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It is well known that no infinite homogeneous space is both compact and extremally discon- 

nected. (Since there are infinite compact homogeneous spaces and infinite extremally disconnected 

homogeneous spaces, it is the combination of compactness and extremal disconnectedness that 

brings about this result.) The following question then arises naturally: How “close to compact” 

can a homogeneous, extremally disconnected space be? The aim of this paper is to show that a 

homogeneous extremally disconnected space can be countably compact. It is shown also, assuming 

Martin’s Axiom, that there exist countably compact, homogeneous, extremally disconnected spaces 

whose product is not countably compact. 

AMS(MOS) Subj. Class.: 54D35, 54605 

extremally disconnected space 

0. Introduction 

All spaces under discussion are Tychonoff spaces, i.e., completely regular, 

Hausdorff spaces. A space is extremally disconnected if the closure of each open set 

is again open. 

In order to orient this paper within the surrounding relevant literature, it is 

convenient to have in mind the following three known results. Here as usual we 

say that a subspace Y of a space X is P-embedded in X if every bounded, 

real-valued continuous function on Y extends continuously over X. The Stone-Tech 

(= Tech-Stone) compactification of a space X is denoted PX, and X* abbreviates 

pX\X; in particular, o* denotes the space of free ultrafilters over the countably 

infinite discrete space w. 

* This paper derives from the authors’ collaboration at Wesleyan University in July, 1985. The second- 
listed author is pleased to thank the Department of Mathematics at Wesleyan University for generous 

hospitality and support. 
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0.1. Theorem. X is extremally disconnected if and only if SX is extremally discon- 

nected. 

0.2. Theorem. Let X be extremally disconnected and let Y z X. If Y is countable, or 

open in X, then Y is C*-embedded in X (and so SY = clpx( Y)). 

0.3. Theorem. If G is a pseudocompact topological group, then SG is a topological 

group. 

References: For Theorems 0.1 and 0,2, see Gillman and Jerison 

[14, (l.H, 6.M, 14.N)]. Theorem 0.3 is from [8]. De Vries [21] gives a proof, set 

forth also in [5], somewhat simpler than that of [8]; see also Van Douwen [9] for 

related results. 

The Rudin-Keisler (pre-) order < on w* is defined as follows; for p, q E w* we 

write p < q if there is a functionf: w + w for which the (continuous) Stone extension 

f: p(w) + /3(w) satisfies f(q) = p; and we write p - q if there is a homeomorphism 

f of o (that is, a permutation) such that f(q) = p. It is known that the relation < on 

w* respects the equivalence relation - in the sense that if p < q and q < p then p - q. 

0.4. Theorem. Let X be an extremally disconnected space containing a P-embedded 

copy of w (again denoted w) and let q and q’ be accumulation points of w in X. [We 

write q, q’ E w* n X E PX.] If there is a homeomorphism of X onto X taking q to q’, 

then q and q’ are < -comparable in w*. 

References: We know of no explicit references in the literature for this result, 

but the essential features, expanding on an Editor’s Note appended by Z. Frolik to 

related results of Efimov [ 11, footnote, p. 1051, are recorded in [4,§ 81 and [5, (2.10)]. 

Indeed the homeomorphism h extends to a homeomorphism E of /3X and then, 

following Frolik [12,13], either 

p E cl(w n cl(&-‘[w])) 

(in which case p < q) or p E cl(z-‘[w] n cl(w)) (in which case q 6~). 

The <-minimal elements of o*, often called selective ultrafilters, were first intro- 

duced in another context by Choquet [3] (who called them ‘absolute’). There are 

models of ZFC where none exist [15], but the following result, proved in part in 

[2] and [18], shows their existence in ZFC+ MA. 

The reader may consult [7, §§ 9, lo] for a survey of the literature concerning the 

order < and for a detailed proof of 0.5 in the system ZFC+CH. 

0.5. Theorem [ZFC+MA]. There is SC w* such that ISI = 2’, every two elements of 

S are <-inequivalent, and each element of S is <-minimal in w*. 
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0.6. Discussion. It is a question raised nearly 20 years ago by Arhangel’skiT [l] 

whether there exists a non-discrete extremally disconnected topological group. To 

the best of our knowledge, this remains open as a question in ZFC. Solutions are 

known, however, when ZFC is augmented by suitable additional (consistent) axioms. 

First, Sirota [ 131 gave an example based on the existence of a so-called k-ultrafilter 

over the countably infinite discrete space w; he showed further that a k-ultra- 

filter exists if the continuum hypothesis is assumed. Next Louveau [lo], using an 

ultrafilter over o which is absolute in the sense of Choquet [2], simplified Sirota’s 

construction. More recently Malyhin [17] has proved the existence of another 

non-discrete extremally disconnected group on the basis of a combinatorial principle 

usually called P(c). 

It is natural to wonder whether the groups of Sirota-Louveau-Malyhin may be 

constructed so as to possess in addition some of the familiar topological properties 

of compactness type. The groups are already countable, hence a-compact. Theorem 

0.7 thwarts improvement in the direction of countable compactness. 

0.7. Theorem. A non-discrete, extremally disconnected topological group cannot be 

pseudocompact (hence, cannot be countably compact). 

Proof. If a counterexample exists, it may by Theorems 0.1 and 0.3 be chosen to be 

compact. Then by Theorems 0.2 and 0.4, the Rudin-Keisler order + on w* is a 

linear order. This contradicts a theorem (proved in ZFC) of Kunen [15] (see also 

[7, (10.4)] for a proof). 0 

Our goal is to show that there does exist an extremally disconnected, countably 

compact space which is homogeneous. Since our space is based on a construction 

due to Louveau [15] we shall describe this construction in some detail. 

For a space X we write 

a(X) = { U s X: U is open-and-closed in X}. 

The elements of a(X) are called clopen (in X). 

1. Louveau’s construction 

For a set X we denote by [XlcW the set of all finite subsets of X. The set [Xl’” 

is a group under the symmetric difference operation A defined by 

EAF=(E\F)u(F\E) forE, FE[X]<~. 

As usual, for DE [X]“W and 4 B G [Xlcw we write 

DA~={DAA:AEsZ} and ~ZAB={AAB:AE~Z,BBB}. 
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Now let p be a free ultrafilter on w. A subset d of [WI<“’ is said to be p-stable if 

for each A E d we have 

{new: AA{n}e&}~p. 

Louveau [16] proved that the collection of all p-stable sets forms a basis for a 

topology on [o]<~ which is extremally disconnected and non-discrete, and which 

moreover has the property that the group operation A : [w]<~ x [co]<” + [w]<~ is 

continuous in each variable separately. In what follows we denote by G(p) the 

group [ ~1~~ with the topology just defined. 

Observe that G(p) is countable, non-discrete, extremally disconnected and 

homogeneous. However, G(p) with the operation A need not be a topological 

group: Louveau [ 161 proved that (G(p), A) is a topological group if and only if p 

is a selective ultrafilter. 

Now fix a free ultrafilter p on w and put G = G(p). The space we will define in 

Section 2 will lie between G and PG. The following interesting lemma due to Van 

Douwen [lo] will be helpful; for the reader’s convenience we shall include a sketch 

of its proof. 

1.1. Lemma [lo]. Let X be a countable, dense in itself, homogeneous space. Then all 

non-empty open subsets of X are homeomorphic. 

Proof. Let U and V be non-empty, open subsets of X, write U = {x,: n < w} and 

V = { y,: m < w}, and set n, = m, = 0. Since a(X) is a base for X there is a triple 

(h,, U,, V,)withx,~ U,,ed(X),y,~ V,E&(X), h,ahomeomorphismof U,onto 

V,, and 1 U\ U,,l = 1 V\ V,,] = w. At stage k < w let nk and mk be the least integers n 

and m such that X, &Ui<k Ui and y,,, ~Ui<k V, and choose (hk, U,, V,) so that 

x,, E LJ, E a(X), y,, E V, E d(X), U, and V, are disjoint from Ui<k Ui and lJi<k Vi, 

respectively, hl, is a homeomorphism of U, onto V,, and 1 U\Uisk Ui] = 

I V\lJisk Vi( = W. Then h =UkCw hk is a homeomorphism of U onto V 0 

1.2. Corollary. All non-empty elements of DP(PG) are homeomorphic. 

Proof. Take E E &(pG)\{s} arbitrarily. By Lemma 1.1 there is a homeomorphism 

h from E n G onto G. Since E I-I G is dense in E, we have P(E n G) = E from 

Theorems 0.1 and 0.2. Consequently, f can be extended to a homeomorphism from 

E onto PG. 

1.3. Lemma. Let D = {{n}: n < 0). Then 

(a) D is discrete (in G), and 

(b) Cl)~fi~. 

Proof. (a) For n < o we have that d = {n} A[w\{n}]<” is p-stable and J&! n D = {n}. 

(b) Let d c G be p-stable such that 0~ Se. Then {n < w: {n} E d} = 

{n < w: 0A{n} E Sa} E p. Consequently, .&n D # 0. •I 
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2. The example 

69 

For a space X we write 

x(X) = {h : h is a homeomorphism of X onto X}. 

2.1. Theorem. If X = {h(0): h E %‘(pG)}, then X is an extremafly disconnected, 

homogeneous, countably compact space. 

Proof. As-with any space, each element of x(G) extends to an element of X(PG). 

Hence G c_ X E PG so from 0.1 we have that X is extremally disconnected. That 

X is homogeneous is clear, so it remains to show that every faithfully indexed 

(countable) discrete subset 

C={x,: n<w} 

of X has an accumulation point in X. 

Let D = {{n}: n < o} be as in Lemma 1.3 and for n < w choose h, E %‘(PG) such 

that h,({n}) = x,,. It is now easy to define by induction pairwise disjoint families 

%={U”: n<o}zs4(PG) and “Ir={V,: n<w}c&(PG) 

such that {n}E (I,,, x, E V,,, and h,[ U,,] = V,,. We assume also without loss of 

generality, replacing (say) U0 or VO by a suitable proper clopen subset, that neither 

u % nor u “Ir is dense in PG. Let E = ,OG\U QPG and F = ,BG\IJ 7fPG. 

By Corollary 1.2 there is a homeomorphismf: E + F. We define a homeomorphism 

h:(U’%)uE+(l.JV)uF 

by hi U, = h,, h[E =f and, using Theorem 0.2 and the fact that both the domain 

and the range of h are dense in PG, we extend h to 6~ %‘(PG). From 

0~ DC\0 (Lemma 1.3(b)) 

then follows h(0) E c”\C, as required. q 

3. Remarks on cardinal@ 

Let us note first that the space X constructed in Theorem 2.1 satisfies IX(sc. 

3.1. Proposition. Let Ybe an infinite, countably compact space in which each countable, 

discrete subset is P-embedded. Then 1 Y] 3 c. 

Proof. It is a well-known result of Sierpinski [19] that there is a faithfully indexed 

family 9= {AS: 5~ c} of infinite subsets of o such that 

lA,nAcJ<w fort<[‘<c. 
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Now identify o with a (countably infinite, discrete) subset of Y. Then with 9 as 

above and pc an accumulation point in Y of A,, it is clear from the C*-embedded 

hypothesis that the function [+ps is one-to-one from c into Y. 0 

While we have been unable to compute the cardinality of the space X constructed 

in Theorem 2.1, we can show by a standard argument that its essential features are 

retained by a suitably chosen subspace of minimal cardinality. 

3.2. Theorem. There is an extremally disconnected, homogeneous, countably compact 
space Y such that ) YI = c. 

Proof. Let X be as in Theorem 2.1. Continuing the notation used there, we use 

transfinite induction to find for 5 s oi sets Ye c X and subgroups 8?, of %?(pG) 

such that 

(a) ]YZ]~cand]%,(~c; 

(b) GG Ycc Y~and%?~~5VSfor~<.$~w,; 

(c) every h E Xc has h[ Y6] = Y6; 
(d) for every y E Ye there is h E Xi such that h(0) = y; and, 

(e) every countable, discrete subset of Yc has an accumulation point in Y,,,. 

To do this, set Y0 = G and, using the fact that ( YO] = w and the fact that each 

element of R( YO) extends to an element of %!?(PG), choose Rot X(/?G) so that 

(a), (c) and (d) are satisfied (with &=O). Suppose now that O< 5~ w1 and that YL, 

xc have been defined for 0 c 5 < 5. 

Case 1. 5 = I + 1. Since X is countably compact and the number of countable 

subsets of Y< is at most 

Iyil” 9 =scw=c 
there is S such that Yc G S and ISI SC and every countable discrete subset of Y< 

has an accumulation point in S. For s E S we choose h, E X(PG) such that h,(0) = s, 
we let R* be the subgroup of %‘(PG) generated by 

X;u{h,: YES}, 

and we define 

YE =U{h[S]: h E 2%‘;). 

Case 2. 5 is a limit ordinal. We set 

% = ULc& and Ye = UrccYc. 
It is clear that the families { Y(: 5s wl} and { %‘,: 5~ wi} satisfy conditions (a) 

through (e), and that the space Y = Y_, is as required. 0 

4. Concerning products 

In earlier work [6] we showed in ZFC that there are pseudocompact, homogeneous 

spaces X0, X, such that X,x X1 is not pseudocompact; if in addition MA is assumed, 
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the spaces Xi may be chosen countably compact. In this section we use our present 

methods and construction to show (again in ZFC + MA) there are countably com- 

pact, homogeneous, extremally disconnected spaces whose product is not countably 

compact. 

In what follows, the symbol S denotes a set with the properties described in 

Theorem 0.5, and for p E w* we write 

E(p)={x~w*:p<x}. 

4.1. Lemma. Let A 5 w* satisfy IAl ~2’. Then there is q E S such that An E(q) = 0. 

Proof. If not, then for every q E S there are x(q) E A and f, E o” such z(x(q)) = q. 
From IS] = 2’ and IA x owl< 2’ it follows that there are distinct q, q’E S such that 

x(q) = x( q’) and f, =f4,; hence 

4 =5(x(q)) =f&(x(q’)) = 4’9 

a contradiction. 

4.2. Theorem [ZFC + MA]. There are extremally disconnected, homogeneous, count- 
ably compact spaces Y and Z such that Y x Z is not countably compact. 

Proof. Let p E o*, let G be the Louveau group G = G(p), and define X and Y as 

in Theorems 2.1 and 3.2. Then 1 YI = c, Y is extremally disconnected, homogeneous 

and countably compact, and D = {{n}: n < w} is C*-embedded in Y For notational 

simplicity we identify D with w and we set A = Y n w*. 
From MA there is S as in Theorem 0.5, and Lemma 4.1 yields q E S such that 

A n E(q) = 0. We denote by H the Louveau group H = G(q) and again we use 

Theorem 2.1 to find an extremally disconnected, homogeneous, countably compact 

space 2 such that H E Z s /3H and D = {{n}: n < w} is C*-embedded in 2. To see 

that Y x Z is not countably compact it is enough to note that D in Y (identified 

with w) and D in Z (also identified with w) satisfy W yn cSz = w. Our identification 

of D in Z with o identifies 0 with q. Thus if x E Gz\, then from Theorem 0.4 we 

have XE E(q) or q E E(x); since q is <-minimal we have x E E(q) and hence 

x g A = (5 y\w, as required. 

5. Questions 

In our opinion the most interesting unsolved problems closely related to the topic 

of this paper are as follows. 

5.1. Is there, in ZFC alone without additional axioms, a non-discrete, extremally 

disconnected, topological group? 

5.2. Is the result of Theorem 4.2 available in ZFC alone? If so, can Y and Z be 

chosen so that Y x 2 is not pseudocompact? Are there, in ZFC or in ZFC+ MA, 



72 W. W. Comfort, J. van Mill / A homogeneous space 

extremally disconnected, pseudocompact, homogeneous spaces whose product is 

not pseudocompact? 

5.3. Is there an extremally disconnected, homogeneous, countably compact space 

X such that lX(>c? 
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