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AN INFINITE-DIMENSIONAL HOMOGENEOUS 
INDECOMPOSABLE CONTINUUM 

JAN VAN MILL 

Abstract. We prove that every homogeneous continuum is an open retract 
of a non-metric homogeneous indecomposable continuum. 

0. Introduction. A continuum X is indecomposable if it cannot be writ- 
ten as the union of two proper subcontinua. Examples of 1-dimensional ho- 
mogeneous indecomposable continua are the pseudo-arc and the solenoids. 
J. T. Rogers asked whether there is an example of a homogeneous inde- 
composable metric continuum of dimension greater than I (see [1]). The 
aim of this note is to show that every homogeneous continuum is an open 
retract of a non-metric homogeneous indecomposable continuum. Conse- 
quently, we leave Rogers' question unanswered but prove that the condition 
on metrizability in his question is essential. 

1. The spaces dX. Throughout, X denotes a compact Hausdorff space. 
In this section we shall associate to X a certain compactum dX that will 
be the first step in an inverse limit construction later. 

For every function f • {0,1} X and x • X, let Ix: X -• {0,1} be the 
function defined by 

fx(Y) = f(Y), fory•x, 

and 

Ix(x)=O ifff(x)=l. 

Notice that (fx)x = f forevery f • {0,1} x. Now consider Y = Xx {0,1} x 
and put • = {{{x,f),{x, fx)}:x • X}. We shall prove that • is an upper 
semicontinuous decomposition of ¾. 
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1.1. LEMMA. G is a decomposition of Y. In addition, if U and N are 
disjoint subsets oœX and iœf ß {0,1} N, then U x {g ß {0,1} X 'gl N = f} 
is G-saturated. 

PROOF: Let { (x, f), (x, fx) } and { (y, g), (y, gv)} be elements of G that in- 
tersect. Clearly, x = y. If there exists p ß X\{x} such that f(p) 7• g(p), 
then {(x,f), (x,f•)} • {(y,g), (y,gy)} = •, which is not the case. Conse- 
quently, f [ X•{x} = g [ X•{x}, which easily implies that 
{(x,f),(x,L)}= {(y,•), (y,•)}. 

Now let U,N G X be disjoint •nd f e {0,1} N. Take a point (x,g) e 
V=Ux{ge{0,1} x'g N= f} arbitrarily. SincexeU, x•N, soth•t 
g• [ N =g[N = f; it e•ily follows that (x,g•) e V. I 
1.2. LEMMA. • is upper semicontinuous. 

PROOF' Let A G Y be closed. We claim that •(A) = U{C e • ' C•A / •} 
is a closed subset of Y. To this end, take (x, f) • •(A). Observe that this 
implies that {(x,f), (x,f•)} • A = •. Since (x,f) • A and A is closed, 
there is a neighborhood of U0 of x and a finite subset N0 of X such that 

(x,f) ß Uo x (g ß (0,1} x' f l2Vo = g 2Vo}, 
(Uo x (g ß (O,1}X' f l No=g l No})91A=O. 

Similarly, since (x, fx> • A, there is a neighborhood U1 of x and a 
finite subset N• of X such that 

(3) 

(4) 

<x,f•) ß U1 x (g ß (0,1} X' f• IN1 = gini}, 
(U1 x (g ß (0,1}x' f• IN1-gIN1})91A=O. 

Put N = (No U N1)•{x } and U = (Uo 91U1)•N. Observe that U is a 
neighborhood of x. Finally, put E = U x {g ß {0, 1} x: f l N = giN}. 
By Lemma 1.1, E is G-saturated. 

Claim: E91A=O. Let (y,g) ß(Ux{gß{0,1}x:f[N=glN}). 
Since g(x) ß {f(x),f•(x)}, there are two cases: 

Case 1: g(x) = f(x). Then g I No = f I No which implies that 
(y,g) • A by (2). 

Case 2: g(x) = fx(x). Since g I N•{x} - f I = f• I 
we o•in - which implies (y,g) ½ A by (4). 
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In view of Lemma 1.2, dX = ¾/• is a compact Hausdorff space; let 
p: ¾ -• dX be the decomposition map. 

Let • = {f • {0,1) X : f(x) = 0 for all but infinitely many x 
It is well-known, and easy to prove, that c, is dense in {0, l) x. For f 
let •(f) = [{x E X: f(x) • 
1.3. LEMMA. //X is a continuum, then so is dX. 

PROOF: We shall prove that p(X x a) is contained in a connected subset 
of dX. This clearly implies that dX is connected. Let O ß X -• {0, 1} be 
the function with constant values 0 and let x0 E X. Let n _• 0 and consider 
the following statement' 

S(n)' for ally•X andf•crwithA(f)_<n, there exists a 
subcontinuum of dX containing p((xo, O>) and p((y, 1>). 

We shall prove S(n) by induction on n. If n = 0, then there is nothing 
to prove since ̧ is the only function f in a with •(f) = 0 and p(X x {¸)) is 
connected. Therefore, assume that $(n - 1) is true, n _• 1. We shall prove 
$(n). Indeed, take y • X and f • a such that •(f) = n. Since n _• 1, there 
exists z • X with f(z) = 1. Define g' X -• {0, 1) by 

g(p) = f(p) for p • z, and g(z) = O. 

By our inductive assumption, there exists a subcontinuum of dX con- 
taining the points p((¸,Xo)) and p((y,g)). It therefore suffices to con- 
struct a subcontinuum of dX containing the points p((y, g)) and p((y, f)); 
we claim that L - p(X x {f,g)) is the desired continuum. Clearly, L 
contains p((y,g)) and p((y, f)). Observe that g = fz. Consequently, 
p((z,g)) = p((z,f)). We conclude that p(X x {f,g))is connected, as 
required. 

Let 
dX, 7r(p-•(p)) consists of precisely one point, which we shall denote by 
n(p). Consequently, the diagram below commutes. We conclude that n is 
continuous. It is easy to see that n in fact is an open retraction. 

dX 
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1.4. PROPOSITION. ff X is a continuum and K is a subcontinuum oœ dX 

su& that •(I(') • X, then K has empty interior in dX. 

PROOF: Put L = p-l(iQ. Since 7r(L) = •(I•) • X, by compactness of 
7r(L) and by connectivity of X, X•r(L) is infinite (in fact, even uncount- 
able). Fix x • X•r(L) arbitrarily. Define 

V0 = {(y,f) • Y: y • X•{z} and f(z)= 0}, 
V1 = {(y,f) • Y: y • X•{x} and f(x)= 1}. 

By Lemma 1.1, V0 and V• are disjoint G-saturated open subsets of 
Y. Consequently, p(V0) and p(V•) are disjoint open subsets of dX cov- 
ering K. By connectivity of I(, it therefore follows that, without loss of 
generality, L C_ V0, i.e., L projects onto precisely one point in the x th coor- 
dinate direction of {0,1} x. Since X•yr(L)is infinite, xve conclude that, in 
infinitely many coordinate directions of {0, 1} x, L projects onto precisely 
one point. By definition of the product topology on {0, 1} x, this implies 
that L projects onto a nmvhere dense closed subset of {0, 1} x. We conclude 
that L is nowhere dense itself, and therefore that K has empty interior in 
dX. 

We finish this section with a fexv easy observations on homeomor- 
phisms of dX. For every space ¾, let 7J(¾) denote the autohomeomor- 
phism group of ¾. Observe that each • G 7J(X) is a permutation of X, and 
therefore induces a homeomorphism r7(•) of {0, 1} X as follows: 

a(•)(f)(p) = f(•(p)). 

We say that an element h G •(Y) respects G if, for every H • •, 
h(H) • •. Observe that if h G 7f(Y) respects •, then there is a homeo- 
morphism f • •(dX) such that p o f = h o p. Let id denote the identity 
homeomorphism on X. If, for every x • X, hx: {0, 1} • {0, 1} is a home- 
omorphism, then is a homeomorphism of {0, 1} x. Let II({0, 1} X) 
be the set of all these homeomorphisms. Observe that, for all f, g • {0, 1} x, 
there exists an element h • II({0, 1} x) with h(f)= g. 

1.5. PnOPOSITION. For aJJ • • 7t(X) and h G II({0,1} x) tl•e homeomor- 
phisres (-• x a(•) and id xh oœY both respect •. 
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PP•OOF: Take {(x, f), (x, fx)} • • arbitrarily. Let q = 6--1(X). Then, for 
p • q, we have 

a(6)(f)(P) = f(6(P))- fx(6(P))'-a(6)(f•)(P). 
In addition, 

a(6)(f)(q) = f(6(q))= f(x), and a(6)(fx)(q)= f•(6(q))= f•(x). 

We conclude that a(6)(f) q = a(6)(f• ). Consequently, 

(6 -1 x 
as required. 

Now again, take {(x, f}, (x, f•}} • • arbitrarily. Since h is a product 
homeomorphism, it is easy to see that h(f)• - h(f•). From this we find 
that 

(id xh)({{x, f}, {x, fx}}) = {{x,h(f)}, <x,h(f)x}), 
as required. 

This leads us to the following result. 

1.6. T•[EOrtEM. If p, q • dX and if 6 • •(X) is a lhomeomorphism with 
6(n(p)) = n(q), then there exists a homeomorphism h • Tl(dX) such that 
h(p) = q whiJe, moreover, 

Pr•OOF: There exist points {x, f} and {y, 9} in Y such that p({x, 1}) = p and 
p({y,g}) = q. Observe that n(p) = x and n(q) = y. Consider the homeomor- 
phism a(6 -•) of {0, 1} x. There exists a homeomorphism r/ • rI({0, 1} x) 
such that r/(a(6-1)(/)) = 9. By Proposition 1.5, the homeomorphism 
(id xr/) o (6 x a(6-•)) of Yis •-preserving. Now 

(5) (id xr/) o (6 x a(6-•))((x,f})= (idxrl)((6(x),a(6-•)(f)}) 
- (6(x),r•(a(6-x)(f)))- 

There exists a homeomorphism h • Tl(dX) such that 

(6) hop= po ((id xr/) o (6 x a(6-•))). 
Now (5) and (6) easily imply that h(p) - q. 

Finally, for every {z, k) • Y, 

(7) 
From (6) and (7) we therefore conclude that n o h = 6 o n, i.e., h is as 
required. 
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2. The construction. We shall now prove that any homogeneous contin- 
uum X is an open retract of an indecomposable homogeneous continuum 
d(•)X of the same dimension. 

To this end, let X be a homogeneous continuum. For n _• 0, define 
d(ø)X = X, and d(n+l)X = d(d(n)X). Also, for n _• 0, let n• ß d(•+l)X -• 
d(•)X be the canonical function defined in Section 1. Now form the follow- 

ing inverse sequence 

d(ø)X • d(1)X • d(2)X •- ... •_ d(•)X • d(n+l)X •_ .... 

Let d(•)X be the inverse limit of this sequence, and, for every n •_ 0, 
let /• ß d(•)X -• d(n)X be the standard projection. Since each nn is 
an open retraction, it follows easily that X is an open retract of d(•)X. 
Also, it is a triviality to verify that, for every compact space X, we have 
dimdX = dimX. From this it easily follows that dimX = dim d(•)X. The 
details of checking this are left to the reader. 

We shall now prove that d(•)X is a homogeneous indecomposable 
continuum. 

2.1. PROPOSITION. d(•)X is inclecomposable. 

PROOF' Let I• be a proper subcontinuum of d(•)X. Since I{ is proper, 
there exists n _• 0 such that /•,•(I{) is • proper subcontinuum of d(n)X. 
By Proposition 1.4, it therefore follows that /•n+l(K) is a nowhere dense 
subcontinuum of d(n+l)X. Repeating the same observation, it follows that 
/•,•(K) is • nowhere dense subcontinuum of d("•)X for every m _• n + 1. 
We conclude that I• is nowhere dense in d(•)X. 

2.2. PROPOSITION. d(C•)X is homogeneous. 

PROOF: Let x and y be points in d(•)X. By the homogeneity of X, there 
exists a homeomorphism h of X such that h(xo) = yo. By Theorem 1.6, 
there exists a homeomorphism hx of d(X)X such that h•(xl) = y• while, 
moreover, n• o hi = h o no. By a repeated application of Theorem 1.6, it 
is easy to construct a sequence h• e T/(d(n)X), n •_ 0, such that h0 = h, 
while, moreover, for n •_ 1, we have 

(I) n• 0 h n -- hn_ 1 0 Nn-1, 
(II) h,•(x,•) = y•. 



INFINITE-DIMENSIONAL CONTINUUM 201 

Consequently, the sequence (h,•),• induces a homeomorphism h: d(½=)X -• 
d(½=)X such that h(x) = y. 

We have completed the proof of the following 

2.3. THEOREM. Every homogeneous continuum is an open retract of an 
indecomposable homogeneous continuum oœ the same dimension. 
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