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In [1], the notion of a rigid separable measurable space was defined, and such spaces were
shown to exist. We expand upon this idea and ask what are the possible automorphism groups
for such spaces. We show that there is only one such non-trivial group which is Abelian (a
countable product of two element groups), and that this group is realised as the automorphism
group of some separable space. A particular class of such spaces is characterised in terms of rigid
components.

Finally, an example of a measurable space which is rigid in the strict sense is constructed. This
answers a question of K.P.S. Bhaskara Rao and B.V. Rao.

0. Preliminaries

We work in the context of separable spaces. A measurable space (X, &) is separable
if its Borel structure 9 is countably generated and contains all singleton subsets of
X. If (X, 9B) is separable, and A c X, then A becomes a separable space with Borel
structure B(A)={Bn A: Be B}.

0.1. Lemma. Let (X, B) be a separable space. There is a metric d on X such that
(X, d) is homeomorphic with a subset of the line R, and B is the Borel o-algebra
generated by d.

Indication. Originally due to Marczewski. A proof may be found in [1, p. 9].

A separable space (X, %) is standard if there is a complete separable metric (i.e.
Polish) topology on X for which 2 is the Borel o-algebra. In view of Lemma 0.1,
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every separable space is isomorphic with a subset of some standard space. The
following result is easily proved:

0.2. Lemma. Let (X, B) be an uncountable separable space. Then there are pair-wise
disjoint uncountable sets B{B, - - - in B with X = Byu B, - - -

If (X, B,) - (X,, B,) are separable spaces with X,, ..., X, pairwise disjoint,
define

S=UX, B={UB:Be®B,i=1,...,n}

Then the separable space (S, %) is the direct union of the (X, %,).

A function f: X - Y between separable spaces (X, B) and (Y, €) is measurable
if f7'(C)e B whenever C € €. If f is a one-one correspondence of X and Y, and
both f and /' are measurable, then f is an isomorphism. An isomorphism f: X > X
of (X, %) onto itself is an automorphism.

0.3. Lemma. Let (S, B) be a standard space and X < S. Suppose f: X » X is an
automorphism of (X, B(X)). Then there is an automorphism g:S - S such that f is
the restriction of g to X.

Indication. This follows from the Kuratowski-Lavrentiev extension theorem
[5, p. 436].

In view of Lemmas 0.1 and 0.3 and the fact that there are exactly ¢ Borel
automorphisms of R, we have:

0.4. Lemma. Let (X, B) be an infinite separable space. There are exactly ¢ automor-
phisms of X.

Let f: X - X be an automorphism of a separable space X. We define f": X > X
for ne Z such that for xe€ X,

o) =x,
SN =f(f"(x)) forn=0,
) =f71(T"(x)) forn<0.
An orbit of f is a set of the form
(oo, 20, 7100, %, f(x), f2(x), . - )
Clearly, if V is an orbit of £, then f(V)= V. For each x € X, define
O(f, x)=min{n: f"(x)=x,n=1},

putting O(f, x) =00 if f"(x) # x for each n=1. We call O(f, x) the order of f at x.
Note that the function x > O(f, x) is measurable.
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0.5. Lemma. Let f: X —» X be an automorphism of a separable space X such that
O(f, x) <o for each x € X. Then there is a set Be B(X) that contains exactly one
point from each orbit of f.

Proof. By Lemma 0.1, we may suppose that X is a subset of R. Set
B={x: f"(x)=x for each n}.
Compare I11. 8.3 in [3]. O

Let (X, %) be a separable space. Let F(X) be the set of all automorphisms of
X. Then F(X) is a group under the operation of composition. Let C(X) be the
normal subgroup of F(X) comprising all automorphisms f:X - X such that
{x: f(x)# x} is countable. Define G=F(X)/C(X). We call G the reduced
automorphism group of X.

A separable space (X, B) is rigid (as in [1, p. 20]) if it is uncountable and there
is no automorphism f: X - X such that {x: f(x) # x} is uncountable: otherwise put,
the reduced automorphism group of X is trivial. In Proposition 4 of [ 1], the existence
of rigid spaces was demonstrated. The axiom of choice was used in the proof. In
this paper, we operate within ZFC; when the continuum hypothesis is used, it shall
be indicated. We characterise rigid spaces as follows:

0.6. Lemma. Let X be an uncountable separable space. The following are equivalent:
(1) X is a rigid space,
(2) No two disjoint uncountable sets in B(X) are isomorphic;
(3) If B, and B, are uncountable, isomorphic sets in B(X ), then B\ B, is countable.

Proof. (1)=>(2) Suppose that B, and B, are disjoint uncountable isomorphic sets
in B(X). Let h: B,~> B, be an isomorphism. Then the mapping f: X - X defined by

h(x) if xe B,,
fx)=¢h '(x) ifxeB,,
X if xe X\(B,u B,),

is a non-trivial automorphism of X. Thus, X 1s not a rigid space.

(2)=(1) Suppose that X is not rigid and that f: X = X is a non-trivial automor-
phism of X. We may consider X as a subset of the real line (Lemma 0.1) with its
usual order structure. One of the sets

D™ ={x: f(x)<x}, D" ={x: f(x)>x},

is an uncountable member of %(X). Without loss of generality, we suppose that
D~ is uncountable. Then there is some & >0 such that D(e)={x: f(x)<x—¢} is
uncountable. Also, there is some open interval N <R of length £ such that B, =
N n D(¢) is an uncountable set in B(X ). Whenever x and x’ are elements of B,
then f(x) <x': so B, » f(B,) =0. The disjoint sets B, and B, = f(B,) are uncountable
and isomorphic elements of B(X).
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(3)=(2) Immediate.

(2)=(3) Suppose that B, and B, are isomorphic uncountable sets in % (X). Let
f:B,~> B, be an isomorphism. Then B\ B, and f(B,\B.,) are disjoint, and so must
be countable sets in B(X). The same applies to B,\ B, and f~'(B,\B,). So B,AB,
is countable. [

We conclude the introduction on an algebraic note. If G is a group, then G*
denotes the (strong) direct product of denumerably many copies of G. Likewise,
G, X G, X - - - denotes the direct product of the groups G,. For each positive integer
n, let S, denote the symmetric group of all permutations of {1, ..., n}. Let S be
the group of permutations of {1,2,3,...}.

Iff: X = X is an automorphism of X, we indicate the corresponding coset in G

as f.
0.7. Lemma. Let G be the reduced automorphism group of a separable space X. The
order of an element ac G is

n=inf{lm=1:a =ff0r some fe F(X) such that f™(x) = x, each x€ X}.

The result applies whether n is a positive integer or co.

Proof. Suppose that a € G is of order n and that a = ¢ for some ge F(X). Then
n=inf{m=1: {x: g™ (x) # x} is countable}.

Suppose that n is finite and put U ={x: g"(x) # x}. Define the countable set
N=U{g"U): k=0,+1,%2,...}

and define f: X - X by

g(x), xeX\N,
X, xe N.

)

flx)= {
Then f= g=a, and f"(x) =x, each x € X. The lemma follows. [
1. The structure of reduced automorphism groups

The following result discovers some of the structure of reduced automorphism
groups. Note that if k,,..., k, are positive integers, then lcm(k,, ..., k;) is their
least common multiple.

1.1. Proposition. Let X be a separable space with reduced automorphism group G.
(1) If G has an element of order n =1, then there are divisors k,, . .., k, of n with

n=lcm(k,,..., k) such that G contains a subgroup isomorphic with Sg X - - - X S§.
(2) If G has an element of infinite order, then there is a sequence k,<k,<--- of

positive integers such that G contains a subgroup isomorphic with Sy, X Sg, X - - -
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Demonstration. (1) Suppose that a € G is order n. Write a =f" as in Lemma 0.7. For
k=1,...,n define B(k)={x:O(f, x)=k}. Lemma 0.5 implies the existence of a
set Be B(X) containing exactly one point from each orbit of f. Put B(k,1)=Bn
B(k) and for r=1, ..., k, set B(k,r)=f"'(B(k, 1)). Then we have

X = B(k)
k=1
as a disjoint union. Also, for each k=1,...,n
k
B(k)=J B(k,r)
r=1

as a disjoint union.

For some k, the set B(k) is uncountable. Let {k,, ..., k,} be the set of such k.
Clearly, k,, ..., k, are divisors of n. Put m =lem(k,, ..., k) and note that up to a
countable set f™ is the identity map on X. This forces m =n.

Now for 1=i=<s, the set B(k;, 1) is uncountable and so (Lemma 0.2) can be
written as a countable disjoint union of uncountable sets in B(X), viz.

o

B(k;,1)=\J B(k;, 1, 1).

=1
For r=1,...,k;, define
B(kia ra t) :fril(B(kia 1, t))

Notice that for each i=1,...,s and ¢=1, the sets B(k;, r,t) for r=1,...,k; are
disjoint, uncountable, isomorphic elements of B(X).

We now construct a one-one homomorphism ¢ of H =S} x - xSy into G.
A typical element of H is given by a matrix (w(i, ¢)), where for i=1,...,s and
t=1, w(i, t) is a permutation of {1,2, ..., k;}. We define ¢ (= (i, 1)): X > X by

FrEOOT (Y i xe Bk, 1, 1),

o(m(i, 1))(x) = if xe ) B(k,).

Notice that
& (7 (i, )(B(k;, r, t)) = B(k;, w(i, 1)(r), 1).

In words, ¢ (m(i, 1)) permutes the isomorphic sets B(k;, r, t) according to the rule
(i, t). It is easily checked that 7> ¢ ()" is a monomorphism.

(2) Suppose that for some f in F(X), the element f is of infinite order. There
are two cases.

Case 1. The set {x: 0(f, x) = o} is countable. As in the proof of part 1, we define
B(k)={x:0(f, x) = k}. The set of k for which B(k) is uncountable must be infinite:
if it were finite {k,,..., k,}, then f would be of order n=Ilem(k,,..., k). Let
k,<k,< --- be the sequence of such k.
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One may now proceed exactly as in the proof of part (1), defining the sets B(k;, r, )
for iz1,1<r=<k;, and t=1. As before (mutatis mutandis), one may construct a
monomorphism of S x S, % - - - into G, as desired.

Case 2. The set V= {x:0(f, x) =} is uncountable.

Case 2a. B(V) contains a rigid set. Let R, be such a rigid set. Define R, =f"(R,)
for n=1,2,.... Then no two of the isomorphic sets R, can intersect in an uncount-
able set: if R, R,, is uncountable for n<m, then put k=m—n and consider
f*(R,nR,)< R, Since R, ~ R,, and f*(R, n R,,) are uncountable isomorphic sets
in B(R,,) and R, is rigid, we must have R, " R,, =f“(R, " R,,) up to a countable
set. Then define h: R, > R, by
ff(x) ifxeR,nR,,

X if xe R,\R,,.

The function h is well-defined up to a countable set and provides a non-trivial
automorphism of the rigid space R,, a contradiction.

Now define T=J R, R,,, where the union is over all n# m. T is countable,
and so the sets U, = R,\T form a sequence of disjoint uncountable sets in B(X).
Now suppose that 7 is a permutation of {1,2,3,...}. Define an automorphism
¢(7): X > X by

h(X)={

f™77"(x) when xe U,,

$(mx)=1, ifxex\ UJ U,
r=1
Note that ¢ (7)(U,) = U,,), so that ¢(7) permutes the U, according to =. It is easy
to see that 7> ¢ ()" is a one-one homomorphism of S, into G.

It remains only to note that whenever k, <k,<--- is a sequence of positive
integers, then S, has a subgroup isomorphic with S§ x S¢ x - - -

Case 2b. B(V) contains no rigid sets. By Lemma 0.6, there are disjoint uncount-
able isomorphic sets A(0) and A(1) in B(V). Applying Lemma 0.6 once more, we
find disjoint uncountable isomorphic sets A(0, 0), A(0, 1), A(1,0), A(1,1) in B(V)
such that

A(0,0)L A(0,1) < A(0), A(1,0)u A(1,1) = AQ1).

Continue in inductive fashion to produce sets A(g,, ..., &) indexed by finite strings
(&1,...,&) of 0’s and 1’s. We choose these sets so that for each string
(€1,..., ), Aley, ..., &,0) and A(e,,..., &, 1) are disjoint uncountable sets in
(V) such that

Aley,...,8,00UA(e, ..., e, 1) S Aley, ..., &).

For each k=1, define &, to be the collection of all A(e,..., &, M1,---» M)
such that e,=¢e,=--+=¢_,=0 and ¢, =1, and %, ' - - n, are arbitrary. Put &/ =
Ao sl,u - - - . Foreach k=1, o, is a collection of 2* isomorphic uncountable sets
in B(V). We index the sets in &/, so that

A ={B(k,r):r=1,...,2%.
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For each k, let g, :|J & = | &, be an isomorphism such that
g (B(k, r))=B(k r+1), r=1,...,2"-1,
gk(B(k,2")) = B(k, 1).

Since B(k, 1) is uncountable, Lemma 0.6 enables us to write

B(k,1)=J B(k,1,1)
=1
as a disjoint union of uncountable sets in B(V). Foreach k=1,t=1,1<r=<2* we
define

B(k,r, t)=gi (B(k, 1, 1)).

We shall now construct a one-one homomorphism of H=S7xSyxSgx---
into G.

Each element of H is a matrix (m(k, t)), where for each k=1 and t=1, w(k, 1)
is a permutation of {1,2,...,2"}. We define ¢(=(k, 1)): X > X by

m(RIWri—r .
g (x) ifxeB(kr1t),
¢ (m(k, z))=Lk .
if xe X\u .

Note that
o(m(k, 1)) (B(k, r, t))=B(k, 7(k, t)(r), 1),

so that, as in earlier parts of the proof, ¢(w(k, t)) permutes the isomorphic sets
B(k, r, t) according as 7 (k, t). Again, the homomorphism 7 - ¢(7)" is one-one. O

1.2. Corollary. Let G be the reduced automorphism group of a separable space. Then
G has cardinality either 1 or c.

The following result shows that an Abelian automorphism group must have a
very special form.

1.3. Proposition. Let X be a separable space with reduced automorphism group G.
The following are equivalent:

(1) G is Abelian.

(2) G is either trivial or isomorphic with S5.

(3) For each ac G, one has a’ = {e}.

Demonstration. Suppose that G is Abelian and non-trivial. Proposition 1.1 implies
that every element of G is of order 2. A well-known structure theorem [4, p. 17]
says that G is a direct sum of copies of S,. If G is non-trivial, Proposition 1.1
implies that G contains a sub-group isomorphic with S% and so has cardinality at
least ¢. By Lemma 0.4, this forces G to have cardinality exactly ¢. It must be that
G is a direct sum of ¢ copies of S,.



34 R.M. Shortt, J. van Mill | Automorphism groups

The same structure theorem quoted above implies that S%, being of cardinality
¢, is also a weak direct sum of ¢ copies of S,. We have proved that G and S35 are
isomorphic.

The next matter to be resolved is whether there is a separable space whose reduced
automorphism group is non-trivially Abelian. The answer is in the affirmative, which
fact will be proved in Proposition 1.4, after the following definitions.

Let Z be a separable space and let H be a group. Let F(Z, H) denote the set of
all functions f: Z - H such that f~'(A) € 3(Z) whenever A< H. Under point-wise
multiplication (in H), the set F(Z, H) becomes a group.

Let K(Z, H)betheset of functions f'e F(Z, H)suchthat{z: f(z) # e} is countable,
where e is the identity element of H. Then K(Z, H) is a normal subgroup of F(Z, H),
and we define G(Z, H)=F(Z H)/K(Z, H).

Note that if Z is an uncountable separable space, then G(Z, S,,) contains S as
a subgroup.

1.4. Proposition. Let X be a direct union of n copies of a rigid space Z. Let G be the
reduced automorphism group of X. Then G is isomorphic with G(Z, S,,).

Demonstration. We write X = Z,u - - - U Z,, where the Z; are disjoint sets in %(X),
each isomorphic with the rigid space Z. Now fix an automorphism f: X - X such
that f(Z,)=Z. fori=1,...,n—1and f(Z,) = Z,. We shall define a homomorphism
from G(Z,, S,) to G.

Given a function h: Z, > §,, we define an automorphism ¢(h): X - X by setting

P (h)(x)=f""""(x)

whenever xe f'(h~'(7)). Note that the sets /"~ '(h '(#)) form a partition of X
for r=1,...,n—1 and 7€ S,. It is not hard to check that h> ¢(h)" =¢"(h) is a
one-one homomorphism.

We now prove that ¢~ maps onto G. Let k: X - X be an automorphism. For
eachi=1,...,nand j=1,...,n, define

AL, j)={xe Z: k(x)e Z}.
Put
B(ji, .- Jn)= AL ) O f (AR ) - A f T A, o)

As ji,...,Jj, range over {1,..., n}, the sets B(j,,...,J,) constitute a partition of
Z, into sets in B(X).

Claim 1. If r<s and j, =j,, then B(j,,...,j.) is countable.

To see the claim, note that if B=B(j,,...,j.), then k(f'(B)) and k(f*'(B))
are isomorphic subsets of Z, =Z,. By Lemma 0.6, k(f"~'(B)) A k(f*'(B)) is
countable. Then B A f*""(B)= Bu f" "(B) is countable, as desired.
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Now define h:Z,~ S, by setting

iy oydn) ifxeB(y,...,Jn)
and B(j,,...,Jj,) uncountable,
h(x)= .
(1,...,n)y ifxeB(j,...,J.)

and B(j,,-..,Jj.) countable.

Claim 1 ensures that h is well-defined.

Claim 2. Except on a countable set, we have ¢ (h) = k: Suppose that B(j,,...,J,)
is uncountable, so that 7w =(j,,...,j,) is a permutation. Then for each fixed
r=1,...,n, we note that f '(B(j,...,j.))<A(rj,), so that k maps
YB3, ---,Ja) into Z;. So also does ¢(h). The rigidity of Z, implies that
d(h)=k on f"(B(j,,...,j.)), except on a countable set. The claim follows.

We have proved that ¢” is an isomorphism onto G. O

Proposition 1.4 shows that the reduced automorphism group of a separable space
can indeed be Abelian. Simply take as the space the direct union of two copies of
a rigid space. In the next section, we obtain a partial converse to this result.

2. Spaces with c.c.c.

Let (X, %) be a separable space. A sub-collection $ = B is a o-ideal if

(1) ¢,

(2) NnBe ¥ whenever Nc$ and Be B,

(3) LU N, € # whenever NN, - -- € 4.

A o-ideal # is continuous if it contains all singleton subsets of X. Say that .# satisfies
the countable chain condition (c.c.c.) if every sub-collection of %B\.$ comprising
pair-wise disjoint sets is necessarily countable (one also says that $ is “w,-satu-
rated”). A separable space (X, ) satisfies c.c.c. if every sub-collection of B compris-
ing pair-wise disjoint uncountable sets is countable.

Let (S, %) be a separable space, and let ¥ € B be a o-ideal with c.c.c. Suppose
X S has the property that X n N is countable whenever Ne %, If X is also
uncountable, we say that X is #-Lusin. Such a space X must have c.c.c. Two
examples of this phenomenon are rather well known (see [2] for a survey):

(1) Let S=[0,1], let B be the Borel o-algebra on S, and let £ be the o-ideal of
Borel sets of Lebesgue measure zero. The #-Lusin sets are called Sierpiriski sets.

(2) Let S and @ be as in 1. Let .# be the o-ideal of first category Borel subsets
of S. The $-Lusin sets are called Lusin sets.

The existence of #-Lusin sets can be demonstrated using the continuum hypothesis
(CH). The reason for introducing them at this juncture is that the structure of such
c.c.c. sets is accessible through the reduced automorphism group. First, we show
that (under CH) rigid c.c.c. sets exist. (Compare Proposition 4 in [1].)
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2.1. Proposition (CH). Let S be an uncountable standard space and let $ be a
continuous o-ideal in B(S) with c.c.c. There is a rigid set X < S which is $-Lusin.

Construction. Let f,f, - - - f, - - - « <w, be a transfinite listing of all automorphisms
of § such that A, ={x: f(x)# x} is a set in B(S)\4. Let NyN,--- N, - a < w,
be a listing of all sets in J.

For each A< § and a <w,, define O,(A) to be the smallest set containing A and
closed under f; and f;' for all 8 < a. It is easily checked that if card(A) < ,, then
card(0,(A)) <w,. We choose points x¢x, - - - X, * - - @ <, inductively so that

Xe €S —0,{xz: B<a}—U{Nz: B=al.

Put X ={x,: @ <w,}. Suppose that g: X - X is an automorphism. Then there is an
automorphism f: 5> S whose restriction to X is g.

Case 1. If {s: f(s) # s} € $, then {x: g(x) # x} is countable.

Case 2. If {s: f(s)# s}e J, then f=f; for some B<w,. Then we claim the
following:

Claim. Whenever 8 <a < w,, then f3(x,) = x,. We know that f(x,) = g(x,) € X.
If fz(x,)=x, for y>a, then the choice of x, is contradicted. If fz(x,)=x, for
¥ <a, then x, = f;'(x,) contradicts the choice of x,,.

Therefore g: X - X moves only countably many points of X. [

What follows is a structure theorem for c.c.c. sets with Abelian automorphism
group.

2.2. Proposition. Let X be an uncountable separable space with reduced automorphism
group G. Consider the following conditions:
(1) X is the direct union of sets Z,, Z,, Z», such that
(a) Zyw Z, and Z,L Z, are rigid;
(b) Z, and Z, are isomorphic.
(2) G is Abelian.
Then (1)=>(2); if X has c.c.c., then (2)=>(1). Additionally, (1) implies that G is trivial
if and only if card(Z,) = card(Z,) is countable.

Demonstration. (1)=>(2)

Case 1. Assume Z, is countable. Then X is isomorphic to the direct union of the
rigid spaces Z, and Z,. Propositions 1.4 and 1.3 imply that G is isomorphic with S5.

Case 2. Assume Z, is uncountable. Then Z, is a rigid space. Let f: X - X be an
automorphism. Since Z,u Z, and Z,u Z, are rigid, f(Z,) ~ Z, and f(Z,) " Z, are
countable. So, up to a countable set, f(Z;) = Z,, forcing f to be the identity map
when restricted to Z,. It is then clear that G is isomorphic with the reduced
automorphism group of Z, U Z,. Again, if Z, and Z, are uncountable, Propositions
1.3 and 1.4 apply.
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(2)=(1) (Assuming X c.c.c.): Consider the collection ? of all pairs (A, B), where
A and B are disjoint uncountable isomorphic sets in B(X). We introduce a partial
order on 2 by setting (A, B) <(A’, B) in case

A'=AuUA” and B'=BuB’,
where

AnA"=¢ and BnB'=(
and

(A", B"Ye P.

If G is non-trivial and Abelian, then by Proposition 1.3 it is isomorphic with S%.
Since X is not rigid, # is non-empty.

Claim. % has amaximal element. To see this, construct a transfinite series (A,, B,)
of elements of ? indexed by a <, such that

(A, B,)<(A,:1, Boyry) alla<w,,

A, =U{Aﬁ: B<a}

B,=\U{Bs: B<a}
Because X has c.c.c., this induction cannot be continued through all @ < ,. It will
terminate in a maximal element (Z,, Z,).

Define Z, = X\(Z,u Z,). We must prove that Z,u Z, is rigid. Symmetry will then
imply that Z,u Z, is rigid. So suppose that U and V are disjoint uncountable
isomorphic sets in B(Z,u Z;). Let f: U— V supply the isomorphism. Also, let
g:Z - Z, be an isomorphism.

Claim. Theset U n Z, is countable. If not,then U Z,, f(U~ Z,),and g(U ~ Z))
are three disjoint uncountable sets in %B(X). By cyclically permuting these, one
obtains an element of G of order 3. Proposition 1.1 implies that G is not Abelian.
This is a contradiction.

A similar argument shows that V~ Z, is countable. So Un Z, and V n Z, are

disjoint uncountable isomorphic elements of B(Z,). This, however, contradicts the
maximality of (Z,, Z,) in . So Z,u Z, is rigid. [

} « a limit ordinal.

We now proceed to show that the requirement that X be c.c.c. cannot simply be
removed from the implication (2)=>(1) in Proposition 2.2. A little machinery is
needed.

Let X be a separable space. Say that X satisfies condition A if

(A) X is the direct union of sets Z,Z,Z, such that

(1) Z,u Z, and Z,u Z, are rigid;

(2) Z, and Z, are isomorphic and uncountable.
If G is the reduced automorphism group of a separable space X, then there is a
partial order < on G defined by declaring f< g when

{x: f(x)# x and g(x) = x} is countable
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and

{x: g(x)# x and f(x) = x} is uncountable.

2.3. Lemma. Let X be a separable space satisfying condition A. Then there is an
element of the reduced automorphism group G which is largest for the partial order <.

Proof. We return to the proof of Proposition 1.4. Let f: Z, - Z, be an isomorphism
and consider once more the group isomorphism ¢*: G(Z,, S,) > G. We write S, =

{0, 1}.
Claim. For h;, h,e G(Z,, S,), one has ¢(h,)" <¢(h,)" if and only if

{x: hy(x)=1 and h,(x) =0} is countable
and
{x: h(x) =0 and h,(x) =1} is uncountable.

Verification of the claim is routine. It then follows that ¢(h)” is the largest element
in G, where h(x)=1forall xeZ,. I

24. Lemma. Let S be an uncountable standard space. There is a function f:S-> S
such that

(1) fis a one-one correspondence of S onto itself such that f=f"",

(2) If E€ B(S) and g: E > S is a one-one measurable function, then {sc S: f(s) =
g(s)} is of cardinality less than c.

Proof. We may take S =[0, 1) U[1, 2) under its usual Borel structure. List the points
of [0, 1} without repetitions as xoX, - - - X, - - - @ <¢, where x,=0. List all one-one
measurable functions g: E - (0, 1), where E is an uncountable set in [0, 1), as
8081 " g, - a<c and define, for each a <c¢, N, =|_J{graph(gs): B<a}. We
define points y, and z, for a <c. Put y,=z,=0. The process is inductive: suppose
that 0 < a <¢ and that

Y.={ys: B<alui{xzg: B=<a}, Z,={z,: B<alu{xz: B<al.
If possible, choose y, so that
(Xa, Ya) & No U(Z, %[0, 1)) U ([0, 1) X Y,,).

If the choice is not possible, it must be that x, = z; for some 8 <a. In this case,
put y, =0. Likewise, if possible, choose z, so that

(Zar X ) € Ny U ((Z, 0 {x, 1) %[0, 1)) U ([0, 1) x (Y, w{ye})-

If the choice is not possible, it must be that x, = y; for some 8 =< a. In this case,
put z, =0. Then define

G ={(Xes Vo) (Zar X2 ): Ya #0, 2, 70, @ < c} U {(0, 0)}.
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Then it is easily verified that G is the graph of a one-one correspondence f,:[0, 1) >
[0, 1). Define f: S-S by

fols)+1, 0=ss<1,

f(s):{fol(s—l), 1=s<2.

The function f has the desired properties. [

2.5. Lemma. Let S be an uncountable standard space and suppose that A€ B(S x S).
Let p:Sx S~ S be projection to the first factor. If p(A) is uncountable, then there is
an uncountable E € B(S) with E < p(A) and a measurable function k: E > S such
that graph (k) c A.

Indication. This follows from the Jankov-von Neumann selection theorem. See
[6, p.871].

2.6. Proposition. There is a separable space X with reduced automorphism group G
such that

(1) G is Abelian, but non-trivial,

(2) X does not satisfy condition A.

Demonstration. Let S be an uncountable standard space and let f:S— S be as in
Lemma 2.4. Define F:SXS->SxS by F(s,t)=(f(s),1). Let gog, " 8" @<t
be a listing in transfinite series of all automorphisms of S x S. Given A< Sx S and
a < ¢, define 0,(A) to be the smallest set containing A and closed under the functions
8s.85' and F=F' for all B=a. If card(A)<c, then card 0,(A)<c. Let
ByB,--- B, -+ a<c be a listing of all uncountable sets in B(S x S). We choose
points XeX; * * - X, - - a < ¢ inductively so that

x,€B,— 0. {x3: B<a}.

Put X ={x,: a <c}U{F(x,): a <c}.
Claim 1. If B < a <¢, then gz({x,, F(x,)}) € {x., F(x.,)}u ((Sx S\ X). Verifica-
tion of the claim is routine, given the selection of x, and the definition of 0.
The reduced automorphism group G of X is non-trivial. To see this, note that
for any countable set C < S the function h. : X » X defined by

F(s,t), seCuf(C),

he (s, ) :{(s, 0, seCuf(C),

is an automorphism of X. Since X intersects every uncountable set in B(Sx §),
the map h. moves uncountably many points of X.

The group G is, however, Abelian. For every automorphism of X extends to an
automorphism of Sx S (Lemma 0.3). This automorphism has been listed as some
gs- From Claim 1, it follows that {x e X: O(gg, x) > 2} is of cardinality less than c.
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Since X meets every uncountable set in B(S x S) in ¢ many points, it follows that
{se€ S:0O(gs, S)>2} is countable. Therefore, gé(s) =s for all but countably many
5. So G is Abelian.

We now show that X does not satisfy condition A. Suppose it did. By Lemma
2.3, there is some element § of G which is iargest for the partial order <. This
automorphism g extends to some automorphism gz of SxS. Certainly T=
{s € S: 0O(gs, s) =2} is an uncountable set in B(S x S).

Claim 2. Except for a set of points of cardinality less thanc,g;=F on TnX.

Claim 2 follows from Claim 1. Note that card(Tn X) =c.

Now apply Lemma 0.5 to find a set Be #B(Sx.S) which contains exactly one
point from each orbit of gz. Let p: SX S S be projection to the first factor.

Claim 3. The set p(B~ T) is uncountable.

This follows from the maximality of gz. Otherwise, gz will move points in only
countably many vertical sections of Sx S. This contradicts the existence of the
4ut01‘1‘101p[11 sms he mentioned above.

Apply Lemma 2.5 to find an uncountable set E € B(S) with Ec p(BnT) and a
measurable function k: E - S such that graph (k)< B~ T. Consider the mapping
I: E - S defined by I(s) = p(gs(s, k(s))).

Claim 4. The Borel set gz(graph(k)) has countable vertical sections.

oﬁppOSe not, and let s0€ S be such that u—{(.‘i z) .)—_)Ojr \SB\élap k)
uncountable. The X ngz' (D)< X n B T has cardinality ¢. Now p(gs(a, b))
for all (a, b)€ gz'(D). But by Claim 2, gz =F on ¢ many points of X ngg' (D)
Noting that p ¢ F is one-one on graph(k) provides a contradiction.

Apply the selection theorem I111.9.4 (p. 137) of [3] to ﬁnd an uncountable He
B(SxS) with H< gs(gr

B(Sx8) with Hc gglg € ion of H is either
empty or singleton. Then p o g; is one-one on g,'(H Deﬁn E,=p(gs'(H)), an
uncountable set in B(S). Define [, to be the restriction of ! to E,. Then I, is a
one-one measurable function.

@

i

|| N’

Using claim 2, we find a set Z< X ngz'(H)< X n T of cardinality ¢ such that
gs = F on Z Then card (p(Z)) =c and I, =f on p(Z). This contradicts the construc-

tion of f given in Lemma 2.4. [

3. A strictly rigid measurable space

In this section, we consider measurable spaces (X, 9B) which are not separable.
As before, an automorphism of (X, B) is a one-one correspondence f: X - X such
that f(B)e & if and only if B %. Say that (X, B) is strictly rigid if the only
automorphism f: X — X is the identity map. We prove the existence of a strictly
rigid measurable space, thus solving Problem P3 (p.21) of [1].

A completely regular topological space X is a P-space if every Gs subset of X

is open. If X is a P-space, and @ is the collection of clopen subsets of X, then 3
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3.1. Lemma. Let X be a P-space and let B be the o-algebra of clopen subsets of X.
Every automorphism of (X, B) is a (topological) homeomorphism of X onto itself.

Proof. Immediate, noting that & is a base for X. [
The rest of this section is devoted to a proof of the following:
3.2. Proposition. There is a non-trivial strictly rigid measurable space (X, B).

Demonstration. We construct an infinite 0-dimensional P-space X which is topologi-
cally rigid, i.e. the only homeomorphism of X onto itself is the identity map. If @
is the clopen o-algebra of X, then Lemma 3.1 implies that (X, &) is strictly rigid.

Let X,={0}. Suppose that X, has been constructed for some n < w. For each
x € X, there clearly exists a set B(x, n) such that

(1) B(x,n)n X, =0,

(2) if x, ye X,, are distinct, then B(x, n) ~ B(y, n) =0;

(3) card(B(x, n)) is regular and has uncountable cofinality;

(4) card(B(x, n))>card(X,);

(5) if x, y € X,, are distinct, then card(B(x, n)) # card(B(y, n)).
Define X,,.,=\}{B(x, n): xe X,}. Also put X ={J{X,: n<w}. For every x€ X,
there is a unique n(x) < w with x ¢ X, ,,. For every x € X and n < w, define T(x, n) <
X by

T(x, 0) ={x}, T(x,n+1)=U{B(y, n(x)+n): ye T(x, n)}.
Also, put T(x)=\HT(x, n): n<w}.

3.3. Lemma. If x,ye X and T(x)n T(y)#0, then either T(x)< T(y) or T(y)<
T(x).

Proof. If n(x)=n(y) and x#y, then clearly T(x)n T(y)=0. So suppose
n(x)<n(y). If ygT(x,n(y)—n(x)), then clearly T(x)nT(y)=@. So ye
T(x, n(y)—n(x)), from which it follows that T(y)< T(x). O

For every x€ X,, and F < B(x, n) such that card(F) < card(B(x, n)), put
U(x, F)={x}u\U{T(»): ye B(x, n)\F}.
Let U be the set of all such U(x, F).

3.4. Lemma. For all Uy, U, U and xe Uy~ U,, there exists F < B(x, n(x)) such
that card(F) <card(B(x, n(x))) and U(x, F)< Uyn U,.

Proof. Let U, = U(p,, F;), with appropriate p; and F,, i =0, 1. Since T( p,) n T( p,) #
), we may assume T(p,) < T(p,) by Lemma 3.3.

Case 1. po=p,.If x=p,=p,, then put F=F,U F,. If x # p,, put F=4.

Case 2. po#p,. Then U,< T(p,)< U(p,, F,). Consequently xe U,. If x=p,,
then put F=F,. If x# p,, then put F=¢. O
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Lemma 3.4 implies that % is the base for a topology on X. We supply X with
this topology.

3.5. Lemma. ForeveryU e U andp ¢ U, thereissome Ve Uwithpe Vand U~V =0.

Proof. Let U = U(p, F) with appropriate p and F.
Case 1. pe T(p). Then T(p)~ U =0. So without loss of generality p & T(p).
Case 2. pe T(p). There is some g€ B(p, n(p)) such that pe T(q). Put F={q}
and let V= U(p, F). So without loss of generality p& T(p).
By Lemma 3.3, we now have T(p)n T(p)=0. So put V=T(p). O

3.6. Lemma. For all distinct x, y € X, there exists some U e U with xe U and y & U.

Proof. If y# T(x), then we are done. If y € T(x), then there exists g € B(x, n(x))
with y e T(gq). Put F= B(x, n(x))\{gq} and let U=U(x, F). O

From Lemmas 3.5 and 3.6 we conclude that the topology on X is Hausdorff and
that elements of % are clopen; hence, the topology is 0-dimensional and completely
regular. By construction and Lemma 3.4, X is a P-space. Since the least cardinality
of alocal base at x ¢ X (the character at x) equals card ( B(x, n)), and the cardinalities
of the sets B(x, n) are pairwise distinct for distinct x, y € X, it follows that the
character at x and at y are distinct. Hence X is topologically rigid. [

The referee has suggested an alternate proof: Construct X as a tree of height w
in which every element has a different uncountable, regular cardinal number of
successors. Take & as the o-algebra generated by the sets {y: y = x}. Then show
that for any x, the number of successors of x equals its pseudo-character (the
smallest number of measurable sets with intersection {x}).
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