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A METHOD FOR CONSTRUCTING ORDERED CONTINUA
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We present a method for constructing ordered continua. We illustrate our method by constructing
(i) a new order-homogeneous non-reversible continuum, and (ii) an ordered continuum with a
minimal set of continuous self-maps.
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0. Introduction

In recent years some types of topological spaces were constructed having only
the ‘necessary” continuous self-maps (of a special kind). Examples of this type are:
a topological group having no other continuous self-maps other than the translations
and the constant maps [5] and an infinite-dimensional inner-product space with
only trivial bounded linear operators (an operator A is trivial if for some scalar A,
A — I has finite dimensional range) [6]. For older results of this type see [3, 7].
We pursue this line a little further by constructing an ordered continuum with only
the necessary continuous self-maps: for an explanation of ‘necessary’ in this context
see Section 5. Actually our main result is a general method for constructing ordered
continua, of which the above-mentioned continuum is an illustration. A second
example is presented in Section 4 (this example came first in time), which is an
order-homogeneous non-reversible ordered continuum. The first (real) example of
this type was constructed by Shelah [8]. Our example is totally different from
Shelah’s (see Section 4 for an explanation) and, in our opinion, somewhat simpler.

The paper is organized as follows: Section 1 contains the necessary definitions
and preliminaries. Section 2 concerns special subsets of the unit interval [0, 1]. The
construction presented there is very much like the one in [4]. In Section 3 we show
how to construct ordered continua from families of subsets of [0, 1]. In Sections 4
and 5 we construct the continua mentioned above using the method of Section 3,
with input from Section 2.

1. Definitions and preliminaries

Our notation and terminology is fairly standard, see e.g. [1,2].
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1.0. An ordered continuum is a compact, connected linearly ordered topological
space, equivalently, a complete and densely linearly ordered set equipped with the
order topology. Two ordered continua K and L are isomorphic if there exists an
order-preserving bijection f: K > L; if there exists an order-reversing bijection f: K ~»
L then K and L are anti-isomorphic.

Usually the ordering relation is denoted by =<, we are sure this will not cause
confusion. There is one exception: if [[,. X, is a product of linearly ordered sets
then <| denotes the lexicographic order: x <| y iff for some n, x; =y, for ie n and
X < Yo

1.1. Aset A<[0,1]is a BB-set if A and its complement intersect every Cantor set
of [0, 1] (BB stands for Bi-Bernstein).

1.2. We fix some notation:

(i) if X is a set then X~ denotes | J . X",

(ii) If xe X” then x| n={(xgy, ..., X,_1),

(iii) If s is a finite sequence of points, say (s, ... S,—;), and x is a point then
(8, XY =(So, -+ +  Sn15 X),

(iv) ( ) denotes the empty sequence,

(v) finally, the symbol = is used to denote both homeomorphism of topological
spaces and isomorphism of ordered sets.

2. Subsets of [0, 1]

This section contains some results on the existence of some special subsets of
[0, 1] and their properties. We start with our principal tool for constructing various
subsets of [0, 1]. For convenience we adopt the following conventions: if ¢ is a
group of autohomeomorphisms of R then a set A, where A<[0, 1], will be called
G-invariant if for all ae A, 9(a)n[0,1] where 9%(a)={g(a): ge 4}. Let f be a
function such that dom f and range f are subsets of R. If ¥ is a group of
autohomeomorphisms of R define S(f, 9) ={xecdom f: f(x) €& 9(x)}. We call f 4-
singular if f(S(f, 9)) has cardinality 2“. For every %-singular f we choose a set
C(f, 9)<R such that f| C(f, %) is one-to-one while moreover f(C(f 9))=
F(S(f, 9)). Observe that the cardinality of C(f, 9) equals 2“. The sets C(f, 9)
remain fixed throughout the remaining part of this paper.

2.0. Theorem. Ler 4 be a countable group of autohomeomorphisms of R, let ¥ be a
family of functions such that |F|<2* and dom f, range f<[0, 1] for all fe ¥, and
let B be a subset of [0, 1] of cardinality less than 2“. Then there exists a pairwise
disjoint family {A,}acre of G-invariant BB-subsets of [0, 1] which all miss B and a
BB-set V< [0, 1\ ,cov As such that if f € F is §G-singular then |C(f, 9)nA|=2
and |f(C(f, ) A,)n V|=2°, for every a €2”.
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Proof. We assume of course that every fe % is %-singular. Let {f, gy: (o, B)€2” X
2“} be a listing of & such that each function occurs 2* times in each row {f, 5,: B €
2°}. Let {K(apy: (@, B)€2” X2} be a similar listing of the set of all Cantor sets in
[0,1]. In addition, let B'=|J,.5%(b). Observe that |B’|<2.

We shall find points x(a, B,0), x(«, 8,1), yv(a, 8,0), y(a, B,1)€[0, 1]\ B’ such
that:

(1) x(a, B,0)€ C(frapy 4) and y(a, B,0) = fiap(x(a, B,0)).

(2) x(a, B, 1), (e, B,1)€ Kiap)

(3) if (e, B, 1) # (', B', i'), where o, B, @', B'€2” and i, i'€2, then the collection
{9(x(a, B, 1)), 9(x(c’, B, 1), G(y(a, B, 1)), 9(y(a’, B', i'))} is pairwise disjoint.
We then let

A, =U{%x(a, B,i)): B2 ic2}n[0,1], aec2®

and
V={y(a,B,i):{a, B)e2” x2% ic2}.

By definition the A, are %-invariant, by (2) every A, meets every Cantor set of
[0, 1], hence the properties of A, ., show that A, is a BB-set, for by (3)

a;é'y—)AaﬁAy:@

By (3) it also follows that V intersects every Cantor set in [0, 1] and misses every
A,, whence V is also a BB-set. Let fe % and a€2” Let J(f, @) ={B:f=fap}
Then C(f, 9)n A, 2{x(a, B,0): Be J(f, @)} and this last set has cardinality 2%, so
|C(f, 4)n A,|=2". Furthermore, f(C(f,9)nA,)nV2{y(a,B,0):Becl(f,a)
and so |f(C(f, 9) N A,)n V|=2% S0 {A,}.c2e is as required.

Let us construct the points x(«, B, i), y(a, B, i) for , Bc2® and i€2. Fix a
well-ordering <| of 2“ X2 in type 2“. Assume that (@, 8) € 2* x2“ and that x(1, §, i)
and y(4, 8, i) are found for (v, 8) <|{a, 8) and i€ 2, such that (1), (2) and (3) are
fulfilled for all (v, 8) <| (a, B). Let

H=U{%(x(v,8,): (v, 8 <|{a, B), ic 22U U {9(»(%, 8,1)): {, 8) <|{a, B)}.

Then |H|<2“ Put f=f.pz Now |[C(f, %)|=2“ and f| C(f, %) is one-to-
one so |xe C(f, %9):x, f(x)g HuB'}|=2“. Pick x(a,B,0) from this set and
let y(a,B,0)=f(x(a, 8,0)). Furthermore, |K. /=2 and the -cardinality
of HuB' U % x(a, B,0))u¥9%y(a, B,0)) is less than 2%, so we can pick
x(a, B,1)e Kiupy\(HU B U 4(x(a, B,0)) U 4(y(e, B,0))) and y(a,B,1)e
Kiapy\(HU B"U 9(x(a, B,0)u 4(x(a, B, 1)U 4(y(a, B,0))).

Now for z=x(a, B,0), x(a, B, 1), ¥(a, B,0), or y(a, B,1) we have z¢ Hu B’ so
since ¥ is a group, 9(z)n(H v B')=@. It is also easily seen that the collection
{9(x(e, B,0)), 4(x(a, B, 1)), 4(y(a, B,0)), 4(y(a, B, 1))} is pairwise disjoint. This
completes the construction. [
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2.1. Corollary. Let 4 be a countable group of autohomeomorphisms of R, let ¥ be a
family of functions such that |%|<2“ and dom f, range f < [0, 1] for all fe . Then
there exists a family {A,},co of Y-invariant BB-subsets of [0, 1] with the property
that for distinct o, B €2” we have that A, " Ag=%4(0)u 9(1), and a BB-set V<
[0, 1N, v A, such that if fe F is Y-singular then |C(f, %) A.|=2 and
|F(C)f, 9) A, V]|=2°, for every a €2°.

Proof. Apply Theorem 2.0 with B = %(0) U 9(1) to get V and pairwise disjoint A,’s.
Then {A, U(%(0)u 9(1)): «€2”} and V\(4(0) U ¥(1)) are as required. O

2.2. Remark. Let{A,}...» and V be as in Theorem 2.0 or Corollary 2.1. In addition,
let J < 2* be non-empty and put A; =_J,.s A.. Then the properties of V show that
A, is a BB-set, and also if fe ¥ is 9-singular then |f(A,)n V|=2“. Simply pick
aeJ then f(A,)n VS f(A)n V.

We now give some applications of Theorem 2.0 to get the sets we need to build
our continua.

2.3. Example. There exists a BB-set A< [0, 1] containing 0 and 1 such that [0, 1]\ A
is isomorphic to each interval (x, y)\ A and such that if f: A->[0, 1] is monotonically
non-increasing and |range f|=2° then |f(A)\A|=2".

Proof. Let ¥ be the group of all homeomorphisms of R of the form x— px+q,
with p, g€ Q and p >0 (as usual, Q denotes the set of rational numbers). Let

F={f:[0,1]-[0, 1]: f is monotonically non-increasing}

Observe that ¢ is a countable group and that |#| <2 since each fe % has only
countably many points of discontinuity. Let {A,},.,~ and V be as in Corollary 2.1,
and put A= A,. Observe that 0, 1€ A

(1) Let x, y€[0,1] with x<y. If x, ye Q then ¢:t->(y—x)¢t+x maps {0,1\A
isomorphically onto (x, y)\A (%-invariance of [0, 1]\ A). Otherwise let {g,),.z be
a sequence in (x, y) n Q such that g, » x if n> —cc and g, > y if n—> co. All intervals
with rational endpoints are isomorphic so we can map (go, ¢,)\A isomorphically
onto (1/2,2/3)\ A, (g-1, g0)\A onto (1/3,1/2)\ A, etc. The combination of those
mappings yields an isomorphism between (x, y)\A and [0, 1]\ A.

(2) Let f: A-[0,1] be non-decreasing and extend f to f:[0, 1]- [0, 1] which is
non-increasing, e.g., f(x) =sup{f(a): a€ A, a < x}. Then f € ¥ Now if [range f] =2*
then |range f|=2“ so we have a set C <[0, 1] of cardinality 2* on which f is
one-to-one. The set {xe[0,1]: f(x)e ¥(x)} is countable: every g 9 is strictly
increasing so for each ge 9, g(x) = f(x) for at most one x [0, 1]. So without loss
of generality f(x)¢ %(x) for every xe C. Since f| C is one-to-one, we conclude
that f is %-singular. But then |C(f, 9) n A|=2* and |f(A)\A| =2, since f(A)n V
f(ANA. Since f extends f, we find that |f(A)\A|=2*.
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For later use we mention the following. If f:(x, y)» A—[0, 1] is non-increasing
and |range f]=2“ then | f((x, y) » A)\A|=2“. This follows from the observation that
(x, ¥y A is isomorphic to A\{0, 1} (same proof as for [0, 1]\ A).

We now exhibit BB-sets which have practically no non-trivial monotone self-maps.

2.4. Example. There exists a family {A,}.c,» of BB-sets of [0,1] and a set V&
[0, 1\NU, ., A, such that:

(1) a#B>A,nA;={0,1}.

2) If f:(x,y)nA,~>[0,1] is non-decreasing or non-increasing and if for some
Cc(x,y)nA,|C|=2°f" Cisone-to-oneand Vx € C,f(x) # x, then |f(AL) nV]|=27

Proof. Apply Corollary 2.1 with 4 ={id} and

F ={f: f is non-decreasing or non-increasing, dom f is a closed
subinterval of [0, 1] and range f < [0, 1]}.

Corollary 2.1 gives us {A,},c>« and V such that the A.’s pairwise intersect in
%(0)u 9(1)={0, 1}. The rest follows as in Example 2.3. O

We conclude with a proposition on monotone maps from BB-sets.

2.5. Lemma Let A<[O0, 1] be a BB-set and f: A—> X a monotone map where X is any
linearly ordered set. Then |f(A)|<w or |f(A)|=2".

Proof. Let B={x:f '(x) contains more than one point}={x:f '(x) is a non-
degenerate interval of A}. Then |B|<w since A is separable. Let G=
[0, 1NU,cpf "(x) (closure in [0,1]). Then G is a Gs-subset of [0, 1] and f is
one-to-one on G A and

S(AY=Buf(Gn A).

Now either |G| < w in which case |f(A)|< w, or |G| =2 in which case |G n A| =2
(since A is a BB-set) so |f(A)|=2*. O

2.6. Proposition. Let A< [0, 1] be a BB-set and let
X ={{xi)e[0,1]1%x{0,1}: xc A»i=0}

ordered lexicographically, i.e. X, is the compact LOTS obtained by splitting the points
of [0, 1\A. Let f: X,—-> X be a monotone map where X is any linearly ordered set.
Then | f(X4)|= @ or |f(X4)|=2".

Proof. By Lemma 2.5, |f(A)|< w or|f(A)|=2“ We show that | f(X,)| < w if | f(A)|<
w. Let F=,c5af '(2) n A (closure in [0, 1]). In addition, let B={x€[0,1]: x is
a boundary point of some f '(z)n A, z€ f(A)} and C=[0,1\F. Then B and C
are countable: B is countable since f(A) is countable and each f~'(z) n A can have
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at most two boundary points and C is a Gs-set disjoint from A. Let x€[0,1]\A
and suppose f({x, 0)) ¢ f(A) or f({x, 1)) & f(A). Then x&f '(z)n A for all z€ f(A),
since otherwise by monotonicity of f, we have that f({x, 0)) =f((x,1)) =z So x€ Bu
C. We conclude that

J(X4) =f(A) o U f(x,0), f(x, 1)} xe BU C}

is countable. [

2.7. Remark. For later use we note that also {x [0, 1]\A: f((x, 0)) # f({x, 1))} is
contained in Bu C and that this set is countable too.

3. Continua from subsets of [0, 1]

In this section we associate with each collection & of subsets of [0, 1] having the
property that 0, 1€ A for every A€ &, an ordered continuum L. For later use we
will identify some special subspaces of these continua.

The idea is as follows: start with [0, 1] and let A< [0, 1] contain 0 and 1, replace
each point of [0, I]\A by [0, 1], inside of each of these copies of [0, 1] take a set
containing 0, 1 and replace the points in the complement by [0, 1], etc. This gives
an inverse sequence of ordered continua with monotone bonding maps (collapsing
the inserted intervals) whose limit will be the ordered continuum L., (& is the set
of chosen subsets of [0, 1]). For notational purposes we shall give a different
description of L, as a subset of the lexicographically ordered Hilbert cube [0, 1]%.

3.0 Definition. Let o/ be a collection of subsets of [0, 1] with the property that 0,
1€ A for every Ac . Assume that & is indexed (not necessarily faithfully) by
[0,1]7“. We put

L,={xe[0,1]":if x,€ A, for some n then x;, =0 for i> n};

we order L lexicographically.
3.1. Lemma. L, is an ordered continuum.

Proof. We have to show that <| is a dense and complete order on L. We first make
the following remark: if xe L, and n€ w then x"=(x ] n,0,0,0,...)¢ L. For if
x; € A;; for some ien then x"=xe L, and otherwise, since x7 =0 for i=n, we
have (x] e A, »x]=0) for j>i=n;so x"€ L,

(1) <|is dense.

Let x <|y,say x | n=y | n and x, <y, for some n. Since y, # 0 we have y, £ Ay
for ie n. Pick ze(x,, y,). Then z=(x | n,20,0,...)e L, by the same argument as
above and x <|z <| y.

(2) <|is complete.
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Let C< L, If C=0then0=(0,0,0,...)=min L, =sup C. So assume C # . We
show that the usual strategy for finding a supremum in [0, 1]* also yields a supremum
in Ly Let Cy={x,: x€ C} and ¢y =sup C,. Now if ¢y & C, then (¢, 0,0, ...)=sup C.
Observe that this point belongs to L. If ¢oe Cy let Ci={x;: xe C, xo= ¢y} and

;=sup C. If ¢, C, then (¢, ¢;,0,0,...)=sup C:; observe that {cy, ¢,,0,0,...)e L.
Continue this process. If the process stops at n then {cg, ¢1,..., ¢, 0,0,...)=sup C.
Observe that this point belongs to L, If the process does not stop then
{Coy Clsevvy Coyyooy=max C. [

In case & has only one element A we will write L, instead of L4,

We will now study some subspaces of L which we will encounter when checking
the various properties of L. Although some of the results are valid for general
subsets of [0, 1], we assume in view of our applications that every A€ « is a BB-set
containing 0 and 1.

3.2. Definition. Let B, ={xe L, Vnew, x, £ A, .}

3.3. Lemma. As a subspace of L, B, is homeomorphic to the zero-dimensional Baire
space of weight 2¢ (i.e. the product of countably many discrete spaces of cardinality 2°).
Proof. For each s<[0,1]7* let f,:[0, 1]\ A, = R be a bijection. Define f: B, > R" by
S =S5 (x0), fo(X0)s ooy fpn(Xa), 2 )
It is straightforward to check that f is a bijection. For xe B, and ne w let
B(x,n)={ye B,y n=x|n}.
For xeR® and ne w let
C(x,n)={yeR”: yln=x|n}

The collection {C(x, n): xeR“, n€ w} generates the Baire-space topology on R,
furthermore f(B(x, n))= C(f(x),n) for all x and n, so {B(x,n): x€ By, nc w}
induces this same topology on B, On the other hand, define for xe B, and new
the points x(n) and y(n) by

x(n)fn=y(n)n=xIn;  x(n),=0, y(n),=1;
x(n);=y(n);=0 fori>n.
Then B(x, n)=(x(n), y(n))n B, for all n, while moreover

x=sup x(n) and x=inf y(n).

new

So {B(x, n): x€ B, n€ w} generates the subspace topology of B, [

Again B, = By,4,. The space B, will be used in Section 4.
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3.4. Definition. Let nc w and se€{0, 1]" such that s; £ A,; for ie n. Put
L={xeLlyxIn=s5}=[(50,0,...),{s51,0,0,0,...]
and

A(s)={xel:x,c A}

3.5. Lemma. (1) A(s) and A, are isomorphic and homeomorphic.
(2) A(s) is isomorphic and homeomorphic to the LOTS X,,_defined in Remark 2.7.

Proof. (1) The map f;: A(s) > A, defined by f,(x) = x, is both an isomorphism and
a homeomorphism.

(2) The same holds for g,: A(s) » X4, defined by g,(x) =(x,, x,.), for it is easily
seen that A(s)={xe L: (x,€ A, v (x, € A, A X, €{0,1D}. O

If & has only one element A we use A, to denote A(s). This occurs only in
Section 4.

3.6. Remark. Notice that in Lemma 3.5 A(s)\ A(s) is homeomorphic to
([0, INA, x{0}) L ([0, INA, x{1}) € X4,
As both [0, 1]\ A, x{0} and [0, 1]\ A, x{1} carry the Sorgenfrey topology we see that

A(s)\A(s) is a union of two subspaces of the Sorgenfrey-line.

We collect some results on L, which will be of use to us in the next sections.
First some notation. For ne o we let

A, ={xeLg;x, €A . AVien x, & Ay}
Note that

A, ={A(s):s€[0,1]" A Vien, s, 2 Ay},
so in particular, A;= A({ }). Also note that

U A, =L \Bg

new

3.7. Proposition. Both \_J_ __ A, and B, are dense in L.

neEw

Proof. Let x <|yin Ly, say x| n=y I n and x, <y, Pick ae(x, y.)n A, and
be (X, ya)\Asrn Puta=(xn,a,0,0,.. )andb=(x]n, b, 0,0, .. J.Thenae(x, y)n
A, and be(x,y)n B, O

3.8. Proposition. Ler s< [0, 1]" be such that s;2 A,;; for ie n. Let D< [0, 1] and let
f: D> I, be continuous. Then {x [0, 1\A,: f(D) I, ., # @} is countable.
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Proof. Let D, ={xe[0, 1\A,: f(D)n I, ,, #0} (here ° denotes interior). Then D,
is countable since

{fl(l(cx,x)): XEDI}

is a pairwise disjoint family of open subsets of D. Let D,={xec[0,1]\
A, (5,x1,0,0,0,..)ef(D)}. By Lemma 3.5 and Remark 3.6 we have that
E,={(s,x,1,0,0,...): xc D,} is homeomorphic to a D, as subspace of the
Sorgenfrey-line. Let B be a countable basis for [0, 1]. For each x € D, pick B,€ 3
such that <(5,x1,0,0,..)ef(B.nf (E))<={(s,1,0,0,...):ye Day=x}.
If x#y then B.,#B, whence D, is countable. Similarly, D;=
{xe[0, 1\NA,: {5, x,0,0,...)ef(D)} is countable We conclude that

{xe [09 1]\Asf(D)m I(s,x)?ﬁﬂ}: DIU DZU D3
is countable. [

Observethat {x [0, 1\ A,: f(D) n I, ., # 8} = m, (D) n ([0, 1\ A,) (here 7, is the
projection onto the nth factor of [0, 1]* of course).

4. An order-homogeneous non-reversible continuum

Let A<[0, 1] be the BB-set from Example 2.3. We claim that L, is as required.
We first show that L, is order-homogeneous.

4.0. Lemma. B, is isomorphic to each sum of finitely many copies of itself.

Proof. It suffices to show that B,= B,+ B, where B,+ B, denotes the ordered
union of two disjoint copies of B,. Let ac A. Then [0,1NA=(0,a)\Auy
(a, INA=[0, 1\NA+[0, 1\A. So

B = ([0, 1NA) X ([0, INA)" = ([0, 1NA+[0, I\NA) x([0, 1\ A)"
=B,+B,. O

4.1. Lemma. B, is isomorphic to each clopen initial and final segment of itself.

Proof. Let C be a clopen initial segment and D = B,\C. Let Cy={x,: x€ C} and
Dy={xy: x€ D}. Assume Co Dy=0. If C, has no maximum then C,=[0,1]\A
and hence B, = C,x ([0, 1\A)™= C. If C, has a maximum, say a,, then

C ={xe B,: xo<aot+{xe B: xo=a,}
= (0, ap)\A X ([0, 1NA)™+{ao} x ([0, 1]\A)"
=B,+ B4
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(Lemma 4.0). If Cyn Dy # ., then, as is easily seen, Con Dy={a,} for some ag€
[0, 1NA. Let Ci={x;: xe Caxo=a,} and D, ={x;: xe Daxy=ae}. If C,n D=0
and C,; has no maximum then C=~((0, a)\Ax([0, INAM)+({a,} x C, x
([0,1NAY)=~B,+ B,~ B, (Lemma 4.0). If C,nD,=¢ and C, has a maxi-
mum a, then C=((0,ay)\AX([0, 11NAN)+({ao} X(0, a;)\A x ([0, 1INAN)+
({ag} x{a,} ([0, 1\A)N)= B,+ B,+ B,~ B, (Lemma 4.0). If C, n D, # 0, say C, n
D, ={a,}, continue. If the process stops we find that C is isomorphic to a sum of
finitely many copies of B, and hence to B,; if the process does not stop we find a
point {ag, ai, ... € C n D which is impossible.
We can of course show simultaneously that D=~ B,. [

4.2. Lemma. B, is isomorphic to each interval (x,y) B,.

Proof. If x, yelJ, . A, then (x, y)n B, is clopen in By, and a clopen final segment
of the clopen initial segment (0, y) ~» B4 of B4. So applying Lemma 4.1 twice we
see that B4 = (x, y) n B4. If x and y are arbitrary find sequences {p,),cz in (x, y)\ B4
and (g,)ncz in L \ B, respectively, such that p,lx, ¢,l0 (if n > —c0) and p,1y, ¢.11
(if n—»>o0). Now map (p,, p.+1) » B, isomorphically onto (g, g,.,) » B4 for each
neZ. The combination of these maps is an isomorphism of (x, y) n B, onto B4. [

4.3. Theorem. L, is order homogeneous.

Proof. Let x <|yin L, and let f: B> B4 (x, y) be an isomorphism (Lemma 4.2).
As B, is dense in L, (Proposition 3.7), f extends to a unique isomorphism f: L, -
[x,y]. O

Next we show that L, is very strongly non-reversible.

4.4. Theorem. Let f: L,— L, be continuous and non-increasing. Then f is constant.
In particular, there cannot be an order-reversing autohomeomorphism of L ..

Proof. (1) wof(LJ,., Ax) is countable.

We identify, using Lemma 3.5, A, and A and A, and X, for each s Let
se ([0, 11\A)=“. By Proposition 3.8 |mf(A,)\A|<w (we use the case n=0). By
Example 2.3 |7, f(A,)|<2“, and so by Lemma 2.5 |7, f(A;)| < w. We also conclude
that by Proposition 2.6 |7, f(A;)|< w.

Furthermore, if x € [0, 1]\ A and m,f is constant on I -, then o f(I,-.) € mof(Ay),
and the number of x €0, 1]\ A for which 7,/ is not constant on I,-, is by Remark
2.7 at most countable; call this set T,. Summarizing we have that |7, f(A,)|<  and

Wof(]sﬁ U An) == ’n-()f(/&v)u U TrOf(I.s"xm U An)

new new
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Let T< ([0, 1]\A)=“ be the union of the following sets:
To={()}, Too= U {s"x: xe T,}.

seT,
Then T is countable and mof(U,. , A.)<SU..; mof(A,) so indeed
‘Wof(UnewAn” = w.

(2) mof(U,.., An) consists of one point.

Suppose not and let p<g be distinct points of this set. Pick a point re
(P, gNAU 7o f (U, ., Ad)). Ttfollows that J = ({r,0,0,...),{+, 1,0,0,...)) isdisjoint
from f(l, ., A.) and hence disjoint from f({_J __"A,)2f(L4). But f(L,) contains
points on the left and on the right of J and must therefore be disconnected
contradicting the continuity of f.

(3) Denote the point from (2) by x,. If xo€ A then f is constant with value
{x0,0,0,...0. Tf x€[0,1]\A then f maps L, into I,  and we find x, such that
m f(La)={x}. If x, € A then f=(xq, x,,0,0,...); if not, continue. If this process
stops at n then f=(xq, x,..., X, 0,0,...); otherwise we find x € B, (with coordin-
ates xo, X, ..., etc.) such that f=x. (O

Our continuum is different from Shelah’s [8] for the following reason: Shelah’s
continuum is an Aronzajn continuum, hence it contains an uncountable subset
without any uncountable subset isomorphic to a subset of R. Our continuum has
the property that every uncountable subset contains an uncountable subset isomor-
phic to a subset of R. To see this, let D< L, be uncountable. For each ne w let

T,={se([0,1NA)Y": D~ I # @},

and let T=\J,., T, Then T is a tree if we define s<t&sct.

Case 1. Some T, is uncountable.

Let n be the first integer for which T, is uncountable; since T,={{ )}, n> 0. Pick
se€ T,_,suchthat T, ={te T,: s =t} is uncountable. For each re T, pick d,€ I, ~ D.
Then {d,: 1€ T,} is isomorphic to the uncountable subset {t,_,: t€ D,} of [0, 1].

Case 2. Every T, is countable.

Let T'={se T: I, ~n D is uncountable}. Then T is a subtree of T.

Subcase 2.1. For some se T’ we have that D A, is uncountable.

Define f, as in the proof of Lemma 3.5. Then f,(D n A,) is isomorphic to D A,
and f,(Dn A,) is an uncountable subset of [0, 1].

Subcase 2.2. For all se T' we have that D A, is countable.

Consider D'=D\(U,crr LU, A,). Then D' is uncountable because
Uerr LwlU, .7+ A, is countable and D'c B,. For every se T, ={te T": te T,}
the set {re T,,,: s<1} is countable and ordered by t'<r1& 1, <1, Since every
countable subset of [0, 1] is isomorphic to a subset of Q, We can embed the set of
branches of T' into the lexicographic product Q, which itself is embeddable into
R. As every element of D' determines a branch of T', we see that D’ is embeddable
into R.
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5. An ordered continuum with a minimum set of continuous self-maps

In this section we present an ordered continuum with only the necessary con-
tinuous self-maps. To see what this means, let X be an ordered continuum. Then
for x <y in X there exists a continuous map f,,: X > X defined by

x ifz=sx
Sfolz)=4z ifx<sz=y,
y ifysz

Let us call such a map a canonical retraction. Thus whatever properties X may have,
it will always have the canonical retractions among its continuous self-maps. The
continuum which we construct in this section will have no continuous self-maps
besides the canonical retractions.

Let &/ and V be as in Example 2.5. Index & in a one-to-one way by [0, 1],
and let L= L, Then L is as required. The following lemma will be the key in
showing this.

5.1. Lemma. Let p <|q in L, and let f:[ p,q]~ L be continuous and monotonically
non-decreasing, such that f([p, q]) ~[p, q]=90. Then f is constant.

Proof. (1) For some s<[0,1]", p=(s50,0,...) and ¢=(s5,1,0,0,...),s0 [p, q] = I..

In this case we can use virtually the same proof as in Theorem 4.4. The only
problem is to show that if ¢ extends s and if m € w then =, f(A(t)) is countable.
To begin with note that n>0 because of the condition on f. Let m=0 and let ¢
extend s. Consider f=my° fof, 1 A,»[0, 1] (here f, is defined as in the proof of
Lemma 3.5). By Proposition 3.8, f(A,)\ A, , is countable hence f(A,) N V is count-
able. Next assume that | f(A,) " A, ,|=2“. Now since A, A, ,={0, 1} we see that
for a set C < A, of cardinality 2%, f| C is one-to-one while moreover f(x) # x for
every x € C. But then, using an extension f*:[0, 1]~ [0, 1] of £, Example 2.4 ensures
that | f(A,) n V| =2, which is impossible. Hence |f(A,)|<|f(ANA, ,|+|f(A)
A ,|<2“ and so by Lemma 2.5, f(A,) = m,f(A(t)) is countable. So m,f is constant,
say with value x,, hence f=(x,,0,0,...) or f(I,) < I, Repeat the process to find
a constant value for f. At stage i+1, because f(I;) n I, =0, we know that for all ¢
extending s we have that ¢ # {(xo,...,X;), so by the above reasoning with A, .,
in place of A, , 741 f(A(r)) is countable.

(2) For some s€[0,1]" and p, g[0,1], p=(s5,p,0,0,...)and g=(s,4,0,0,...).

Let x<[p, g]\A,. Then by (1), f is constant on I, say with value r.. Define
f:[p,q1- L by

{f(a) =f((s,a,0,0,...)) forac[p q]lnA,

f(x)=r for xe[p, g\ A,

Since f is continuous, f is continuous. But f([ p, q]) is separable and L contains
no separable intervals, so f is constant. But then f is constant.
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(3) p and q are arbitrary.

Find n such that s:=p| n=gq| n and p,<gq,. Then f is constant on the interval
[{s, Py 1,0,0,...),(s, g, 0,0,...)] by the same method as in (2). Also by (2), f is
constant on the interval [(s, qu ..., 9u450,0,..0,(5 qn, - - -, Gn+i+1,0,0,...)] for
each i=0, and consequently, f is constant on [(s, p,, 1,0,0,...), ¢]. We also have
that f is constant on [{S, P, - . -, Puti Prvit1s 050, - o0 (8, Pus - -+ » Pusin 1,0,.. )] for
each i=0 such that p,,;,,, <1, and consequently f is constant on the interval
[p,{s,pn1,0,0,...]. We conclude that f is constant on [ p, q}. [

From this lemma we now deduce:

5.1. Lemma. Let f: L-> L be a continuous monotonically non-decreasing map. If for
some ac L we have f(a)|> a then f(x)=f(a) for all x <|a, and dually if for some
ac L we have that f(a) <| a then f(x) = f(a) for all x |> a.

Proof. Let x =inf{y < a: f(y) = f(a)}. Suppose 0 <| x. Then as f is continuous f(x) =
f(a) and for some z <|x, f([z, x]) < (a,1]. Hence f([z, x]) n [z, x] =0 and hence f
is constant on [z, x] (Lemma 5.0), but then z <| x and f(z) = f(x) = f(a), a contradic-
tion. So x=0. O

We can now show:

5.2. Lemma. Let f: L~ L be monotonically non-decreasing and continuous. Then f is
a canonical retraction.

Proof. Let f(0)=p and f(1)=q. We show that f=f,,. Let xe(0,p). Then
f(x)|= p|= xsof(x)=f(0)=p. Let xc (g, 1). Then similarly, f(x) = q. Let xe (p, q).
If f(x)|> x then f(0) = f(x) |> x |> p, contradiction. Similarly f(x) <| x is imposs-
ible. So indeed f=f,, O

With each continuous function f: L-> L we associate four monotone functions as
follows:

filx)=sup{f(y):y <[x},  folx)=inf{f(p): y <|x},
fx)=sup{f(»):y|=x}.  fulx)=inf{f(y):y|> x}.

It is straightforward to check that these functions are continuous, that f, and f,
are non-decreasing, that f, and f; are non-increasing and that f, <|f=<|f, and
£ <|f<|fs. We now get:

5.3. Theorem. If f: L— L is continuous, then f is a canonical retraction.

Proof. Almost the same proof as in Theorem 4.4 will show that every non-increasing
continuous self-map is constant. Let f: L L be continuous. Then f, and f; are
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constant, and so, since f5(0) =f(0) and f3(1) =f(1), we conclude that for all xe L,
£00) = f(x) <[ £(1).

But then £,(0) = f,(0) = f(0) and f1(1) = f,(1) = f(1), s0 f, = f4s = fr@).r1) (Lemma 5.2).
Hence f= fyo) 51, since fo<|f<|fi. O

6. Some additional remarks

In this section we collect some additional results which can be proved in virtually
the same way as in Sections 4 and 5.

6.0. To begin with, let {A,} ...~ and V be as in the proof of Example 2.3. Consider
the family {A,: J =2, J #§} from Remark 2.2. Then each continuum L,, is order-
homogeneous and non-reversible. It can be shown that for J # J' we have L,, and
L,, are non-isomorphic. By pairing of sets J, and J, for which L,, is isomorphic
to L, with the reverse order, we get a family of 2* order-homé)geneous non-
reversible continua such that no two continua are isomorphic or anti-isomorphic.

6.1. A similar remark applies to the example of Section 5. To get 2°° non-isomorphic
continua with only trival continuous self-maps, simply permutate the family
{Ay: x€[0, 1\A( ,}. Different permutations yield different continua and the number
of these permutations is 2°°.

6.2. If we let ¥={id, x> 1—x} and F={f: dom f=[x, y]=[0, 1], range f =[O0, 1]
and f is monotonically non-decreasing or non-increasing} and apply Corollary 2.1
to get {A.}.cov and V. Then we get an ordered continuum L with precisely one
reversing map ¢ and such that whenever f: L—> L is continuous then:

(1) f is a canonical retraction, or

(2) wecanfindp <|q<|r<|sinLsuchthat0<|x<|p->f(x)=p,p<|x<|qg~>
fx)=x, q=lx<[r>f(x)=q, r=|x<|s->f(x)=¢(x) and s=|x=|1>f(x)=
o(s), or

(3) we can find a g: L > L satisfying (1) or (2) such that f=¢° g.

Use a two-to-one indexing such that for s€[0,1]7%, A, = A,, (where s{=1—g5,).
Then ¢: L—> L defined by

<l_xO,1_xl,...> ifxEB&g,
p(x)= .
{1-—x0,1-x,,0,0,...) ifxeA,(new),

is the reversing map.
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