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0. Introduction 

In 1968 Wilansky asked whether a separable normal topological group must be 

Lindelof. In [7] this question was answered in the negative, assuming CH, by 

constructing a hereditarily separable, normal group which is not Lindeliif. We give 

an example of a separable normal group which contains a closed subspace homeo- 

morphic to an uncountable regular cardinal, in ZFC only. 

Of course we have to sacrifice hereditary separability, since TodorEeviC (and a 

little later Baumgartner) showed that it is consistent to assume that hereditarily 

separable regular spaces are Lindeliif (in short: ‘There are no S-spaces’). For details 

see [lo]. 

In Section 2 we associate with each topological space X a group B(X), which 

has a topology such that all translations are continuous, and show that in some 

special cases B(X) is a topological group. 

In Section 3 we give a space X whose B(X) will be the desired example. Our 

B(X) construction was somewhat inspired by the work done concerning free 

topological groups. For details and references, see Smith-Thomas [ 1 I]. 

1. Definitions and preliminaries 

For set theory consult [S] and for topology consult [l]. 

1.0. The free Boolean group of a set. 
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A group G is called Boolean if every element of it has order at most 2. In this 

case G is Abelian. 

Now let X be a set. The free Boolean group B(X) of X is a Boolean group 

containing X such that every function from X to a Boolean group extends to a 

unique homomorphism from B(X) to that group. We give two visualizations of 

B(X). 
(a) The set of finite subsets of X, with symmetric difference as group operation. 

(b) The subgroup {XE x2: Ix’(l)l<w} of x2. 

We shall write the elements of B(X) as formal Boolean sums of elements of X. For 

every n E N we define a function (P”: X” + B(X) by q,(x) = x, + x2 t. . . + x,. We let 

X,, = cp,(X”). Notice that 

X,~X,~X,S... and X2cX4zX6c.... 

Let E =lJntN X2, and O=UneN X2+,. Observe that E A 0 =@ and that the 
identity element of B(X) is in E. 

1.1. Permutations and X”. 

As usual S,, is the group of permutations of {l, 2,. . . , n}. Let X be a set. Every 

(T E S, induces a function u: X” +X” via a(x) = (x,,,,, . . . , x,(,,). The set of orbits 

under this action of S,, on X” will be denoted by X,, and n,,: X” + X,, will be the 

natural projection. Furthermore for each CT E S,,, (P,,o(T = (P,, so that (P,, induces a 

function (CI,, : T?,, + T$ such that I/J, 0 r” = p,,. 

Now assume that X is a topological space. Then each WE S, is an 

autohomeomorphism of X”. So, since for each A G X” we have rXr,(A) = 

U rrtS, a(A), if we give X, the quotient topology determined by X” and r,,, then 

r,, will be a closed and open map since S, is finite. 

1.2. Adjunction spaces [3]. 

Let X and Y be topological spaces, As X closed and f: A-, Y continuous. 

Consider the sum X0 Y and let - be the smallest equivalence relation on X0 Y 

satisfying f(x) - x for all x E A. The quotient of X0 Y determined by - will be 

denoted by X u f Y and is called the adjunction space of X and Y by f: Actually, 

Dugundji uses the term ‘X is attached to Y by f’ but ‘adjunction space’ is more 

common these days. We mention the following facts: 

(a) X\A is an open subspace of X u, Y. 

(b) Y is a closed subspace of X uf Y. 
(c) The adjunction space preserves the following properties: T,, normal and 

compact Hausdorff. 

2. The general construction 

In this section we associate with each topological space a homogeneous space. 

In the second part we shall show that in some special cases we actually have a 

topological group. 
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To avoid trivial nuisance we shall assume that all spaces under consideration are 

infinite and Hausdorff. 

2.0. Construction. 

Let,X be a topological space. We shall topologize the group B(X) as follows. 

First we give each set X, the quotient topology determined by X” and (P,,. We then 

define 

7 = {U G B(X): U n X, is open in X, for all n}, 

i.e., r is the topology on B(X) determined by the sets X,,, n EN. This is the topology 

on B(X) we are interested in and from now on we shall assume that B(X) carries 

this topology. 

The referee pointed out that our construction looks like the one of Ordman [9]. 

The precise relationship seems unclear. 

Straight from the definition we can prove the following proposition. 

2.1. Proposition. (a) B(X) is homogeneous. 

(b) Both E and 0 are clopen in B(X). 

Proof. (a) We show that translations are continuous, and of course it suffices to 

consider words of length 1, i.e. elements of X,, only. Let x E X and let CJ G B(X) 

be open. To show that U + x is open we must show that for each n E K4 the set 

cPZY((U+x)nX,) 

is open in X”. Let n E RJ and define i,: X” + Xntl byi,(x)=(x,x).Thencpz((U+x)n 

X,) = {x E X”: x + p,(x) E U} = {x E X”: (x, x) E ~pz+~( U n X,,,)} = i~cp~+,( U n 
X,,,) is open in X”, because U n X,,,, is open in X,,,, and i, is continuous. 

(b) Note that E n X, = X, if n is even and E n X,, = 0 if n is odd. So E is clopen 

and hence so is 0 = B(X)\E. 0 

The following proposition shows that each X,, is a closed subspace of B(X). 

2.2. Proposition. X,, is a closed subspace of X,,+2 for each n. 

Proof. (a) Since ~pz+~(X,) = UIGi<jGn+Z {XE Xn+2: x, =x,1 =UVtS,,+Z g(Xfl xAX) 
(here AX denotes the diagonal of X in X2), which is closed in X”+’ (X is Hausdorff), 

X,, is closed in Xnt2. 

(b) Let FGX,, beclosedinX,.Thencp~+2(F)=Urrt,~+Za(cp~(F)~AX)isclosed 

in Xn+2. Hence F is closed in X,,,,. 

(c) Let F c X,, be closed in X,,,,. Fix x E X and define jx: X” +X”+* by ix(x) = 

(x, x, x). Then q:(F) = jzqz+2(F) is closed in X,, by continuity of j,, so that F is 

closed in X,. Cl 



282 K.P. Hart, J. van Mill / A topological group 

It is easy to estimate the density of B(X). 

2.3. Proposition. d(B(X)) G d(X). 

Proof. If D is dense in X then UntN qo,(D”) is dense in B(X). As d(X) 2 w, this 

shows that d(B(X))s d(X). 0 

We now give an alternative description of the topologies on the sets X,,. From 

this description it is easy to derive certain properties of B(X). 

2.4. Lemma. X, also has the quotient topology determined by k,, and $I,,. 

Proof. (a) If (L:(F) is closed then p:(F) = rz$z(F) is closed. 

(b) If q:(F) is closed then $Z(F) = rr,((pZ(F)) is closed because the map rr, is 

closed. 0 

We let +Cnt2 denote the restriction $n+zr$z+r(X,,). 

2.5. Proposition. X,,+> = g,, +2UJ;,,+z X,,. 

Proof. Outside $z+12(Xn) the map $I,,+* is one-to-one, so we can assume that the 

underlying set of rZ,+zIJ~,,+2 X,, is X,,,,. If we let rr:X2n+2@X,,+X,,+2 be the 

adjunction projection then ~1 J?n+Z = GInt2 and 7~ r X,, = id. 

Let F c X,,,,. Then F is closed in X,+,t, F is closed in X,,+? and F n X, is closed 

++ (clL+;t2( F) is closed in X,,+2 andFnX,,isclosed,+-+FisclosedinX,+zU,;,,+2Xn. 0 

We are now in a position to give a sufficient condition for normality of B(X). 

2.6. Proposition. If X” is normal then X,, is normal, 

Proof. We use induction. 

n = 1. X, is homeomorphic to X hence normal. 

n = 2. Xz is normal since n1 is closed. Furthermore, X, is obtained from X2 by 

collapsing n2(AX) to a point, hence XI is normal. 

n 3 3. Since X” is normal, X”--2. IS also normal. Hence Xn_? is normal by induction 

hypothesis. Also X,, is normal since n,, is closed. We conclude that X,, = rZ,U,;,, XnmZ 

is normal (Proposition 2.5). 0 

This gives us: 

2.7. Theorem. [f X” is normal for all n EN then B(X) is normal. 

Proof. We show that E is normal. This is sufficient since 0 = E +x for some (all) 

x E X and both E and 0 are clopen (Proposition 2.1). Let A G E be closed and 
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f: A+ Z continuous. Using the fact that {X1n}ntN is an increasing closed cover of 

E by normal spaces, it is easy to build an extension F: E + I off such that FIX,, 

is continuous for all n EN. By the definition of the topology on B(X) it follows 

that F is continuous. 0 

We now show that for a restrictive class of spaces B(X) is a topological group. 

First we show that B(X) is a topological group if X is compact. 

2.8. Theorem. If X is compact then B(X) is a topological group. 

Proof. As E is clopen in B(X) it suffices to show that + : E x E + E is continuous. 

First of all by Proposition 2.5 each X, is compact and Hausdorff. We need something 

like Proposition 2.5 for this since arbitrary quotients of Hausdorff spaces need not 

be Hausdorff. Furthermore to start the inductive proof we must show that X, and 

X, are compact Hausdorff: X, is homeomorphic to X and ‘in* and ‘pz are closed 

quotient mappings so that X, is compact Hausdorff. 

Second, using compactness of the spaces X2,, (n EN) it is easy to show that the 

sequence { XZn x XZn}niN determines the topology of E X E (i.e. U E E X E is open 

iff U n (X2n X X2,) is open in X,, XX,, for all n E N). It remains to show that 

+:x,, XXzn+Xdn is continuous for each n. Consider the diagram 

h 
x2”xx2”---_,x 4n 

where h(x,y)=(x ,,..., xZn,y ,,..., y2,,) is the obvious homeomorphism. The 

diagram commutes and by compactness the map (P?,, x (Pi,, is closed. Hence for a 

closed set F G X4, the set +‘(F) = q2,, x q2,,(htqzn( F)) is closed. 0 

We shall now show that for certain spaces B(X) is a subspace of B(PX), as 

B(X) is already a subgroup of B(PX), for these spaces we then know that B(X) 

is a topological group. 

2.9. Proposition. Suppose that X” is normal and that (/3X)” = p(X”). Then X, is a 

subspace of (/3X), and in fact (/3X), = p(X,). 

Proof. Consider the following diagram: 

where /3 and i are the natural inclusion maps. 
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(a) We have that iocp, = (p{op and that (p{o/? is continuous. Hence i is continuous 

since (Pi is a quotient map. 

(b) Let f: X,, + I be continuous. We shall find a continuous g: (PX), + I such 

that go i =J: Let f=focp,, and let 2: PX” + I be the Stone extension of j We show 

that S induces a map g: (PX), + 1. Suppose that q:(x) = &(y) for x, y E PX”. 

Since for each UE S,, we have that (P,,o(T = (P,, it follows that foa = f for each 

u E S,. Consequently, go a = 2 for each u E S,. 

So we may assume that x=(x,, . . . , xp, x,,+,, . . . ,x,) and y = (x,, . . . , xp, 

Yp+1,..., y,,) with x,,+, = x~+~, . . . , x,_, = x, and y,,, = Y~+~, . . . , y,_, = y,. Now 

choose nets in X converging to each coordinate in question, say za + Xi, 1 s is p, 

u;+, + xp+,, . . . , uZ_, + xn_,, u,“+, + Y~+~, . . . , vZ_, + yn_,. Then 

so that g(x) = g(y). This proves the existence of g. Now g satisfies g = gocp!. Since 

S is continuous and cp! is quotient, this implies that g is continuous. In addition, 

for XE X”, 

goiocp,(x) = gopfoB(x) = gap(x) =J(x) =fop,(x). 

Hence go i =f: 

(c) Now by (a) and (b) X, is a subspace of (PX), and (PX),, = PX,,, provided 

X, is completely regular. However X, is normal since X” is normal (Proposition 

2.6). 0 

2.10. Remark. Something like normality of X” is needed for Proposition 2.9. To 

see this consider X,. It is easy to see that regularity of X, implies that AX has a 

closed neighborhood base in X2. In [6] an example is given of a space with very 

strong separation properties which does not possess this last property and for which 

X2 and hence B(X) is therefore not even regular. 

2.11. Theorem. If for all HEN the space X” is normal and (PX)” =/?(X”), then 

B(X) is a subspace of B(PX) and consequently a topological group. 

Proof. (a) Let Ac B(PX) be closed. Then for each n E N (Proposition 2.9) 

AnB(X)nX,,=AnX,,=AnPX,nX, 

is closed in X,. Hence An B(X) is closed in B(X). 

(b) Let A 5 B(X) be closed. For each n E FY let A,, = An X,, where the closure 

is taken in B(PX) or equivalently in /3X, (Proposition 2.9). Let A’= lJniN A,. Let 



K.P. Hart, J. oan Mill / A topological group 285 

n,mEN with n=m (mod2). If ndm then A,GA,. If n>m then 

A,npX,=mnn 

=AnX,,nX,,, (in /3X,, using the fact that X, is normal) 

=AnX,=A,. 

Hence for each n we have that A’n /3X, = A,, is closed in PX,,. So A’ is closed in 

B@X), due to the definition of the topology of B(PX). Since 

A’nX,,=A’nX,,npX,,=A,nX,,=AnX,, 

we find that A’ n B(X) = A. 

Now (a) and (b) together show that B(X) is a subspace of B(PX). 17 

The above result is quite restrictive of course. It is however exactly what is needed 

for the example in Section 3, which is how we got to it in the first place. 

3. The example 

We shall now describe a particular space X for which B(X) will be a separable 

normal topological group without any nice covering properties. 

To begin with we introduce some notions and notations (for these and other 

notions see [2]). 

3.0. For (infinite) subsets A, B G w, A =.+ B means lA\BI -c w and IB\AI = W. If y is 

an ordinal number then a cower of length y is a sequence {A,: a E y} of subsets of 

w, such that ((YE/~E y)-+(A,c*Ap). 

A tower {A,: a E y} is maximal if whenever X G w satisfies (V(Y E y)(A, c*X) 

then X is cofinite in w. By t we denote the minimum length of a maximal tower. 

Note that t is a regular uncountable cardinal. 

3.1. Now let {A,,: w s a ct} be a maximal tower. We topologize t as follows: 

(i) Points of w will be isolated. 

(ii) The nth neighborhood U(w, n) of w will be {w}uA,,,\n. 

(iii) If w < /3 E (Y it and n E w then U((Y, p, n) = (p, Q]U (A,\(A@ u n)) is a basic 

neighborhood of CY. 

This will be our space X. 

3.2. The space X is due to Franklin and Rajagopalan [4], we refer to [2, Example 

7.11 for the proof that X is: 

(1) Separable: w is dense in X. 

(2) Sequentially compact: this uses maximality of the tower; and 

(3) Normal: the basic open sets are clopen and of two disjoint closed sets at least 

one must be compact. 
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At the end of the section we shall show that X” is normal for each n EN. 

3.3. Example. B(X) is a separable normal topological group containing t as a closed 

subspace. 

Proof. By Proposition 2.3 B(X) is separable and by Proposition 2.7 B(X) is normal. 

As t is closed in X and X is a closed subspace of B(X), t is also a closed subspace 

of B(X). Finally X” is sequentially compact for each n, hence pseudocompact and 

it follows from Glicksberg’s Theorem [S] that (/3X)” = PX” for all n. So now by 

Theorem 2.11 B(X) is a topological group. q 

3.4. We finish by showing that X” is normal for every n EN. We use induction 

on n. 

By 3.2, X is normal. Let n 2 2 and assume that X”-’ is normal. To begin with, 

it is an easy exercise on closed unbounded subsets oft to establish the known fact 

that disjoint closed subsets oft” have disjoint closures in (t + 1)“. Now let F, G c X” 

be closed and disjoint. Applying the above-mentioned fact we can find a finite 

sequence 0 = ffO < ff, <. . . < a, < t of ordinals, such that if we put 

0 = I[% a11,. . . > (%-I, %I, (%7, t1>, 

and 

B’“‘= 
I 

; oi: (O,)Y=, E a”}, 
i=l 

then 0’“’ is a finite disjoint clopen (in [w, t)“) cover of [w, t)” satisfying 

VOEB’“‘, (OnF=l?)v(OnG=0). 

Put ‘CF={O~O(“): OnF#0}, C,=U YeF, %,={OE~‘(“‘: OnF=0}, and CG= 

u (f&T respectively. Using the facts that the sequence (cI,, . . . , a,) is finite and that 

t is regular, one can find a pO E w and an unbounded S c t such that 

(i) 1 s i < n + A,,\A,,+, s po, 

(ii) a E S + LY > (Y, A A,,m\A, L po, 

(iii) UutS A,\(Aan u po) = w\(&, u po) O._JaEs A, satisfies WP et) (4 =* 
UatS A,) and hence is cofinite). 

For OE B and qapo let 

O(q) = U(a;+l~ air 4) 

1 

[w, a,1 u (&\q) if 0 = [w, (r,], 

if 0 = (ai, ai+,] (1 s i < m), 
U atS U(Q, Q,, 9) if 0 = (h, t). 

For O=n:=, Oil 0”“’ put O(q)=n:,, O;(q). Finally, let 

Q(q) = {O(q): 0 E 0’) and define 6( 9)“” similarly to @“‘, 

%F,q = {O(q): 0 E Fir and O,, = U SF,~, and 
% G,y = {O(q): 0 E %I, and Q+ = U V:G,~. 



K.P. Hart, J. van Mill / A fopological group 287 

We now have that: 6(q) is a disjoint clopen collection by choice of p. and 

U Q(q) = [w, t) u (w\q); (eF,y u +&Q = Q,(q)(“), so that OF,, u OG,, = ([w, t) u 
(w\q))“; 
flqzpo OF,, = Ck and C-l ‘I=piJ QT., = Cc; ; C, n G = (4 so by sequential compactness 

O,,, n G = (? for a q, E w ; and similarly O,,? n F = P, for a q2 E w. 

Let q = max(q,, q2). Then O,, and OG,q are disjoint clopen subsets of X”, O,, 

separates F n [ q, t)” from G and OG,q separates G n [q, t)” from F. So we only have 

to take care of F\O,, and G\Oc+. But 

X”\( OF,, U OG,~)= Ujtq Ucrts,, fl(W ’ Xn-‘) 
is a clopen normal subspace of X” by our inductive assumption. We conclude that 

F and G can be separated in X”. 

3.5. Remark and question. It can be shown that in our example X2 and hence B(X) 

are not hereditarily normal. This leaves, open the following question: Is there in 

ZFC a separable hereditarily normal topological group without nice covering 

properties? 
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