the continuity off: 

(3) Denote the point from (2) by x0. If X,E A then f is constant with value 

(x0, O,O, . .). If X~E [0, l]\A then f maps LA into I, and we find x, such that 

r,f( L,) = {x,}. If x, E A then f~ (x0, x,, O,O, . . .); if not, continue. If this process 

stops at n then f- (x0, x,, . . , x,,, 0, 0, . . .); otherwise we find XE BA (with coordin- 

ates x0, x,, . . . , etc.) such that f= x. 0 

Our continuum is different from Shelah’s [8] for the following reason: Shelah’s 

continuum is an Aronzajn continuum, hence it contains an uncountable subset 

without any uncountable subset isomorphic to a subset of R. Our continuum has 

the property that every uncountable subset contains an uncountable subset isomor- 

phic to a subset of R. To see this, let D G L, be uncountable. For each n E w let 

T,={st([O,l]\A)“: DnI,ffl}, 

and let T = IJ.,, T,,. Then T is a tree if we define s G t-s s t. 

Case 1. Some T, is uncountable. 

Let n be the first integer for which T, is uncountable; since To = {( )}, n > 0. Pick 

s E T,_, such that T, = {t E T,: s s t} is uncountable. For each I E T,, pick d, E I, n D. 

Then (d,: I E T,} is isomorphic to the uncountable subset {t,,_,: t E D,,} of [0, 11. 

Case 2. Every T,, is countable. 

Let T’ = {s E T: I, n D is uncountable}. Then T’ is a subtree .of T. 

Subcase 2.1. For some s E T’ we have that D n A,y is uncountable. 

Define f‘ as in the proof of Lemma 3.5. Then f,( D n A,) is isomorphic to D n A, 

and fr( D n A,) is an uncountable subset of [0, 11. 

Subcase 2.2. For all s E T’ we have that D n A, is countable. 

Consider D’= D\(u,, T,T” I, u UIFTl A,). Then D’ is uncountable because 

u,, -f\T, 17 ” u.,, T, A, is countable and D’s B,+ For every s E TL = {t E T’: t E T,} 

the set {TV TL,,: s G t} is countable and ordered by t’s te t: G t,. Since every 

countable subset of [0, l] is isomorphic to a subset of Q, We can embed the set of 

branches of T’ into the lexicographic product Q”, which itself is embeddable into 

R. As every element of D’ determines a branch of T’, we see that D’ is embeddable 

into R. 
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5. An ordered continuum with a minimum set of continuous self-maps 

In this section we present an ordered continuum with only the necessary con- 

tinuous self-maps. To see what this means, let X be an ordered continuum. Then 

for x < y in X there exists a continuous map f,: X + X defined by 

( 

X ifzcx, 

L,(z)= z ifxSz<y, 

y ifysz. 

Let us call such a map a canonical retraction. Thus whatever properties X may have, 

it will always have the canonical retractions among its continuous self-maps. The 

continuum which we construct in this section will have no continuous self-maps 

besides the canonical retractions. 

Let ~2 and V be as in Example 2.5. Index d in a one-to-one way by [0, l]‘“, 

and let L = Lti Then L is as required. The following lemma will be the key in 

showing this. 

5.1. Lemma. Let p <I q in L, and let f: [p, q] + L be continuous and monotonically 

non-decreasing, such that f ([ p, q]) n [ p, q] = 0. Then f is constant. 

Proof. (1) For some s E [0, I]“, p = (s, 0, 0, . . .) and q = (s, 1, 0, 0, . . .), so [p, q] = I,. 

In this case we can use virtually the same proof as in Theorem 4.4. The only 

problem is to show that if t extends s and if m E w then n,,J(A( t)) is countable. 

To begin with note that n > 0 because of the condition on J: Let m = 0 and let t 

extend S. Consider f = r0 0 f ofi': A, + [0, I] (here fi is defined as in the proof of 

Lemma 3.5). By Proposition 3.8, f(A,)\A, ) is countable hence ?(A,) n V is count- 

able. Next assume that If(A,) n A, )I = 2”. Now since A, n A, ) = (0, 1) we see that 

for a set C G A, of cardinality 2”, f 1 C is one-to-one while moreover f(x) f x for 

every x E C. But then, using an extensionf* : [0, l] -+ [0, l] of 7, Example 2.4 ensures 

that If(A,) n VI = 2”, which is impossible. Hence If( s (f(A,)\A, )I + IJ(A,) n 

A, )) < 2” and so by Lemma 2.5, f(A,) = T”f(A( t)) is countable. So r,,f is constant, 

say with value x0, hence f- (x,, 0, 0, . . .) or f( I,) c I,,,,. Repeat the process to find 

a constant value for f: At stage i+ 1, because f(ZF) n Z, = 0, we know that for all t 

extending s we have that t # (x0,. . . , Xi), so by the above reasoning with A+,,...,x,, 

in place of A, ), ri+l f (A( t)) is countable. 

(2) For some s E [0, 11” and p, q E [0, 11, p = (s, p, O,O, . . .) and q = (s, q, O,O, . .). 

Let x E [p, q]\A,. Then by (l), f is constant on &) say with value r,. Define 

f:[p, ql+L by 

I 
Y(a) =f((s, a,09 0,. . .>I for a E [P, sl n 4, 
f(x) = rx for x E [P, ql\&. 

Since f is continuous, f is continuous. But f([ p, q]) is separable and L contains 

no separable intervals, so f is constant. But then f is constant. 
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(3) p and q are arbitrary. 

Find n such that s := p r n = q 1 n and p,, < q,,. Then f is constant on the interval 

[(s, Pnr 1, 0, 0, . . J, b, %I, 0, 0, . . .)] by the same method as in (2). Also by (2), f is 

constant on the interval [(s, qnr . . . , qnii, O,O, . . .), (s, q,,, . . . , q,+i+lp O,O, . . .)] for 

each i 2 0, and consequently, f is constant on [(s, pn, 1, 0, 0, . . .), q]. We also have 

that f is constant on [(s,p,,, . . . ,~,,+~,p”+~+~, O,O,. . .),(s,p,, . . . ,p,,+i, l,O,. . .)] for 

each iz0 such that P,,+~+, < 1, and consequently f is constant on the interval 

[p, (s, p,,, 1, 0, 0, . . .)]. We conclude that f is constant on [p, q]. 0 

From this lemma we now deduce: 

5.1. Lemma. Let f: L+ L be a continuous monotonically non-decreasing map. If for 

some 4 E L we have f(a) (> a then f(x) = f(a) f or all x <I a, and dually if for some 

a E L we have that f(a) <I a then f(x) =f(a) for all x I> a. 

Proof. Let x = inf{y < a: f(y) = f (a)}. Suppose 0 < 1 x. Then as f is continuous f (x) = 

f(a) and for some z (1 x, f([z, x]) G (a, 11. H ence f([z, x]) n [G x] = 0 and hence f 

is constant on [z, x] (Lemma 5.0), but then z <) x and f(z) = f(x) = f(a), a contradic- 

tion. So x = 0. 0 

We can now show: 

5.2. Lemma. Let f: L+ L be monotonically non-decreasing and continuous. Then f is 

a canonical retraction. 

Proof. Let f(0) =p and f(1) = q. We show that f =_&. Let x E (0, p). Then 

f(x) Izp Ia xsof(x)=f(O)=p.Letx~(q,1).Thensimilarly,f(x)=q.Letx~(p,q). 

If f(x) I> x then f(0) =f(x) I> x I> p, contradiction. Similarly f(x) <I x is imposs- 

ible. So indeed f = fq,q 0 

With each continuous function f: L-, L we associate four monotone functions as 

follows: 

f,(x) = supif( Y 4 x1, f2(x) = Wf(y): Y sl xl, 

f3(x) = sup{f(y): Y Ia x). fdx) = inf{f (y): Y Ia xl. 

It is straightforward to check that these functions are continuous, that f, and f., 

are non-decreasing, that fi and f3 are non-increasing and that f4 c(fs( fi and 

f2 <If <I f3. We now get: 

5.3. Theorem. If f: L + L is continuous, then f is a canonical retraction. 

Proof. Almost the same proof as in Theorem 4.4 will show that every non-increasing 

continuous self-map is constant. Let f: L+ L be continuous. Then f2 and f3 are 
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constant, and so, since fi(0) =f(O) and f3(1) =f(l), we conclude that for all x E L, 

f(O) +W 4m. 

But then.fl(0) =f4(0) =f(o) andfIt =h(l) =./Ill, s0.h =h=ff~o~,f~l~ (Lemma 5.2). 

Hence f=j&JScl,, since f4 sI f <I f,. 17 

6. Some additional remarks 

In this section we collect some additional results which can be proved in virtually 

the same way as in Sections 4 and 5. 

6.0. To begin with, let {Au}crtZ~ and V be as in the proof of Example 2.3. Consider 

the family {A,: J G 2”, J # 0) from Remark 2.2. Then each continuum LA, is order- 

homogeneous and non-reversible. It can be shown that for J # J’ we have LA, and 

LA,, are non-isomorphic. By pairing of sets J, and J2 for which LA, is isomorphic 

to LA, with the reverse order, we get a family of 2“” order-homogeneous non- 

reversible continua such that no two continua are isomorphic or anti-isomorphic. 

6.1. A similar remark applies to the example of Section 5. To get 22w non-isomorphic 

continua with only trival continuous self-maps, simply permutate the family 

{A+,: x E [0, l]\A( ,}. Different permutations yield different continua and the number 

of these permutations is 2’-. 

6.2. Ifwelet ~={id,x~1-x}and~={f:domf=[x,y]~[0,1],rangef~[0,1] 

and f is monotonically non-decreasing or non-increasing} and apply Corollary 2.1 

to get {AJatZw and V. Then we get an ordered continuum L with precisely one 

reversing map cp and such that whenever f: L+ L is continuous then: 

(1) f is a canonical retraction, or 

(2) we can find p 61 q .I < r~IsinLsuchthatO~Ix~Ip+f(x)=p,p<Ix~]q+ 

j-(x)=x, qs(xsIr+f(x)=q, r ~1 x <I s+f(x) = q(x) and s ~1 x ~1 l-f(x) = 

v(s), or 

(3) we can find a g: L+ L satisfying (1) or (2) such that f = cp 0 g. 
Use a two-to-one indexing such that for s E [0, l]‘“, A, = A,, (where si = 1 - si). 

Then cp: L+ L defined by 

(1 - xg, 1 - xi, . . .) if x E B,d, 

x,,,l-x,,O,O ,...) ifxEA,(nEW), 

is the reversing map. 
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