AN INFINITE-DIMENSIONAL HOMOGENEOUS INDECOMPOSABLE CONTINUUM

JAN VAN MILL

Abstract. We prove that every homogeneous continuum is an open retract of a non-metric homogeneous indecomposable continuum.

0. Introduction. A continuum X is *indecomposable* if it cannot be written as the union of two proper subcontinua. Examples of 1-dimensional *homogeneous* indecomposable continua are the pseudo-arc and the solenoids. J. T. Rogers asked whether there is an example of a homogeneous indecomposable *metric* continuum of dimension greater than 1 (see [1]). The aim of this note is to show that every homogeneous continuum is an open retract of a *non-metric* homogeneous indecomposable continuum. Consequently, we leave Rogers' question unanswered but prove that the condition on metrizability in his question is essential.

1. The spaces dX. Throughout, X denotes a compact Hausdorff space. In this section we shall associate to X a certain compactum dX that will be the first step in an inverse limit construction later.

For every function $f \in \{0,1\}^X$ and $x \in X$, let $f_x : X \to \{0,1\}$ be the function defined by

$$f_x(y) = f(y), \text{ for } y \neq x,$$

and

$$f_x(x) = 0$$
 iff $f(x) = 1$.

Notice that $(f_x)_x = f$ for every $f \in \{0,1\}^X$. Now consider $Y = X \times \{0,1\}^X$ and put $\mathcal{G} = \{\{\langle x, f \rangle, \langle x, f_x \rangle\} : x \in X\}$. We shall prove that \mathcal{G} is an upper semicontinuous decomposition of Y.

1.1. LEMMA. \mathcal{G} is a decomposition of Y. In addition, if U and N are disjoint subsets of X and if $f \in \{0,1\}^N$, then $U \times \{g \in \{0,1\}^X : g \mid N = f\}$ is \mathcal{G} -saturated.

PROOF: Let $\{\langle x, f \rangle, \langle x, f_x \rangle\}$ and $\{\langle y, g \rangle, \langle y, g_y \rangle\}$ be elements of \mathcal{G} that intersect. Clearly, x = y. If there exists $p \in X \setminus \{x\}$ such that $f(p) \neq g(p)$, then $\{\langle x, f \rangle, \langle x, f_x \rangle\} \cap \{\langle y, g \rangle, \langle y, g_y \rangle\} = \emptyset$, which is not the case. Consequently, $f \mid X \setminus \{x\} = g \mid X \setminus \{x\}$, which easily implies that $\{\langle x, f \rangle, \langle x, f_x \rangle\} = \{\langle y, g \rangle, \langle y, g_y \rangle\}$.

Now let $U, N \subseteq X$ be disjoint and $f \in \{0, 1\}^N$. Take a point $\langle x, g \rangle \in V = U \times \{g \in \{0, 1\}^X : g \mid N = f\}$ arbitrarily. Since $x \in U, x \notin N$, so that $g_x \mid N = g \mid N = f$; it easily follows that $\langle x, g_x \rangle \in V$.

1.2. LEMMA. G is upper semicontinuous.

PROOF: Let $A \subseteq Y$ be closed. We claim that $\mathcal{G}(A) = \bigcup \{G \in \mathcal{G} : G \cap A \neq \emptyset\}$ is a closed subset of Y. To this end, take $\langle x, f \rangle \notin \mathcal{G}(A)$. Observe that this implies that $\{\langle x, f \rangle, \langle x, f_x \rangle\} \cap A = \emptyset$. Since $\langle x, f \rangle \notin A$ and A is closed, there is a neighborhood of U_0 of x and a finite subset N_0 of X such that

(1)
$$\langle x, f \rangle \in U_0 \times \{ g \in \{0, 1\}^X : f \mid N_0 = g \mid N_0 \},$$

(2)
$$(U_0 \times \{g \in \{0,1\}^X : f \mid N_0 = g \mid N_0\}) \cap A = \emptyset.$$

Similarly, since $\langle x, f_x \rangle \notin A$, there is a neighborhood U_1 of x and a finite subset N_1 of X such that

(3)
$$\langle x, f_x \rangle \in U_1 \times \{g \in \{0, 1\}^X : f_x \mid N_1 = g \mid N_1\},$$

(4)
$$(U_1 \times \{g \in \{0,1\}^X : f_x \mid N_1 = g \mid N_1\}) \cap A = \emptyset.$$

Put $N = (N_0 \cup N_1) \setminus \{x\}$ and $U = (U_0 \cap U_1) \setminus N$. Observe that U is a neighborhood of x. Finally, put $E = U \times \{g \in \{0,1\}^X : f \mid N = g \mid N\}$. By Lemma 1.1, E is \mathcal{G} -saturated.

Claim: $E \cap A = \emptyset$. Let $\langle y, g \rangle \in (U \times \{g \in \{0, 1\}^X : f \mid N = g \mid N\})$. Since $g(x) \in \{f(x), f_x(x)\}$, there are two cases:

Case 1: g(x) = f(x). Then $g \mid N_0 = f \mid N_0$ which implies that $\langle y, g \rangle \notin A$ by (2).

Case 2: $g(x) = f_x(x)$. Since $g \mid N_1 \setminus \{x\} = f \mid N_1 \setminus \{x\} = f_x \mid N_1 \setminus \{x\}$, we obtain $g \mid N_1 = f_x \mid N_1$ which implies $\langle y, g \rangle \notin A$ by (4).

In view of Lemma 1.2, $dX = Y/\mathcal{G}$ is a compact Hausdorff space; let $\rho: Y \to dX$ be the decomposition map.

Let $\sigma = \{f \in \{0,1\}^X : f(x) = 0 \text{ for all but infinitely many } x \in X\}.$ It is well-known, and easy to prove, that σ is dense in $\{0,1\}^X$. For $f \in \sigma$, let $\lambda(f) = |\{x \in X : f(x) \neq 0\}|.$

1.3. LEMMA. If X is a continuum, then so is dX.

PROOF: We shall prove that $\rho(X \times \sigma)$ is contained in a connected subset of dX. This clearly implies that dX is connected. Let $O: X \to \{0, 1\}$ be the function with constant values 0 and let $x_0 \in X$. Let $n \ge 0$ and consider the following statement:

S(n): for all $y \in X$ and $f \in \sigma$ with $\lambda(f) \leq n$, there exists a subcontinuum of dX containing $\rho(\langle x_0, O \rangle)$ and $\rho(\langle y, f \rangle)$.

We shall prove S(n) by induction on n. If n = 0, then there is nothing to prove since O is the only function f in σ with $\lambda(f) = 0$ and $\rho(X \times \{O\})$ is connected. Therefore, assume that S(n-1) is true, $n \ge 1$. We shall prove S(n). Indeed, take $y \in X$ and $f \in \sigma$ such that $\lambda(f) = n$. Since $n \ge 1$, there exists $z \in X$ with f(z) = 1. Define $g: X \to \{0, 1\}$ by

$$g(p) = f(p)$$
 for $p \neq z$, and $g(z) = 0$.

By our inductive assumption, there exists a subcontinuum of dX containing the points $\rho(\langle O, x_0 \rangle)$ and $\rho(\langle y, g \rangle)$. It therefore suffices to construct a subcontinuum of dX containing the points $\rho(\langle y, g \rangle)$ and $\rho(\langle y, f \rangle)$; we claim that $L = \rho(X \times \{f, g\})$ is the desired continuum. Clearly, Lcontains $\rho(\langle y, g \rangle)$ and $\rho(\langle y, f \rangle)$. Observe that $g = f_z$. Consequently, $\rho(\langle z, g \rangle) = \rho(\langle z, f \rangle)$. We conclude that $\rho(X \times \{f, g\})$ is connected, as required.

Let $\pi : Y \to X$ be the projection. It is clear that, for every $p \in dX$, $\pi(\rho^{-1}(p))$ consists of precisely one point, which we shall denote by $\kappa(p)$. Consequently, the diagram below commutes. We conclude that κ is continuous. It is easy to see that κ in fact is an open retraction.

1.4. PROPOSITION. If X is a continuum and K is a subcontinuum of dX such that $\kappa(K) \neq X$, then K has empty interior in dX.

PROOF: Put $L = \rho^{-1}(K)$. Since $\pi(L) = \kappa(K) \neq X$, by compactness of $\pi(L)$ and by connectivity of $X, X \setminus \pi(L)$ is infinite (in fact, even uncountable). Fix $x \in X \setminus \pi(L)$ arbitrarily. Define

$$V_0 = \{ \langle y, f \rangle \in Y : y \in X \setminus \{x\} \text{ and } f(x) = 0 \},\$$

$$V_1 = \{ \langle y, f \rangle \in Y : y \in X \setminus \{x\} \text{ and } f(x) = 1 \}.$$

By Lemma 1.1, V_0 and V_1 are disjoint \mathcal{G} -saturated open subsets of Y. Consequently, $\rho(V_0)$ and $\rho(V_1)$ are disjoint open subsets of dX covering K. By connectivity of K, it therefore follows that, without loss of generality, $L \subseteq V_0$, i.e., L projects onto precisely one point in the x^{th} coordinate direction of $\{0,1\}^X$. Since $X \setminus \pi(L)$ is infinite, we conclude that, in infinitely many coordinate directions of $\{0,1\}^X$, L projects onto precisely one point. By definition of the product topology on $\{0,1\}^X$, this implies that L projects onto a nowhere dense closed subset of $\{0,1\}^X$. We conclude that L is nowhere dense itself, and therefore that K has empty interior in dX.

We finish this section with a few easy observations on homeomorphisms of dX. For every space Y, let $\mathcal{H}(Y)$ denote the autohomeomorphism group of Y. Observe that each $\xi \in \mathcal{H}(X)$ is a permutation of X, and therefore induces a homeomorphism $\sigma(\xi)$ of $\{0,1\}^X$ as follows:

 $\sigma(\xi)(f)(p) = f(\xi(p)).$

We say that an element $h \in \mathcal{H}(Y)$ respects \mathcal{G} if, for every $H \in \mathcal{G}$, $h(H) \in \mathcal{G}$. Observe that if $h \in \mathcal{H}(Y)$ respects \mathcal{G} , then there is a homeomorphism $f \in \mathcal{H}(dX)$ such that $\rho \circ f = h \circ \rho$. Let id denote the identity homeomorphism on X. If, for every $x \in X$, $h_x : \{0,1\} \to \{0,1\}$ is a homeomorphism, then $\prod_{x \in X} h_x$ is a homeomorphism of $\{0,1\}^X$. Let $\prod(\{0,1\}^X)$ be the set of all these homeomorphisms. Observe that, for all $f, g \in \{0,1\}^X$, there exists an element $h \in \prod(\{0,1\}^X)$ with h(f) = g.

1.5. PROPOSITION. For all $\xi \in \mathcal{H}(X)$ and $h \in \Pi(\{0,1\}^X)$ the homeomorphisms $\xi^{-1} \times \sigma(\xi)$ and $\operatorname{id} \times h$ of Y both respect \mathcal{G} .

PROOF: Take $\{\langle x, f \rangle, \langle x, f_x \rangle\} \in \mathcal{G}$ arbitrarily. Let $q = \xi^{-1}(x)$. Then, for $p \neq q$, we have

$$\sigma(\xi)(f)(p) = f(\xi(p)) = f_x(\xi(p)) = \sigma(\xi)(f_x)(p).$$

In addition,

$$\sigma(\xi)(f)(q) = f(\xi(q)) = f(x)$$
, and $\sigma(\xi)(f_x)(q) = f_x(\xi(q)) = f_x(x)$.

We conclude that $\sigma(\xi)(f)_q = \sigma(\xi)(f_x)$. Consequently,

 $(\xi^{-1} \times \sigma(\xi)) \left(\{ \langle x, f \rangle, \langle x, f_x \rangle \} \right) = \{ \langle q, \sigma(\xi)(f) \rangle, \langle q, \sigma(\xi)(f)_q \rangle \},\$

as required.

Now again, take $\{\langle x, f \rangle, \langle x, f_x \rangle\} \in \mathcal{G}$ arbitrarily. Since h is a product homeomorphism, it is easy to see that $h(f)_x = h(f_x)$. From this we find that

$$(\mathrm{id} \times h) \left(\left\{ \langle x, f \rangle, \langle x, f_x \rangle \right\} \right) = \left\{ \langle x, h(f) \rangle, \langle x, h(f)_x \rangle \right\},\$$

as required.

This leads us to the following result.

1.6. THEOREM. If $p, q \in dX$ and if $\xi \in \mathcal{H}(X)$ is a homeomorphism with $\xi(\kappa(p)) = \kappa(q)$, then there exists a homeomorphism $h \in \mathcal{H}(dX)$ such that h(p) = q while, moreover, $\kappa \circ h = \xi \circ \kappa$.

PROOF: There exist points $\langle x, f \rangle$ and $\langle y, g \rangle$ in Y such that $\rho(\langle x, f \rangle) = p$ and $\rho(\langle y, g \rangle) = q$. Observe that $\kappa(p) = x$ and $\kappa(q) = y$. Consider the homeomorphism $\sigma(\xi^{-1})$ of $\{0, 1\}^X$. There exists a homeomorphism $\eta \in \Pi(\{0, 1\}^X)$ such that $\eta(\sigma(\xi^{-1})(f)) = g$. By Proposition 1.5, the homeomorphism $(id \times \eta) \circ (\xi \times \sigma(\xi^{-1}))$ of Y is \mathcal{G} -preserving. Now

(5)
$$(\operatorname{id} \times \eta) \circ (\xi \times \sigma(\xi^{-1}))(\langle x, f \rangle) = (\operatorname{id} \times \eta)(\langle \xi(x), \sigma(\xi^{-1})(f) \rangle)$$

= $\langle \xi(x), \eta(\sigma(\xi^{-1})(f)) \rangle = \langle y, g \rangle$.

There exists a homeomorphism $h \in \mathcal{H}(dX)$ such that

(6)
$$h \circ \rho = \rho \circ ((\operatorname{id} \times \eta) \circ (\xi \times \sigma(\xi^{-1}))).$$

Now (5) and (6) easily imply that h(p) = q. Finally, for every $\langle z, k \rangle \in Y$,

(7) $(\pi \circ (\operatorname{id} \times \eta) \circ (\xi \times \sigma(\xi^{-1}))) (\langle z, k \rangle) = \pi (\langle \xi(z), ? \rangle) = \xi(z).$

From (6) and (7) we therefore conclude that $\kappa \circ h = \xi \circ \kappa$, i.e., h is as required.

JAN van MILL

2. The construction. We shall now prove that any homogeneous continuum X is an open retract of an indecomposable homogeneous continuum $d^{(\infty)}X$ of the same dimension.

To this end, let X be a homogeneous continuum. For $n \ge 0$, define $d^{(0)}X = X$, and $d^{(n+1)}X = d(d^{(n)}X)$. Also, for $n \ge 0$, let $\kappa_n : d^{(n+1)}X \to d^{(n)}X$ be the canonical function defined in Section 1. Now form the following inverse sequence

 $d^{(0)}X \xleftarrow{\kappa_0} d^{(1)}X \xleftarrow{\kappa_1} d^{(2)}X \leftarrow \cdots \leftarrow d^{(n)}X \xleftarrow{\kappa_n} d^{(n+1)}X \leftarrow \cdots.$

Let $d^{(\infty)}X$ be the inverse limit of this sequence, and, for every $n \ge 0$, let $\mu_n : d^{(\infty)}X \to d^{(n)}X$ be the standard projection. Since each κ_n is an open retraction, it follows easily that X is an open retract of $d^{(\infty)}X$. Also, it is a triviality to verify that, for every compact space X, we have dim $dX = \dim X$. From this it easily follows that dim $X = \dim d^{(\infty)}X$. The details of checking this are left to the reader.

We shall now prove that $d^{(\infty)}X$ is a homogeneous indecomposable continuum.

2.1. PROPOSITION. $d^{(\infty)}X$ is indecomposable.

PROOF: Let K be a proper subcontinuum of $d^{(\infty)}X$. Since K is proper, there exists $n \ge 0$ such that $\mu_n(K)$ is a proper subcontinuum of $d^{(n)}X$. By Proposition 1.4, it therefore follows that $\mu_{n+1}(K)$ is a nowhere dense subcontinuum of $d^{(n+1)}X$. Repeating the same observation, it follows that $\mu_m(K)$ is a nowhere dense subcontinuum of $d^{(m)}X$ for every $m \ge n+1$. We conclude that K is nowhere dense in $d^{(\infty)}X$.

2.2. PROPOSITION. $d^{(\infty)}X$ is homogeneous.

PROOF: Let x and y be points in $d^{(\infty)}X$. By the homogeneity of X, there exists a homeomorphism h of X such that $h(x_0) = y_0$. By Theorem 1.6, there exists a homeomorphism h_1 of $d^{(1)}X$ such that $h_1(x_1) = y_1$ while, moreover, $\kappa_1 \circ h_1 = h \circ \kappa_0$. By a repeated application of Theorem 1.6, it is easy to construct a sequence $h_n \in \mathcal{H}(d^{(n)}X)$, $n \ge 0$, such that $h_0 = h$, while, moreover, for $n \ge 1$, we have

(I)
$$\kappa_n \circ h_n = h_{n-1} \circ \kappa_{n-1},$$

(II) $h_n(x_n) = y_n.$

Consequently, the sequence $(h_n)_n$ induces a homeomorphism $h: d^{(\infty)}X \to d^{(\infty)}X$ such that h(x) = y.

We have completed the proof of the following

2.3. THEOREM. Every homogeneous continuum is an open retract of an indecomposable homogeneous continuum of the same dimension.

References

1. J. T. Rogers, Orbits of higher-dimensional indecomposable continua, Proc. Amer. Math. Soc. 95 (1985), 483-486.

Vrije Universiteit Amsterdam, The Netherlands

and

Universiteit van Amsterdam Amsterdam, The Netherlands

Received December 23, 1986

JAN van MILL