DESCRIPTIVE COMPLEXITY OF FUNCTION SPACES

BY

D. LUTZER, J. VAN MILL AND R. POL

ABSTRACT. In this paper we show that \(C_\pi(X) \), the set of continuous, real-valued functions on \(X \) topologized by the pointwise convergence topology, can have arbitrarily high Borel or projective complexity in \(R^X \) even when \(X \) is a countable regular space with a unique limit point. In addition we show how to construct countable regular spaces \(X \) for which \(C_\pi(X) \) lies nowhere in the projective hierarchy of the complete separable metric space \(R^X \).

1. Introduction. Let \(C_\pi(X) \) be the set of continuous, real-valued functions on a space \(X \) and topologize \(C_\pi(X) \) as a subspace of the full product \(R^X \). In [DGLvM] it is shown that if \(X \) is completely regular, then \(C_\pi(X) \) cannot be a \(G_{\delta}^\sigma \), \(F_{\sigma}^\sigma \) or \(G_{\delta\sigma} \)-subset of \(R^X \) unless \(X \) is discrete and that for any countable metrizable space \(X \), \(C_\pi(X) \) will be an \(F_{\sigma}^\sigma \)-subset of \(R^X \). In the terminology of [KM and K], \(C_\pi(X) \) cannot have multiplicative class 1 and cannot have additive class 1 or 2, but may have multiplicative class 2.

In this paper we study the descriptive complexity of \(C_\pi(X) \) in \(R^X \) when \(X \) is countable (so that \(R^X \) is a complete separable metric space). Our main results can be summarized as follows.

THEOREM. (a) Given any \(\alpha < \omega_1 \), there is a countable regular space \(X \) such that \(C_\pi(X) \) is a Borel subset of \(R^X \) having additive class \(\beta \), where \(\alpha \leq \beta \leq 3+\alpha+2 \) (§§2 and 3).

(b) Given any \(n \geq 1 \) there is a countable regular space \(Y \) such that \(C_\pi(Y) \in \mathcal{L}_n(R^Y) - \mathcal{L}_{n-1}(R^Y) \), where \(\mathcal{L}_n(R^Y) \) is the family of projective sets of class \(n \) in the complete separable metric space \(R^Y \) (§4).

(c) There is a countable regular space \(Z \) such that \(C_\pi(Z) \notin \bigcup\{\mathcal{L}_n(R^Z) : 0 \leq n < \omega\} \) (§§4 and 5).

The spaces \(X, Y \) and \(Z \) in the above Theorem can be obtained from a single general construction which associates with each subset \(S \subset 2^\omega \) a certain countable regular space \(\Sigma_S \) having a unique nonisolated point. The descriptive complexity of \(S \) in \(2^\omega \) determines the complexity of \(C_\pi(\Sigma_S) \) in \(R^{2^\omega} \). To describe \(\Sigma_S \) precisely, we begin by letting \(T_n = 2^n \) be the set of functions from \(\{0, 1, \ldots, n-1\} \) into \(\{0, 1\} \), i.e., the set of ordered \(n \)-tuples of 0’s and 1’s. Let \(T = \bigcup\{T_n : n \geq 1\} \) and partially order \(T \) by function extension. A branch of \(T \) is a maximal linearly ordered subset of \(T \), i.e., a linearly ordered subset \(B \subset T \) having \(\text{card}(B \cap T_n) = 1 \) for each \(n \geq 1 \). Observe that if \(B \) and \(\bar{B} \) are distinct branches of \(T \), then \(B \cap \bar{B} \) must be a finite set.

Received by the editors August 3, 1984.
1980 Mathematics Subject Classification. Primary 03E15, 04A15, 54H05; Secondary 54C35.
1Partially supported by NATO grant 1927, NSF grant MCS80-016617 and by Vrije Universiteit, Amsterdam.
2Partially supported by Vrije Universiteit, Amsterdam.
Given $x \in 2^\omega$, the set $B_x = \{(x(0)), (x(0), x(1)), (x(0), x(1), x(2)), \ldots\}$ is a branch of T. Conversely, each branch B of T has the form $B = B_x$ for a unique $x \in 2^\omega$. Let $\mathcal{B} = \{B | B$ is a branch of $T\}$.

Let $\mathcal{P}(T) = \{A | A \subset T\}$ and topologize $\mathcal{P}(T)$ using open sets of the form $[Y, N] = \{A \in \mathcal{P}(T) | Y \subset A \subset T - N\}$, where Y and N are arbitrary finite subsets of T. The resulting space is compact and metrizable, and is homeomorphic to the product space 2^T under the mapping which identifies each subset $A \in \mathcal{P}(T)$ with its characteristic function χ_A. The mapping $x \to B_x$ is easily seen to be a homeomorphism of 2^ω into $\mathcal{P}(T)$ whose image is exactly the set \mathcal{B} defined above.

For each subset $S \subset 2^\omega$, the collection $\{T - (B_{x_1} \cup \cdots \cup B_{x_n} \cup F) | n \geq 1, x_i \in S$ and $F \subset T$ is a finite set $\}$ is a filter base. Let p_S be the filter generated by that filter base. Let ω be any point not in T and 2^ω and let $\Sigma_T = T \cup \{\omega\}$. Topologize Σ_T by isolating each point of T and by using the family $\{P \cup \{\omega\} | P \in p_S\}$ as a neighborhood base at ω. The space Σ_T is countable, regular, and (since p_S is a free filter) is T_1. The spaces mentioned in the above Theorem are all of the form Σ_T for various subsets S of 2^ω.

However, even though the function spaces $C_\pi(\Sigma_T)$ for $S \subset 2^\omega$ provide enough pathology to prove our Theorem, they are all well behaved in some senses. In §5 we prove that each $C_\pi(\Sigma_T)$ is a Baire Property subset of R^{Σ_T} and is meagre in R^{Σ_T} (equivalently, $C_\pi(\Sigma_T)$ is not a Baire space) and we exhibit a countable regular space X with a unique nonisolated point such that $C_\pi(X)$ is a second category subset of R^X (equivalently, $C_\pi(X)$ is a Baire space), is not a Baire Property subset of R^X, and is not a Borel, analytic or co-analytic subset of R^X (see Example 5.5).

The standard references for descriptive theory in complete separable metric spaces are [K and KM]. Our topological terminology is consistent with [E] and [Ox2] is a good source for properties of Baire spaces. The authors wish to thank Jean Calbrix and Fons van Engelen for their comments on an earlier version of this paper.

2. A lower bound for the complexity of $C_\pi(\Sigma_T)$.

2.1 Theorem. Let $S \subset 2^\omega$ and let $\Sigma = \Sigma_T$. Then $C_\pi(\Sigma)$ contains a relatively closed subset which is homeomorphic to S.

Proof. Recall that in Σ_T, the point ω has a neighborhood base consisting of all sets of the form $\{\omega\} \cup (T - (B_{x_1} \cup B_{x_2} \cup \cdots \cup B_{x_n} \cup F))$, where $x_i \in S$ and $F \subset T$ is finite. For each $x \in 2^\omega$ define a function $f_x: \Sigma \to R$ by $f_x(\omega) = 0$, $f_x(t) = 0$ if $t \in T - B_x$ and $f_x(t) = 1$ if $t \in B_x$. Define $\lambda: 2^\omega \to R^\Sigma$ by $\lambda(x) = f_x$. Clearly λ is 1-1 and continuous, so that λ embeds 2^ω as a closed subspace of R^Σ. Furthermore $\lambda(x) \in C_\pi(\Sigma)$ whenever $x \in S$ because for such an x, the function f_x is constant on the neighborhood $\{\omega\} \cup (T - B_x)$ of ω. Conversely, if $f_x \in C_\pi(\Sigma)$ for some $x \in 2^\omega$, then $f_x^{-1}[(-\frac{1}{2}, \frac{1}{2})]$ must be a neighborhood of ω so that for some $x_1, \ldots, x_n \in S$ and some finite F, the set $f_x^{-1}[(-\frac{1}{2}, \frac{1}{2})] = \{\omega\} \cup (T - B_x)$ must contain the basic neighborhood $\{\omega\} \cup (T - (B_{x_1} \cup \cdots \cup B_{x_n} \cup F))$. But then $B_x \subset B_{x_1} \cup \cdots \cup B_{x_n} \subset F$ so that $B_x \cap B_z$ is infinite for some i and hence $B_x = B_{x_i}$, i.e., $x = x_i \in S$. Therefore $\lambda[S] = C_\pi(\Sigma) \cap \lambda[2^\omega]$ showing that $\lambda[S]$ is a relatively closed subset of $C_\pi(\Sigma)$.

2.2 Corollary. If S is not a Borel subset of 2^ω (resp., if S is not a projective subset of 2^ω), then $C_\pi(\Sigma_T)$ is not a Borel subset (resp. a projective subset) of R^{Σ_T}.
PROOF. Write $\Sigma = \Sigma_S$. In the complete separable metric space \mathbb{R}^Σ, a relatively closed subset of a Borel (resp., projective) set is again a Borel (resp., projective) set in \mathbb{R}^Σ and it is known that homeomorphisms preserve Borel (resp., projective) sets [K, Chapter 3, §35, IV, Corollary 1 and Chapter 3, §38, VII, Theorem 1] contrary to our assumption that S is not Borel (resp., projective) in 2^ω. □

2.3 COROLLARY. There is a countable regular space X such that $C_\pi(X)$ is not a Borel subset of \mathbb{R}^X.

PROOF. Let S be a non-Borel subset of 2^ω and let $X = \Sigma_S$. Now apply 2.2. □

3. An upper bound for the Borel complexity of $C_\pi(\Sigma_S)$. In §2 we proved that $C_\pi(\Sigma_S)$ always contains a closed subspace homeomorphic to S so that if S is not a Borel set, then neither is $C_\pi(\Sigma_S)$. In this section we study the situation where S is a Borel subset of 2^ω and we prove

3.1 THEOREM. Let S be a Borel subset of 2^ω having additive class $\alpha \geq 1$ and let $\Sigma = \Sigma_S$. Then $C_\pi(\Sigma)$ is a Borel subset of \mathbb{R}^Σ of class β, where $\alpha \leq \beta \leq 3 + \alpha + 2$.

PROOF. Following the notation of §1, we let $p = p_S$ be the filter on T generated by all sets of the form $T - (B_{x_1} \cup \cdots \cup B_{x_n} \cup F)$, where $x_j \in S$ for $1 \leq j \leq n$ and F is any finite subset of T.

For each $m \geq 1$, define $\psi_m : \mathbb{R}^\Sigma \to \mathcal{P}(T)$ by $\psi_m(f) = \{t \in T | |f(\infty) - f(t)| \geq 1/m\}$. In Lemma 3.2 we show that ψ_m is a Borel mapping of class 1. Next, define a set $\mathcal{D} \subset \mathcal{P}(T)$ by $\mathcal{D} = \{A \in \mathcal{P}(T) | A \cap P = \emptyset \text{ for some } P \in p\}$. In Lemma 3.6 we prove that \mathcal{D} is a Borel subset of $\mathcal{P}(T)$ of additive class $\leq 2 + \alpha$ so that $\psi_m^{-1}(\mathcal{D})$ is a Borel set of additive class $\leq 3 + \alpha$. Because a function $f \in \mathbb{R}^\Sigma$ is continuous if and only if $\{t \in T | |f(\infty) - f(t)| < 1/m\}$ belongs to p for each m, we have $C_\pi(\Sigma) = \bigcap \{\psi_m^{-1}(\mathcal{D}) | m \geq 1\}$ showing that $C_\pi(\Sigma)$ is a Borel set of additive class $\beta \leq (3 + \alpha + 2)$.

From §2, a closed subspace of $C_\pi(\Sigma)$ is homeomorphic to S, so the additive class of $C_\pi(\Sigma)$ cannot be smaller than the additive class of S and we obtain $\alpha \leq \beta$. □

All that remains is to prove some lemmas.

3.2 LEMMA. Each ψ_m is a Borel map of class 1.

PROOF. It is enough to show that $\psi_m^{-1}([Y, N])$ is an F_σ-subset of \mathbb{R}^Σ for each basic open set $[Y, N]$ in $\mathcal{P}(T)$. Now

$$\psi_m^{-1}([Y, N]) = \{f \in \mathbb{R}^\Sigma | Y \subset \{t \in T | |f(t) - f(\infty)| \geq 1/m\} \cap \{f \in \mathbb{R}^\Sigma | t \in [T, T - N] \}.$$

The first of those two sets is closed and, since N is finite, the second is open. Hence their intersection is an F_σ-set, as claimed. □

3.3 LEMMA. The set $\mathcal{A} = \{A \in \mathcal{P}(T) | \text{ for some } B_1, \ldots, B_n \in \mathcal{B} \text{ and some finite } F \subset C \subset B_1 \cup \cdots \cup B_n \cup F \}$ is a σ-compact subset of $\mathcal{P}(T)$.

PROOF. For a fixed finite $F \subset T$ and a fixed n, let $\mathcal{A}(F, n) = \{(A, B_1, \ldots, B_n) | B_i \in \mathcal{B} \text{ and } A \subset B_1 \cup \cdots \cup B_n \cup F\}$. Then $\mathcal{A}(F, n)$ is a closed subset of the compact space $\mathcal{P}(T) \times \mathcal{B}^n$. Let $\pi_n : \mathcal{P}(T) \times \mathcal{B}^n \to \mathcal{P}(T)$ denote first coordinate projection. Then $\mathcal{A} = \bigcup \{\pi_n[\mathcal{A}(F, n)] | n \geq 1 \text{ and } F \subset T \text{ is finite}\}$ so that \mathcal{A} is a σ-compact subspace of $\mathcal{P}(T)$ as claimed. □
3.4 Notation. Recall that \mathcal{B} is the set of all branches of T, topologized as a subspace of the compact metric space $\mathcal{P}(T)$. Being the continuous image of 2^ω under the map $\mu(x) = B_x$, \mathcal{B} is compact. For $n \geq 1$, let $\Phi_n = \{K \subset \mathcal{B} | \text{card}(K) = n\}$ and let $\Phi = \bigcup\{\Phi_n | n \geq 0\}$. Topologize Φ with the Vietoris topology, i.e., by using all subsets of Φ of the forms $\{K \in \Phi | K \subset \mathcal{U}\}$ and $\{K \in \Phi | K \cap \mathcal{V} \neq \emptyset\}$ as a subbase where \mathcal{U} and \mathcal{V} are arbitrary open subsets of \mathcal{B}. Then Φ is a σ-compact metrizable space [KM, p. 392]. Recall that each branch of T is of the form B_x for some $x \in 2^\omega$ and let $\Phi_S = \{K \in \Phi | K \subset \{B_x | x \in S\}\} = \{K | K$ is a finite subset of $\{B_x | x \in S\}\}$.

3.5 Lemma. With \mathcal{A} as in 3.3, for each $A \in \mathcal{A}$ let $i(A) = \{B \in \mathcal{B} | B \cap A$ is infinite\}. Then $i: \mathcal{A} \to \Phi$ is a Borel mapping of class 2.

Proof. Fix $A \in \mathcal{A}$ and choose branches B_1, \ldots, B_n and a finite set F with $A \subset B_1 \cup \cdots \cup B_n \cup F$. If B is any branch of T such that $A \cap B$ is infinite, then $B \cap B_k$ is infinite for some $k = 1, 2, \ldots, n$ so that B is one of the branches B_1, \ldots, B_n. Hence $i(A)$ is finite so $i(A) \in \Phi$. (If A is infinite, then $i(A) = \emptyset \in \Phi$.)

(a) Fix an open subset \mathcal{U} of \mathcal{B} and consider $i^{-1}\{\{K \in \Phi | K \subset \mathcal{U}\}\} = \{A \in \mathcal{A} | i(A) \subset \mathcal{U}\}$. Because \mathcal{U} is an open subset of the compact metric space \mathcal{B}, \mathcal{U} is σ-compact. According to 3.3, so is \mathcal{A}, and we conclude that the product space $\mathcal{A} \times \mathcal{U}^n$ is σ-compact for each $n \geq 1$, where \mathcal{U}^n is the product of n copies of \mathcal{U}. Fix $n \geq 1$ and fix a finite set $F \subset T$. Then the set $\mathcal{C}(n, F) = \{(A, B_1, \ldots, B_n) \in \mathcal{A} \times \mathcal{U}^n | A \subset B_1 \cup \cdots \cup B_n \cup F\}$ is closed in $\mathcal{A} \times \mathcal{U}^n$, so $\mathcal{C}(n, F)$ is σ-compact. Let $\pi_n: \mathcal{A} \times \mathcal{U}^n \to \mathcal{A}$ be first coordinate projection. Then $i^{-1}\{\{K \in \Phi | K \subset \mathcal{U}\}\} = \bigcup\{\pi_n[\mathcal{C}(n, F)] | n \geq 1$ and $F \subset T$ is finite\} so $i^{-1}\{\{K \in \Phi | K \subset \mathcal{U}\}\}$ is a σ-compact subset of \mathcal{A} (and therefore a G_δ-subset of \mathcal{A}).

(b) Next consider $i^{-1}\{\{K \in \Phi | K \cap \mathcal{V} \neq \emptyset\}\}$, where \mathcal{V} is a compact, open subset of \mathcal{B}. Then $\mathcal{B} \setminus \mathcal{V}$ is open and $\{K \in \Phi | K \cap \mathcal{V} \neq \emptyset\} = \Phi - \{K \in \Phi | K \subset \mathcal{B} \setminus \mathcal{V}\}$. Hence $i^{-1}\{\{K \in \Phi | K \cap \mathcal{V} \neq \emptyset\}\} = \mathcal{A} - i^{-1}\{\{K \in \Phi | K \subset \mathcal{B} \setminus \mathcal{V}\}\}$ which is a G_δ-subset in light of (a).

(c) Finally, consider $i^{-1}\{\{K \in \Phi | K \cap \mathcal{U} \neq \emptyset\}\}$, where \mathcal{U} is an arbitrary open subset of \mathcal{B}. There is a sequence $\langle \mathcal{V}_n \rangle$ of compact, open subsets of \mathcal{B} having $\mathcal{U} = \bigcup\{\mathcal{V}_n | n \geq 1\}$ so that $i^{-1}\{\{K \in \Phi | K \cap \mathcal{U} \neq \emptyset\}\} = \bigcup\{i^{-1}\{\{K \in \Phi | K \cap \mathcal{V}_n \neq \emptyset\}\} | n \geq 1\}$ which is a G_δ-set in \mathcal{A} because of (b).

(d) Since sets of the form $\{K \in \Phi | K \subset \mathcal{U}\}$ and $\{K \in \Phi | K \cap \mathcal{U} \neq \emptyset\}$ form a subbase for the separable metric space Φ, it follows that i is a Borel mapping of class 2. \endproof

3.6 Lemma. With Φ_S as defined in 3.4, Φ_S is a Borel subset of Φ whose additive class is α (= the additive class of S).

Proof. For $n \geq 1$, define $\theta_n: (2^\omega)^n \to \Phi$ by $\theta_n(x_1, x_2, \ldots, x_n) = \{B_{x_1}, B_{x_2}, \ldots, B_{x_n}\}$. Then θ_n is continuous. Let $G_n = \{(x_1, \ldots, x_n) \in (2^\omega)^n | x_j \neq x_k$ whenever $1 \leq j < k \leq n\}$. Then G_n is open in $(2^\omega)^n$ and given $(x_1, \ldots, x_n) \in G_n$ there is an open neighborhood N of (x_1, \ldots, x_n) in G_n and an open neighborhood Φ' of $\theta_n(x_1, \ldots, x_n)$ in Φ such that θ_n maps N homeomorphically onto $\Phi' \cap \Phi_n$. (We say that θ_n is a local homeomorphism from G_n onto Φ_n.)

Now consider the subspace S of 2^ω. Clearly $\theta_n[G_n \cap S^n] = \Phi_n \cap \Phi_S$ so θ_n is a local homeomorphism from $G_n \cap S^n$ onto $\Phi_n \cap \Phi_S$. Because S is of additive class α, so is S^n [K, p. 346]. Hence so is $G_n \cap S^n$ as is each relatively open subset of $G_n \cap S^n$.

(Recall that since $\alpha \geq 1$, each open subset of G_n is of additive class α.) Therefore, the metric space $\Phi_S \cap \Phi_n$ admits an open cover by sets of additive class α so that $\Phi_S \cap \Phi_n$ has additive class α [K, p. 358]. Because $\Phi_S = \{\emptyset\} \cup (\bigcup \{\Phi_S \cap \Phi_n[n \geq 1]\}$, Φ_S also has additive class α, as claimed. \qed

3.7 Lemma. Let $\mathcal{D} = \{A \in \mathcal{P}(T) | \text{some } P \in p \text{ has } P \cap A = \emptyset\}$. Then \mathcal{D} is of additive class $2 + \alpha$.

Proof. With i as in 3.5, we claim that $\mathcal{D} = i^{-1}[\Phi_S]$. For let $A \in \mathcal{D}$. Choose $P \in p$ with $P \cap A = \emptyset$. Then P contains some set $T - (B_{x_1} \cup \cdots \cup B_{x_n} \cup F)$, where $x_j \in S$, so $A \subset B_{x_1} \cup \cdots \cup B_{x_n} \cup F$. Hence $A \in \mathcal{A}$ so that $i(A)$ is defined. As noted in the proof of 3.5, since $A \subset B_{x_1} \cup \cdots \cup B_{x_n} \cup F$, $i(A) \subset \{B_{x_1}, \ldots, B_{x_n}\}$ showing that $i(A) \in \Phi_S$. Conversely, suppose $A \in i^{-1}[\Phi_S]$. Then either there are points $x_1, \ldots, x_n \in S$ with $i(A) = \{B_{x_1}, \ldots, B_{x_n}\}$ or else $i(A) = \emptyset$ in which case A is finite. Consider the first possibility. If the set $A - (B_{x_1} \cup \cdots \cup B_{x_n})$ were infinite, some other branch of T would have an infinite intersection with A which is impossible, so the set $F = A - (B_{x_1} \cup \cdots \cup B_{x_n})$ is finite and we have $A \subset B_{x_1} \cup \cdots \cup B_{x_n} \cup F$, so that A is disjoint from $T - (B_{x_1} \cup \cdots \cup B_{x_n} \cup F)$ which belongs to the filter p so that $A \in \mathcal{D}$. The case where A is finite is easy because then the set $P_0 = T - A$ belongs to p so that $A \in \mathcal{D}$.

Because i is a Borel map of class 2 and because by 3.6 the set Φ_S has additive class α (where α is the additive class of S), $i^{-1}[\Phi_S]$ has additive class $2 + \alpha$, as claimed. \qed

4. The projective hierarchy. Recall the definition of the projective classes in a complete separable metric space Z [K, Chapter 3, §38]:

$$\mathcal{L}_0(Z) = \{A|A \text{ is a Borel subset of } Z\},$$

$$\mathcal{L}_{n+1}(Z) = \{\{f[A]|A \in \mathcal{L}_n(Z) \text{ and } f: A \to Z \text{ is continuous}\} \text{ if } n \text{ is even},$$

$$\{Z - A|A \in \mathcal{L}_n(Z)\} \text{ if } n \text{ is odd.}$$

Thus, $\mathcal{L}_1(Z)$ is the family of analytic sets in Z, $\mathcal{L}_2(Z)$ is the family of co-analytic sets in Z, etc. The techniques of §§2 and 3 can be used to prove an analogue of 3.1 for projective sets. In our proof we will invoke theorems which are ordinarily stated for mappings into complete metric spaces [K, §38, III, Propositions 2 and 5, and VII, Theorem 1], applying those results to mappings into the σ-compact metric space Φ defined in 3.4. Extending the proofs given in [K] to cover this situation is easily done.

4.1 Theorem. Suppose $S \in \mathcal{L}_r(2^\omega)$ for some $r \geq 1$. Let $\Sigma = \Sigma_S$. Then $C_\alpha(\Sigma) \in \mathcal{L}_r(\mathcal{R}^\Sigma)$. Furthermore, if $S \notin \mathcal{L}_{r-1}(2^\omega)$, then $C_\alpha(\Sigma) \notin \mathcal{L}_{r-1}(\mathcal{R}^\Sigma)$.

Proof. Define $\psi_m: \mathcal{R}^\Sigma \to \mathcal{P}(T)$ and $\mathcal{D} \subset \mathcal{P}(T)$ as in 3.1. Suppose we know that $\mathcal{D} \subset \mathcal{L}_r(\mathcal{P}(T))$. Then by [K, §38, III, Proposition 5], $\psi_m^{-1}[\mathcal{D}] \in \mathcal{L}_r(\mathcal{R}^\Sigma)$ for each m so that by [K, §38, III, Proposition 3] we would have $C_\alpha(\Sigma) = \bigcap_{m=1}^{\infty} \psi_m^{-1}[\mathcal{D}] \in \mathcal{L}_r(\mathcal{R}^\Sigma)$ as claimed. Thus it will be enough to show that $\mathcal{D} \subset \mathcal{L}_r(\mathcal{P}(T))$.

To prove that $\mathcal{D} \subset \mathcal{L}_r(\mathcal{P}(T))$, we define the σ-compact set $\mathcal{A} \subset \mathcal{P}(T)$ as in 3.3, the σ-compact metric space Φ as in 3.4, the Borel measurable mapping $i: \mathcal{A} \to \Phi$ as in (3.5), and the set Φ_S as in 3.4. As in the proof of 3.7, $\mathcal{D} = \mathcal{A} \cap i^{-1}[\Phi_S]$. If we knew that $\Phi_S \in \mathcal{L}_r(\Phi)$, it would follow from [K, §38, III, Proposition 5] that $i^{-1}[\Phi_S] \in \mathcal{L}_r(\mathcal{A})$. Since \mathcal{A} is σ-compact and hence in $\mathcal{L}_r(\mathcal{P}(T))$, it would follow...
that \(D \in \mathcal{L}_r(\mathcal{P}(T)) \) [K, §38, III, Proposition 2]. Therefore it will be enough to show that \(\Phi_S \in \mathcal{L}_r(\Phi) \). Define function \(\theta_n : (2^\omega)^n \to \Phi \) as in 3.6. According to [K, §38, III, Proposition 1], \(S^n \in \mathcal{L}_r((2^\omega)^n) \). Because each open subset \(H \) of \((2^\omega)^n \) also belongs to \(\mathcal{L}_r((2^\omega)^n) \) we see that \(H \cap G_n \cap S^n \in \mathcal{L}_r((2^\omega)^n) \) whenever \(H \) is open in \((2^\omega)^n \). But \(\theta_n \) is known to be a local homeomorphism of \(G_n \cap S^n \) onto the separable metric space \(\Phi_S \cap \Phi_n \) so there is a sequence \(H_1, H_2, \ldots \) of subsets of \(G_n \) such that for each \(k \), \(\theta_n \) maps \(H_k \cap G_n \cap S^n \) homeomorphically onto a relatively open subset of \(\Phi_n \cap \Phi_S \) and such that \(\Phi_n \cap \Phi_S = \bigcup \{ \theta_n[H_k \cap G_n \cap S^n] \mid k \geq 1 \} \). Because \(H_k \cap G_n \cap S^n \in \mathcal{L}_r((2^\omega)^n) \) for each \(k \), it follows from [K, §38, VII, Theorem 1] that \(\theta_n[H_k \cap G_n \cap S^n] \in \mathcal{L}_r(\Phi) \). But then \(\Phi_n \cap \Phi_S \), being a countable union of members of \(\mathcal{L}_r(\Phi) \), also belongs to \(\mathcal{L}_r(\Phi) \). For the same reason, the set \(\Phi_S = \bigcup \{ \Phi_S \cap \Phi_n \mid n \geq 1 \} \) also belongs to \(\mathcal{L}_r(\Phi) \) as claimed.

Finally suppose \(S \notin \mathcal{L}_{r-1}(2^\omega) \). According to 2.1, there is a (relatively) closed subspace \(S^* \) of \(C_\tau(\Sigma) \) which is homeomorphic to \(S \). Then \(S^* = C_\tau(\Sigma) \cap D \), where \(D \) is some closed subset in \(\mathbb{R}^\Sigma \). If \(C_\tau(\Sigma) \in \mathcal{L}_{r-1}(\mathbb{R}^\Sigma) \), then \(S^* = C_\tau(\Sigma) \cap D \) would also belong to \(\mathcal{L}_{r-1}(\mathbb{R}^\Sigma) \). According to [K, §38, VII, Theorem 1], we would then have \(S \in \mathcal{L}_{r-1}(2^\omega) \) because \(S \) is homeomorphic to \(S^* \), which is impossible. \(\square \)

4.2 COROLLARY. For each \(n \geq 1 \) there is a countable regular space \(X_n \) such that \(C_\tau(X_n) \in \mathcal{L}_r(\mathbb{R}^{X_n}) - \mathcal{L}_{r-1}(\mathbb{R}^{X_n}) \) and there is a countable regular space \(Y \) such that \(C_\tau(Y) \notin \bigcup \{ \mathcal{L}_n(\mathbb{R}^Y) \mid n \geq 1 \} \).

PROOF. Fix \(n \). By [K, §38, VI, Theorem 1] there is a set \(S_n \subset 2^\omega \) having \(S_n \in \mathcal{L}_n(2^\omega) - \mathcal{L}_{n-1}(2^\omega) \). Let \(X_n = \Sigma S_n \). To obtain the space \(Y \), choose any \(S \subset 2^\omega \) with \(S \notin \bigcup \{ \mathcal{L}_n(2^\omega) \mid n \geq 1 \} \) [K, §38, VI, Remark 1] and let \(Y = \Sigma S \). Because \(C_\tau(Y) \) contains a closed subset homeomorphic to \(S \), \(C_\tau(Y) \notin \bigcup \{ \mathcal{L}_n(\mathbb{R}^Y) \mid n \geq 1 \} \). \(\square \)

5. Baire category and Baire Property subsets of \(\mathbb{R}^X \). For any space \(Z \), \(\mathcal{B}(Z) \) is the \(\sigma \)-algebra generated by the open sets and the first category subsets of \(Z \). Members of \(\mathcal{B}(Z) \) are called Baire Property subsets of \(Z \) [OX2, p. 19]. For a space \(X \) with a unique limit point (such as the spaces \(\Sigma S \) for \(S \subset 2^\omega \) constructed in §1) it is easy to characterize which function spaces \(C_\tau(X) \) belong to \(\mathcal{B}(\mathbb{R}^X) \).

5.1 THEOREM. Suppose \(X \) is a countable space with a unique limit point \(\infty \) and let \(p \) be the trace on \(X - \{ \infty \} \) of the neighborhood filter of \(\infty \). Then the following are equivalent:

(a) \(C_\tau(X) \) is a first category subset of \(\mathbb{R}^X \);

(b) \(C_\tau(X) \in \mathcal{B}(\mathbb{R}^X) \);

(c) there is an array

\[
\begin{array}{cccc}
A(1,1) & A(1,2) & A(1,3) & \cdots \\
A(2,1) & A(2,2) & A(2,3) & \cdots \\
A(3,1) & A(3,2) & A(3,3) & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}
\]

satisfying

(i) each \(A(m,n) \) is a finite subset of \(X - \{ \infty \} \);

(ii) each row \(A(m,1), A(m,2), A(m,3), \ldots \) is a pairwise disjoint sequence;

(iii) for every sequence \(k(1), k(2), \ldots \) and every \(U \in p \), \(U \cap (\bigcup \{ A(m,k(m)) \mid m \geq 1 \}) \neq \emptyset \).
PROOF. The equivalence of (a) and (c) follows from [LM, Theorems 6.3 and 5.1] and obviously (a) implies (b). We prove that (b) implies (a). Suppose \(C_\pi(X) \in B\mathcal{P}(\mathbb{R}^X) \). To simplify notation, we will identify the countably many isolated points of \(X \) with elements of \(\omega \) and we will write \(X = \omega \cup \{\infty\} \). Define a function \(\nu: \mathbb{R}^X \to \mathbb{R}^\omega \times \mathbb{R} \) by the rule that \(\nu(f) = (f^*, f(\infty)) \), where \(f^* \in \mathbb{R}^\omega \) is given by \(f^*(n) = f(n) - f(\infty) \). Then \(\nu \) is a homeomorphism of \(\mathbb{R}^X \) onto \(\mathbb{R}^\omega \times \mathbb{R} \) and \(\nu(C_\pi(X)) = C_0 \times \mathbb{R} \), where \(C_0 = \{g \in \mathbb{R}^\omega | \text{ for each } \varepsilon > 0 \text{ there is a neighborhood } U \text{ of } \infty \text{ having } g[U \cap \omega] \subset]-\varepsilon, \varepsilon[\} \). Since \(C_\pi(X) \in B\mathcal{P}(\mathbb{R}^X) \), \(C_0 \times \mathbb{R} \in B\mathcal{P}(\mathbb{R}^\omega \times \mathbb{R}) \).

It is easily seen that \(C_0 \) is a tailset in \(\mathbb{R}^\omega \), i.e. that if \(g \in C_0 \) and if the equality \(h(n) = g(n) \) holds except for finitely many values of \(n \), then \(h \in C_0 \). We now need a slight variation of a result due to Oxtoby [Ox1]; the proof is only trivially different from Oxtoby’s argument.

5.2 LEMMA. Let \(C \) be a tailset in \(\mathbb{R}^\omega \) and suppose that \(C \times \mathbb{R} \in B\mathcal{P}(\mathbb{R}^\omega \times \mathbb{R}) \). Then either \(C \times \mathbb{R} \) is a first category subset of \(\mathbb{R}^\omega \times \mathbb{R} \) or else \(C \times \mathbb{R} \) contains a dense \(G_\delta \)-subset of \(\mathbb{R}^\omega \times \mathbb{R} \).

Given 5.2, either \(C_0 \times \mathbb{R} \) is a first category subset of \(\mathbb{R}^\omega \times \mathbb{R} \), in which case \(C_\pi[X] \) is also a first category subset of \(\mathbb{R}^X \), or else \(C_0 \times \mathbb{R} \) contains a dense \(G_\delta \)-subset of \(\mathbb{R}^\omega \times \mathbb{R} \), in which case \(C_\pi[X] \) contains a dense \(G_\delta \) in \(\mathbb{R}^X \). But the latter situation occurs if and only if \(X \) is a discrete space [DGLvM, Theorem 1] so that \(C_\pi(X) \) must be a first category subset of \(\mathbb{R}^X \), as claimed. \(\square \)

5.3 REMARK. The reason for creating a variant of Oxtoby’s theorem as in 5.2 is that one cannot deduce \(C_0 \in B\mathcal{P}(\mathbb{R}^\omega) \) from \(C_0 \times \mathbb{R} \in B\mathcal{P}(\mathbb{R}^\omega \times \mathbb{R}) \).

5.4 COROLLARY. For each \(S < 2^\omega \), the function space \(C_\pi(\Sigma_S) \) is a first category subset of \(\mathbb{R}^{\Sigma_S} \).

PROOF. We define an array \(A(m, n) \) as follows using the tree \(T = \bigcup_{n=1}^{\infty} T_n \):

(i) \(A(1, n) = T_n \) for \(n \geq 1 \);
(ii) \(A(2, 1) = T_1 \cup T_2 \), \(A(2, 2) = T_3 \cup T_4 \), \(A(2, 3) = T_5 \cup T_6 \), \(\ldots \);
(iii) in general, \(A(m, n) = T_{(n-1)m+1} \cup \cdots \cup T_{nm} \).

Obviously each \(A(m, n) \) is finite and because the sets \(T_1, T_2, \ldots \) are pairwise disjoint, each row \(A(m, 1), A(m, 2), \ldots \) of the array is pairwise disjoint. Suppose \(k(1), k(2), \ldots \) is a sequence of positive integers and suppose \(U = T - (B_{x_1} \cup \cdots \cup B_{x_n} \cup F) \), where \(x_i \in S \) and \(F \) is a finite subset of \(T \). If \(\varnothing = U \cap (\bigcup \{A(m, k(m)) | m \geq 1\}) \), then \(\bigcup \{A(m, k(m)) | m \geq 1\} \subset B_{x_1} \cup B_{x_2} \cup \cdots \cup B_{x_n} \cup F \). Observe that for a fixed level \(T_j \) of the tree \(T \), \(\text{card}(B_{x_j} \cap T_n) = 1 \) so that \(\text{card}(T_j \cap (B_{x_1} \cup \cdots \cup B_{x_n} \cup F)) \leq n + \text{card}(F) \). Choose \(m > n + \text{card}(F) \). Then the set \(A(m, k(m)) \) contains a level \(T_j \) of \(T \) where \(\text{card}(T_j) \geq 2^m \) so that \(T_j \cap (B_{x_1} \cup \cdots \cup B_{x_n} \cup F) \) must have cardinality greater than \(n + \text{card}(F) \), contrary to our observation above. \(\square \)

In closing let us give one more example of a countable regular space \(X \) with a unique isolated point \(\infty \) which has a "bad" function space. Unlike the examples so far, \(C_\pi(X) \) is a second category subset of \(\mathbb{R}^X \).

5.5 EXAMPLE. Let \(p \) be a free ultrafilter on \(\omega \) and topologize the set \(X = \omega \cup \{\infty\} \) by isolating all points of \(\omega \) and by using all sets of the form \(\{\infty\} \cup U \), where \(U \in p \), as neighborhoods of \(\infty \). Then \(C_\pi(X) \) is a second category subset of \(\mathbb{R}^X \) and \(C_\pi(X) \notin L_1(\mathbb{R}^X) \cup L_2(\mathbb{R}^X) \).

PROOF. That \(C_\pi(X) \) is a second category subset of \(\mathbb{R}^X \) follows from the equivalence of (a) and (c) in 5.1 (cf. [LM, 5.1 and 6.3] for details). Suppose
\(C_\pi(X) \in \mathcal{L}_n(R^X) \), where \(n \in \{1, 2\} \). Define \(j : 2^\omega \to R^X \) by the rule that if \(f \in 2^\omega \) then \(j(f) = \hat{f} \in R^X \) where \(\hat{f} \) is given by
\[
\hat{f}(x) = \begin{cases}
 f(x) & \text{if } x \in \omega, \\
 1 & \text{if } x = \infty.
\end{cases}
\]
Then \(j \) is continuous so that by [K, §38, III, Proposition 2], \(j^{-1}[C_\pi(X)] \in \mathcal{L}_n(2^\omega) \).
Hence \(j^{-1}[C_\pi(X)] \) is a measurable subset of \(2^\omega \) (with respect to product measure \(\mu \)) because all analytic and co-analytic subsets of \(2^\omega \) are measurable [L, p. 243, Proposition 3.24]. But \(j^{-1}[C_\pi(X)] = \{ x \in 2^\omega \mid \text{for some } U \in p, x(n) = 1 \text{ for each } n \in U \} \) so that \(j^{-1}[C_\pi(X)] \) is seen to be a tailset in \(2^\omega \). Hence Kolmogorov’s “0-1 law” guarantees that \(\mu[j^{-1}[C_\pi(X)]] = 0 \) or \(\mu[j^{-1}[C_\pi(X)]] = 1 \) [Ox₂, p. 84].
However, consider the function \(J : 2^\omega \to 2^\omega \) given by \(J(f) = f \oplus 1 \), where \(\oplus \) denotes coordinatewise addition modulo 2, i.e., the usual group operation of \(2^\omega \). Since \(\mu \) is translation invariant, \(J \) is a measure preserving transformation on \(2^\omega \). Because \(p \) is an ultrafilter, \(J[j^{-1}[C_\pi(X)]] = 2^\omega - j^{-1}[C_\pi(X)] \) so that both \(\mu[j^{-1}[C_\pi(X)]] = 0 \) and \(\mu[j^{-1}[C_\pi(X)]] = 1 \) are impossible. Therefore \(C_\pi(X) \notin \mathcal{L}_0(R^X) \cup \mathcal{L}_1(R^X) \cup \mathcal{L}_2(R^X) \), as claimed. \(\square \)

REFERENCES

DEPARTMENT OF MATHEMATICS, MIAMI UNIVERSITY, OXFORD, OHIO 45056

VRIJE UNIVERSITEIT, AMSTERDAM, THE NETHERLANDS

MATHEMATICS INSTITUTE, UNIVERSITY OF WARSAW, WARSAW, POLAND