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A topological combinatory algebra is an applicative structure (D, .) provided
with a topology on D such that on D the notions of continuous, algebraic and
representable function all three coincide (see [1] § 5.1 for terminology). Such
structures are always infinite (except the trivial one point algebra; we will not
consider it).

One way of finding combinatory algebras is to construct a cpo (complete
partial ordering) D, provided with its Scott topology, such that the set of
continuous maps [D— D] with the proper topology is a retract of D. In this way
one obtains a topological combinatory algebra.

In § 1 it will be shown that for an infinite cpo D the set [D—D] is always
uncountable. The question arises whether there are countable topological
combinatory algebras. This would be impossible if there are always uncoun-
tably many continuous functions on an infinite topological space. This is not
so: in § 2 an example is given of a countable space with only the identity and
the constant functions continuous. The question in the title remains open.
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§ 1. LEMMA 1. (1) Let (D, <) be an infinite poset. Then D contains an
infinite chain or an infinite antichain.
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(ii)) Let (D, =) be an infinite chain. Then D contains an infinite increasing
or an infinite decreasing chain.

PROOF. (i) Partition [D]?, the two element subsets of D, in X; = {{x, y}|x<y
or y<x} and X, = {{x, ¥}|x, y incomparable}. By Ramsey’s theorem [4] IX 3.1
there is an infinite homogeneous set DyC D. If [DO]ZQX 1 (X, respectively)
then D, is a chain (antichain).

(i) Let D, ={x,X),...} CD. Partition [D,]* in X, ={{x;, x;}}i<j=x;<x;}
and X, = [D,]Z—X - Then again by Ramsey’s theorem we find an infinite in-
creasing or an infinite decreasing chain. 0

LEMMA 2. Every element in a cpo is below a maximal element.

PROOF. By the definition of cpo the lemma of Zorn applies to the sets
{ylx=y}. [

DEFINITION. Let (D, <) be a cpo with its Scott topology. X ¢ D is called a
subspace if (X, <) is a cpo and on this structure the Scott topology coincides
with the subspace topology inherited from D.

EXAMPLE. In (w+2,=<)=({0,1,2,...,w,w+1}, <) the subset {x|x+w} is
not a subspace, but the subset w=1{0,1,2,...} is

LEMMA 3. Let (D, <) be a cpo.

(i) If xp=<x;<... is an increasing chain in D then Dy= {xg, x,..., Ux;} isa
subspace.

(i) If xo=x,=... is a decreasing chain in D, then {L1,...x3,x,,X,} is a
subspace. (L denotes the least element of D).

(iii) If D;cD is not a subspace, then D contains an infinite increasing
chain.

PROOF. (i) The opens of D, are ¢, D, and the sets O,={ye Dy|x,=<y}.
These belong to the subspace topology: O,=DyN{zeD|z%x,_,}. Moreover,
if O is open in D, then ON D, is open in D, since U has the same meaning in
Dy as in D.

(i) Similar.

(iii) Suppose O, C D, is Scott open in D, but not of the form OND, with
O open in D. Define O*={ye D|3xe O,x=<y}. Then O*ND,=0,, hence O*
is not Scott open in D. But O* is closed upward in D, so for some directed
XcDone has UXeO* and XNO*=¢. Then no element of X is the supre-
mum of X. Hence for every x€ X there is a y € X incomparable with x. Since
X is directed it follows that for each xe X there is an x’e X with x<x’, i.e.
X ¢ D contains an infinite increasing chain. If O is Scott open in D but OND,
not in Dy, then the reasoning is easier. -

THEOREM 1. [If D is an infinite cpo, then [D—D] is uncountable.
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PROOF. Case 1. For some x& D'the set x| = {xe D|y=<x} is infinite. Then by
lemma 1 there is below x either (i) an infinite increasing chain or (ii) an infinite
decreasing chain or (iii) an infinite antichain.

Case 1(i). Then D contains the subspace D'={xy<x;<...<Ux;} which is
an algebraic lattice. Therefore the uncountably many monotonic maps D’'— D’
are all continuous. Since algebraic lattices are continuous, D’ is an injective
topological space, i.e. the continuous maps can be extended continuously to
D—-D’; see [2] 11, 3.5. It follows that [D— D] is uncountable.

Case 1(ii). Then D contains the subspace D'={ L1 <...<x;<Xxp} and we
proceed as in case 1(i).

Case 1(iii). Then D contains the infinite Chinese lantern

This is an algebraic lattice with uncountably many monotonic maps. If the
lantern is a subspace, then we are done. If not, then by lemma 3(iii) we are back
to case 1(i).

Case 2. For every xe D the set x| is finite. Then by lemma 2 the set M of
maximal elements is infinite. For 4 ¢ M define

f)=41 if x¢M
=my if xe A
=m, if xe M- A

where my, m; € M are distinct. Then f is continuous. Again [D— D] is uncoun-
table. =

§ 2. ACOUNTABLE SPACE WITH ONLY COUNTABLY MANY CONTINUOUS SELF-MAPS

In this section we shall produce an example of a countable space with only
the identity and the constant functions continuous. Let us call two topological
spaces X and Y orthogonal provided that for every open subset U of X, every
continuous function f: U— Y is constant, and vica versa. The main ingredient
in the construction of our example is that spaces such as described in the
following theorem exist: we shall postpone the proof until the end of this
section.

THEOREM 2. There is a sequence of countable spaces Z,, ne N, with the
following properties:
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(i) each X, is compact, connected, locally connected, 7| and anti-
Hausdorff *,
(ii) the sequence (Z,:neN) is pairwise orthogonal.

We shall now construct our example from the spaces described in Theorem
2. Let {A,:neN} be a partition of N into countably many infinite sets. By
induction on n € N, we shall construct a compact, connected, locally connected,
countable T;-space X, such that:

(1) X, _, is a closed subspace of X,

2) if i<n, f: X;— X, is continuous such that f(x) & X; for certain x € X, then
fis constant,

(3) ifi<n, f:X,— X, is continuous and f(X;) C X, then either f [ X; is constant
or f I X; is the identity on X;,

(4) if k>n, peA, and UCZ, is open then every continuous function
f:U—X, is constant,

(5) if k>n, pe A, and UC X, is connected and open then every continuous
function f: U—2%), is constant.

Let X;=2X), for certain pe A,. By Theorem 2 we find that (4), and (5), are
satisfied.

Suppose that we constructed the spaces X; for 1=<i<n satisfying (1),
through (5),. We shall construct X,, ;.

Let {x;:ieN} enumerate X, and let {p,:ieN} enumerate A,,,. For
convenience, assume that the spaces X,, pe A, , are pairwise disjoint and
that in addition they do not intersect X,. The underlying set of X, is
(X,,UU,.EN 2, )U{e}, where o is a point not in X,,UU,“V 2y

2

Pi

o ‘ IIIII 'oo
Xi

We shall define the topology on X, ., in terms of basic neighborhoods. A
basic neighborhood of a point xe 2, , ieN, in X, is a neighborhood of x
in Z,. A basic neighborhood of the point x;€ X, has the form

(WUU{Z,:x,e UD\F,

* This means that every two nonempty open sets intersect.
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where UC X,, is a neighborhood of x; in X,, and FC X, is an arbitrary finite
set. A basic neighborhood of o has the form
{o}ucU Z,\P),
ieN

where Fc|J,_,, 2, is an arbitrary finite set.

It is clear that X, ,; is a countable, connected and locally connected,
compact T)-space and that X, is a closed subspace of X, ;. We shall prove
that X, satisfies (2),,, through (5),,,.

LEMMA 4. (2),,, holds.

PROOF. Take i<n+1 and a continuous function f:X;—X,,, such that
S(x) ¢ X, for certain xe X;. If f(X;)C X, then fis constant by (2),. We there-
fore assume, without loss of generality, that f(X) e X,,, 1\ X,,.

Case 1. X e X; such that f(,\")eZ'pj for certain je N,

Let a=f(%) and put V={ye X;: f(y)=a}. Then V is closed (since X, is
T;) and nonempty (since £ € V). We will show that ¥ is open. Take y € V arbi-
trarily. Since 2, is open in X, ,,, there is a connected open neighborhood U
of y in X; such that f(U)CZ,. By (5); we find that f(U) is a single point, so
S(U)={a} since f(¥) =a. Consequently, U C V and we conclude that V is open.
By connectivity of X; we find that V=X, i.e. fis constant.

Case 2. f(X)NU,.\, Z,,= 0.

Then f(x)=c0. If f(X;)NX,#¢ then by connectivity of f(X;) we find
f(X[)ﬂUjEN Z,,j:#q), which is not the case. Consequently, f(X;)NX,=¢,
whence f(X;)={o}. O

LEMMA 5. (3),.; holds.

PROOF. Take i<n and a continuous f:X,,,—X,,; such that f(X;)CX;.
Suppose first that there is an x € X, such that f(x)¢ X,,. By (2),,,, (lemma 4)
we conclude that f 1 X, is constant. Since f(x) & X, X;C X, and f(X;) C X;, this
is a contradiction. Therefore, f(X,)C X,,. Let g=f1X,. If i<n then by (3),,
gl X;=f1X;is constant or gl X;=fX;is the identity on X;. We may therefore
assume that i=n. Suppose that for certain x;€ X, we have f(x;) #x;. We shall
prove that fTX, is constant. Since

E=X,\ {xHUU{Z, j#i}

is a neighborhood of f(x;) in X, ., there is a neighborhood F of x; such that
Sf(F)CE. The neighborhood F contains Zp,\ G for certain finite set GC X, .
Define n: X,UlJ,.,, Z,~ X, by

nl X, is the identity on X,
n(zp,) = {Xi } .
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Then = is clearly continuous. Then nf(Z, \ G) C X,, so nf(Z, \ G) is a single
point by (4),. Let f(x;)=x;. It now easily follows that f(Z, \ G) C {x;} Uz, .
Since 2, is anti-Hausdorff, 2, \ G is connected and an application of
Theorem 2 and the fact that x; is in the closure of 2, \ G now yield that

S\ G)={x;}.

Since 2, \ G is dense in 2, U{o}, it also follows that f(co) =x;. There is a
neighborhood H of oo such that f(H)CE. Fix k+j. Then H contains Zpk\A,
for certain finite A CY, . Argueing as above yields that

S\ A ={x;}.

Since X, \ A is dense in 2, U {x} it also follows that f(x,) =x;. We conclude
that f(x;) =x; for every k#/. By connectivity of X, it follows that x; is in the
closure of X,\ {x;}. From this we conclude that f(x;)=x;, i.e. flX, is
constant. O

LEMMA 6. (4),,, holds.

PROOF. Let k>n+1 and pe A;. In addition, let UC X, be nonempty and
open and let f: U— X, be continuous. Suppose first that for some xe U we
have f(x)eU ien 2p;- Then there are a nonempty open VCU and an ieN
such that f(V)C 2, . By Theorem 2, f(V) is a single point. Since U is anti-
Hausdorff, ¥ is dense in U, whence f(U) is a single point. We may therefore
assume that f(U)N U ien 2p,=9®. Now, by connectivity of f(U), either
S X, or f(U)={oo}. If f(U)C X, then fis constant by (4),. In addition,
if f(u)={o} then fis trivially constant. O

LEMMA 7. (5),,,; holds.

PROOF. Let k>n+1 and pe A,. In addition, let UC X,,, | be connected and

open and let f: U—Z), be continuous. Take x € U arbitrarily and put a=f(x).

Let V={yeU:f(y)=a}. Then ¥ is a closed subset of U since X, is T}. We

will show that V is open from which follows that V= U since U is connected.
Take y € V arbitrarily.

Case 1. y=oo,
Since U is open, there is a finite set /' C X,,,, such that
E={°°}UU/ETN EP,\F)Q U
Fix ie N. By Theorem 2, f (Z,,\ F) is single point. Since o is in the closure of
2, \ F we have f(Z, \ F)={a}. We conclude that EC V.

Case 2. ye 2, for certain i€ N.
Let EC X, be a neighborhood of y such that EC U. By Theorem 2, fIE is
constant, whence f(E)={a}, i.e. ECV.
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Case 3. ye X,,, say y=x;.
There is a connected neighborhood W of x; in X, and a finite FC X, | such
that

E=wUl{Z,:x;e WH\FcU.

Since W is connected, by (5), we find that fIW is constant, whence
S(W)={a}. Argueing as in Case 1 now yields that f(E)={a}, i.e. ECV. O

This completes the construction of the spaces X,, neN. Let X= U"eN X,
and define a topology 7 on X by

Uere UNX, is open in X,, for each neN.

It is clear that 7 is indeed a topology. Observe that V' C X is closed if and only
if ¥NX, is closed in X,, for each neN. Since X, is closed in X,,, this
implies that each X, is closed in X. Also, 7l X, is the original topology on X,,.
Observe that X is 7).

The space X is in fact the direct limit of the spaces X,, with inclusions as
bonding maps. In the framework of direct limits the following lemma is well-
known: the simple proof will be included for completeness sake.

LEMMA 8. If KC X is compact then K C X,, for certain neN.

PROOF. Let E={neN:KN(X,\ X,_,)# ¢} and for each neE pick a point
X, € KN(X,\ X,_,). Let F={x,:neE}. Let H be an arbitrary subset of F.
Then HN X, is finite for every neN, so H is closed in X. We conclude that
F is discrete, i.e. every subset of Fis closed, or equivalently, open. Since K is
compact, so is F. Consequently, F is finite, whence E is finite. 0

THEOREM 3. If f:X—X is continuous then either f is constant or f is the
identity on X.

PROOF. We distinguish two cases.
Case 1. (Ine N)(f X,;: X,,— X is constant).

Let f(X,)={a}. Choose m>n such that ae X,,. Suppose that there is an
I=m such that f(y) ¢ X for certain ye X;. By lemma 8 there is k >/ such that
J(X;) c X;. By induction hypothesis (2), it follows that f!X; is constant, so
f(X))={b} for certain b¢ X,. Since X, C X, and f(X,)={a} € X,,C X, this is
a contradiction. We therefore conclude f(x;) € X; for every /=m. Consider
m+1. We have f(X,,,1)CX,,.; and f(X,,)CX,,. By induction hypothesis
(3)m+1 we conclude that either f[.X,, is constant or f1X,, is the identity on
X,,. Since ftX, is constant on X, and X,C X,, this implies that flX,, is
constant. Continuation of this process yields that fT X, is constant for every
I=m, i.e. f is constant,.

Case 2. (Vne N)(f1X,: X,,— X is not constant).
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Suppose that for certain ne N and x€ X,,. We have f(x) ¢ X,,. By Lemma 8
there is m > n such that f(X,) C X,,. By induction hypothesis (2),, we conclude
that f1X, is constant, contradiction. Consequently, f(X,)C X, for every
neN. Applying induction hypothesis (3), for every ne N and using the fact
that f1.X, is not constant, we conclude that f1X, is the identity on X, for
every ne N, i.e. f is the identity on X. il

It remains to construct the spaces 2,, n€ N, of Theorem 2. This turns out
to be surprisingly complicated.

Let pC P(N) be a free ultrafilter. A, is the space with underlying set N and
topology pU{¢}, i.e. UCN is open in A, if and only if UepU{gp}. The
following lemma is left as an exercise to the reader.

LEMMA 9. Let pC P(N) be a free ultrafilter. Then

N 4, is 7, and anti-Hausdorff,

(2) if VA, then the following statements are equivalent:
(a) V is connected and |v|>1,
(b) Vis open and V#¢,

(c) Vep,
(3) if V¢ A, is open and nonempty then A, \ Vis relatively discrete, i.e. every
point of A,\ V is open in the inherited subspace topology on A,\ V.

Let BN be the set of all ultrafilters on N. If p,qe€ SN define

p=qeEf:N->N)p={BCN: (T4 eq)(f(4)C B)}).

(This is the Rudin-Keisler (pre)order on SN).
The following non-trivial result is due to Kunen [3].

THEOREM 4. There is an uncountable set A € SN such that for all distinct
p.ge A we have p£q and g<£p.

Let A be as in Theorem 4.
LEMMA 10. If p,q€ A are distinct then A, then A, are orthogonal.

PROOF. Let UC A, be open and nonempty and let f: U~ A, be continuous.
Take Vep. If | f(UUV)|=1 then |f(U)|=1 since UNV is dense in U and A,
is T}, lemma 9(1). We can therefore assume that |f(UNV)|>1 for every
Vep. Define g:N—N by

gtu=/,
gt(N\ U)=1.

Take V € p arbitrarily. Then f(UN V) C g(V). Since f(UN V) is non-degenerate
and connected, lemma 9(1), it follows that f(UNV)egq, lemma 9(2), from
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which follows that g(V)eq. From this we find that {g(V): Ve p} Cq and this
easily implies that

g={BCN:(TVep)g(V)CB)},

i.e. g<p, a contradiction. U

Now let o, a point not in A,, for certain pe A. Let Ep=ApU{oop} and
define a topology on X, as follows: every open subset of A4, is open %, and a
basic neighborhood of o, has the form

Z‘[]\1?7

where FC A, is finite.
It is clear that %, is a compact 7)-space and that for the proof of Theorem
2 it suffices to verify the following

LEMMA 11. If p,ge A are distinct then 2, and 2, are orthogonal.

PROOF. Let UCZ), be open and nonempty and let f:U—2Z, be continuous.
Put U'=UNA,. If f(U')={o,} then f(U)={,} since U’ is dense in U and
2, is Ty. Therefore, assume that f(U’)# {o,}, say f(x)# oo, for the point
x € U". By continuity there is a neighborhood V of x in %, such that oo & f(V).
We may assume that V'CA,. By lemma 10, f IV is constant. Since 2, is anti-
Hausdorff, V is dense in Z,. Consequently, f is constant.
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