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1. Introduction 

All spaces considered are separable and metrizable topological spaces. By a linear 

space we mean a (separable metrizable) topological vector space over [w. 

Let 9” denote a topological class of compacta. In particular, let rC,,, and rt,, 

denote the (fixed) classes of all compacta and of all finite-dimensional compacta, 

respectively. 

(i) We say that a space X has the YC-extension property, abbreviated 9”-EP, if 

for every space Y, every compact subspace A E YC of Y and every continuous map 

f: A + X there is a continuous extension g : Y + X off: 

(ii) A convex subset C of some linear space L is said to be admissible for the 

class 5°C if for every compact subset K E 5Y of C and every e > 0 there is a continuous 

map f: K -+ C such that 

d(f, id) = sup d(f(x), x) < E 
XZK 

andf( K) is contained in a finite-dimensional linear subspace (i.e., a linear subspace, 

having a finite Hamel basis) of L. 

(iii) The space X has the homeomorphism extension property (HEP) for the class 

YC if for every homeomorphism h : K + L between subcompacta K, L E Yt of X there 

is a homeomorphism of X, extending h. 

(iv) A convex subset of a linear space is admissible if it is admissible for the class 

xa,,. A space has the CEP or the HEP if it has the YC-EP or the HEP, respectively, 

for the class .9’C = 9”a,, . 

Besides the introduction this paper contains three sections. We describe in short 

their contents. 

Section 2: Our starting point is the question, whether every linear space is an 

AR. In [6, 171 it is shown that the so-called admissibility is an interesting motion 

insofar, that it turns out to be equivalent to the CEP. For arbitrary (not necessarily 

linear) spaces the CEP is strictly weaker than the AR-property, cf. [18]. For linear 

spaces, the CEP does not imply the AR-property, unless every linear space is an 

AR, [17, Theorem 3.81. In the restricted case of a-compact linear spaces the 

implication “admissible+AR” holds. The question whether every cT-compact linear 

space is an AR, is equivalent to the question “Is every linear space admissible?“, 

cf. [17]. On the other hand we know that any No-dimensional linear space is 

homeomorphic to the subspace 

of I,, see [ 51. The space 1: is an AR. We have taken a look at linear spaces a little 

bit bigger than the &dimensional ones. The latter are the linear hull of a convergent 

sequence; we prove that the question “Is every linear space, which is spanned by 

a Cantor set, an AR?” is again equivalent to “IS every linear space admissible?“. 
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Section 3: A third notion, which appears to be interesting, is the HEP. In [7] it 

is proved that every infinite-dimensional locally convex linear space has the HEP. 

Infinite dimensionality is easily seen to be necessary for linear spaces to have the 

HEP for even the class YC,,. Recall [9] that every locally convex linear space is an 

AR. In [7] it is remarked without proof that every complete linear space with the 

HEP is admissible. We prove this fact and we show that the HEP does not imply 

AR, unless every linear space is an AR. The HEP for the class YC,, is found in every 

infinite-dimensional complete linear space, cf. [7]. We weaken the completeness 

condition to non-a-compactness. For the same linear spaces we prove an estimated 

version of the HEP (YLrd). 

Section 4: As might be expected from the list of definitions in the head of this 

introduction, we consider the properties HEP, AR and admissibility for convex 

subsets of linear spaces as well. The equivalence “CEPeadmissible” holds in this 

case, too, [6]. In particular we study infinite-dimensional compact subsets C of 

linear spaces. This case stands in severe contrast with the case of a (full) linear 

space. We already saw that the CEP and admissibility are equivalent; by compactness 

the same holds for the CEP and the AR-property. In fact these three properties are 

equivalent with C being homeomorphic to the Hilbert cube. We cannot expect the 

full HEP to hold in this case, because arbitrary compacta in C could be very “big” 

with respect to C. We prove that C has the HEP for the class of Z-sets in C iff C 

is homeomorphic to the Hilbert cube. For such spaces, the considered notions turn 

out to coincide. The above-mentioned linear spaces with a Cantor set as spanning 

set could be viewed as a case in between the very small compact infinite-dimensional 

convex sets and the (full) linear spaces. In this light we saw that admissibility is 

not a very helpful property. The HEP is shown to be not much nicer: we show that 

the question “Does every linear space, spanned by a Cantor set and containing a 

Keller cube, have the HEP?” is again equivalent to “Is every linear space 

admissible?“. 

Some notation and conventions. A map is a continuous function. A Cantor set is a 

homeomorph of the Cantor middle-third set. A metric d on the linear space L, 

generating its topology, is called strictly monotone if 

d(O,.sx)<d(O, tx) for OGS< t and XEL\{O}. 

Throughout this paper we assume the metric on any linear space to be translation 

invariant and strictly monotone, cf. [lo]. We write 1x(= d(0, x) for x E X. If A is a 

subset of a metric space X and e > 0 then we write 

B(A, e)={x~X: d(x,A)<~} 

and 
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sometimes we append X as a subscript to B or D. If A and B are subsets of a 

linear space L, then 

A-B={x-y:x~A,y~ll}, 

A+lI={x+y:x~A, DEB}; 

lin(A) and conv(A) denote the linear and the convex hull of A, respectively. Z(X) 

is the group of homeomorphisms of the space X. dim X is the covering dimension 

of x. 

2. Admissibility; the CEP 

The main result of this section is Theorem 2.12. Before proving this theorem we 

give a number of useful, rather general facts about admissibility. 

Proposition 2.1. Let the space X have the X-EP for some class YC of compacta, let 

K E YC, f: K + X and e > 0. Then there are a (finite) polyhedron P and maps (Y : K + P 

andp:P+Xsuch thatd@oa,f)<e. 

Proof. Suppose K c Q and denote the canonical projection of Q onto I” x (0) x . . . 

by rn. For every n determine a polyhedron P, c I” x (0) x * . . such that 

r,(K)c P,=B(r,(K), l/n). 

Consider the subspace 

Y=(K ~(01)~ fi (P, x(1/n]) 
n=l 

of Q x I (with the sum metric). There is an extension j: Y+ X of fo i-’ : K +X 

(where i: K + K x(0) is the canonical map). The space Y is compact. Determine 

6 > 0 with the property 

Y, Y’E Y d(y, y’) < 6 * d(?(y), .?(Y’)) < 8. 

Note that the maps g, : K x {O}+ P,, x {l/n}, defined by g,(x, 0) = (r,(x), l/n), 

satisfy d (g,, id) + 0. The requirements are fulfilled by putting P = P, x {l/n], LY = 

g,~i,~=f”~P,,X{1/n}fornsolargethatd(g,,id)<6. 0 

Our first theorem is a generalization of [6, Note 3 after Theorem 51 and [17, 

Theorem 3.21. 

Theorem 2.2. Let Yt be a class of compacta and let C be a convex subset of a linear 

space L. Then the following assertions are equivalent: 

(i) every map f : K + C de$ned on some K E Yt is uniformly approximable by maps 

g : K + C such that dim lin(g( K)) <co, 

(ii) C has the YC-EP. 
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Proof. The proof is analogous to the proof of [17, Theorem 3.21, in which the case 

.YC= YC,,,, C = L is treated. We adopt the notation of that proof. 

(i)-(ii): See [17], (l)+(2). Take AEYC and f:A+C. We may assume OE C. 

Then we construct the maps & : A + E, I-J C and & : X + C with the properties (i), 

(ii) and (iii), using the fact that E, n C is an AR as well. Follow the remaining part 

of the proof almost literally. 

(ii)+(i): See[17],(2)~(1).InsteadofanarbitrarycompactKwetakeK=f(A), 

where A E YC and f: A + C. By Proposition 2.1 there are a polyhedron P and maps 

[:A+Pandn:P+Csuchthatd(f,no[) is as small as desired. Then we approxi- 

mate n by $ as in [17], noting that $, and so g as well, becomes a map with image 

in C and we finish the proof almost unaltered. 0 

Corollary 2.3. Let C be a convex subset of some linear space and suppose that continuous 

images of spaces in the class YL of compacta are again in X. Then C has the YC-EP ifl 

C is admissible for Yt. 

Lemma 2.4. Let C and C’ be convex subsets of some linear space L, such that 

C’c C is dense in C. Furthermore, let K be a finite-dimensional compact space. Then 

every map f: K + C can be approximated untformly by maps f’: K + C’ satisfying 

dimlin(f’(K))<a. 

Proof. Let F > 0. Suppose dim K s n, 1 G n (00. Choose an open cover W of C 

such that 

mesh(St( 7Y)) ~2. 

Since dim K s n, there is a finite open cover 011 of K such that the nerve P of Ou is 

at most n-dimensional, and moreover f(Q) refines W, see [19, Chapter 41. For the 

definition of nerve see [19, Q 3.61. Define K : K + P to be the standard barycentric 

map, i.e., the map given by 

K(X)= 2 
d(x, K\ W 

LIE% c vtqi d(x, K\ VI QJ 
(vu is the vertex of P, corresponding to U E 021). We shall define a map (Y : P + L, 

and let a 0 K be the required map f ‘. For every U E % choose Wo E W with 

f ( II) c Wo and pick y, E Wo n C’ arbitrarily. We determine (Y by putting Q ( vu) := 

y, and requiring that (Y 1 CT is an affine map for every simplex c of P Then by 

convexity of C’ we have (Y(K) c C’. 

Claim 1. each u have ;E. 

Proof. Take u = (vu; . . vuk). Then 

W,,n.‘.nW,,~f(Uo)n...nf(Uk)fO, 
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so w:= w,,u.. ‘V W”, is contained in a member of St(W) and so has diameter 

<&/(4n). Now {y”,, . . . , vu,} has diameter <e/(4n) as well because it is contained 

in W. Since d is invariant and monotone, and ks n, we have 

diam c-u(a)~diamconv{y,,,, . . . ,yo,}<2k.;s$e. 

Claim 2. d(a 0 K, f) < E. 

Proof. Pick x E K. Choose a simplex (T with K(X) E Int u (here Int denotes geometric 

interior), say u = (vu,,* . - Q). Then 

d(a 0 K(X),JJUO)cdiam a(,)<$& 

and x E U,, hence 

d(f(x),y,)Gdiam WUU<cS&. 

The triangle inequality gives d(a 0 K, f) C$E. 0 

Proposition 2.5. Any map f: K + C from a finite-dimensional compact space K to an 

arbitrary convex subset C of a linear space is uniformly approximable by maps g : K + C 

satisfying dim lin(g(K)) <CO; in particular: every convex subspace of a linear space 

is admissible for .?‘t,, . 

Proof. This follows immediately from Lemma 2.4. 0 

The lemma hereafter shows that the finite-dimensional linear subspaces in the 

definition of admissibility can be replaced by bigger subsets. The assertions (iii) 

and (iv) of this lemma will not be applied in the sequel; we only mention them for 

completeness sake. For the definition of property C see [l, 111. 

Lemma 2.6. Let C be a convex subset of a linear space L and let K c C a compact 

subset. The following assertions are equivalent: 

(i) for every E > 0 there is a map f: K + C such that dim linf(K) <CO and 

d(f; id) < e, 
(ii) for every E > 0 there is a map f : K +Csuchthatdimf(K)<~andd(fid)<~, 

(iii) for every F > 0 there is a map f : K + C such that f(K) is a countable union 

of closed finite-dimensional sets and d (JI id) < a, 

(iv) for every F > 0 there is a map f : K + C such that f(K) is a C-space and 

d (f, id) < E. 

Proof. For (i)*(ii) it is enough to remember that any finite-dimensional linear 

space is homeomorphic to one of the spaces R”. 
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For (ii)*(i) use 1~ to squeeze K into something topologically finite dimensional 

and use another ;E to further squeeze this last set with the help of Lemma 2.4 into 

a finite-dimensional linear subspace of L. 

(ii)+(iii) is trivial; (iii)=+(iv) is immediately clear after [ 11, Proposition 11. 

(iv)+(i): By (iv) we may assume that K is a C-space itself. Suppose K c Q and 

let 7rx,, P,,, Y and i be as in the proof of Proposition 2.1. The space Y has property 

C as well, [ 1, Theorem 2.71. Furthermore, C is contractible and locally contractible, 

so by [2, Corollary C.5.101 there is an extension g: Y + C of i- ‘: K x(O)+ C. 

Determine S > 0 with 

y, Y’E y, d(y, Y’) < s =+ dk(YL dY’)) < F. 

Consider maps g, as in the earlier-mentioned proof. Then, for n big enough to 

satisfy d(g,, id) < 6, we have an approximation g 0 g,, 0 i of id : K + C. By finite 

dimensionality of the polyhedron P,, we may apply Lemma 2.5 to approximate 

g]P,,x{l/n}:P,,x{l/n}-C by a map h with dimlinh(P,x{l/n})<~. The 

required map f shall be h 0 g, 0 i. 0 

By compactness we may change the words “for every F > 0 there is a map f with 

d(S, id) < e” in one or both of (i) and (ii) of this lemma by “for every open cover 

021 of L there is a mapf with (f( ), x x contained in some U E % for every x” without } 

changing the equivalence of the assertions. If the compact subset K of C satisfies 

one or all of the conditions of Lemma 2.6, then we say that K is admissible in C. 

Part of the next proposition is contained in [14, Proposition 2.11, but the proof 

presented here (for the separable metrizable case) is more elementary. 

Proposition 2.7. Let Cz he a convex subset of some linear space and C, a dense convex 

subspace of Cz. The following are equivalent: 

(i) C, is admissible and for every compact subset K of C2 and every E > 0 there is 

a map f: K + C, such that d(J; id) < e. 

(ii) C2 is admissible. 

Proof. (i)+(ii): Pick Kc C z compact and E>O. There is a map f: K + C, 

with d(J;id)<$~ and there is a map g:f(K)+ C, with d(g, id)<$e and 

dim lin g(f(K)) < ~0. The map g 0 f satisfies d(g 0J; id) < F. 

(ii)+(i): For the admissibility of C,, pick K c C, compact and F > 0. There is 

an f: K 3 C2 with dim lin f (K) < CO and d (f, id) < 4s. Secondly, by Lemma 2.4 there 

isamapg:f(K)~C,withdimlin~(K)<ooandd(g,id)<~~.Wehaved(gf;id)< 

F. By a second application of Lemma 2.4 the other assertion is verified. 0 

We say that a subset A of some linear space L is complete if there is an invariant 

metric on L, generating its topology, of which the restriction on A is a complete 

metric. 
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Theorem 2.8. The following assertions are equivalent: 

(i) every convex subspace of every linear space is admissible, 

(ii) every a-compact convex subspace of every linear space is admissible, 

(iii) every u-compact convex subspace of every linear space is an AR, 

(iv) every complete convex subspace of every linear space is admissible. 

Proof. Note that (i)*(ii), (iii)+(ii), (i)+(iv) are trivialities modulo the 

equivalence of admissibility and the CEP. 

(ii)a(iii) follows from [6, Corollary 11. 

For (ii)+(i), take an arbitrary convex subspace C of some linear space L, a 

compact subset K of C and E > 0. The convex subspace conv( K) of C is o-compact 

and K c conv( K), so there is a map f: K + conv( K) c C such that d (f, id) < s and 

f(K) is contained in a finite-dimensional linear subspace of L. 

For (iv)+(i), take an arbitrary convex subspace C of some linear space L. There 

is a complete linear space L’ in which L can be embedded densely, [16, 1.1.5 and 

1.6.11. The closure C’ of C in L’ is complete, so it is admissible. By Proposition 

2.7, C is admissible as well. q 

For linear spaces we have the following analogue. Its proof is similar to the proof 

of the preceding theorem. 

Theorem 2.9. The following assertions are equivalent: 

(i) every linear space is admissible, 

(ii) every u-compact linear space is admissible, 

(iii) every u-compact linear space is an AR, 

(iv) every topologically complete linear space is admissible. 

As already mentioned, we know that every linear space, which is spanned by a 

countable subset (equivalently: by a compact, countable subset, for we can shorten 

the spanning vectors so as to let them converge to the origin) is an AR. Therefore 

we are interested in whether the linear hull of a compact, zero-dimensional set is 

admissible (or an AR). The class, formed by these linear spaces is strictly larger 

than the class of the &dimensional ones, e.g. consider L = lin(a( C)), where 

cx : C + l2 is the embedding of the Cantor set C = [0, 11, given by 

c?(x) = (ix, (4x)2, (;x)3, . . .); 

the image set LY( C) is uncountable and it is known that it is linearly independent. 

This class even contains strongly infinite-dimensional spaces. For example, take the 

countably infinite product K = C” and its linear hull L = lin(K) in 1w”. From 

C - C = [-1, 11, cf. [19], we immediately see that LI [-1, 11”. This observation 

inspired us to the next proposition. 
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Proposition 2.10. Let L be a non-u-compact linear space; let K be a compact subset 

of L and let e > 0. Then there exist two Cantor sets CK and C, in L such that 

C, -C,x K, 

CK = B(K, e) 

and 

C,c B(O,e). 

Proof. L is not u-compact, so we can pick 

v~L\lin(K), d(u,O)<e. 

Furthermore there exists a surjective map (Y : C + K of a Cantor set C c (0,l) to 

K. Define 

and 

Co={t* UJKC}. 

Obviously, CK and C, are homeomorphic images of C, so Cantor sets, and they 

satisfy the requirements. 0 

Corollary 2.11. Let L be a non-u-compact linear space and let E c L be a u-compact 

linear subspace of L. Then there exists a Cantor set K c L such that E c lin(K). 

Proof. Write E as the union E = UTcf=, K, of compacta K,. For every n determine 

Cantor sets Ci and C’, such that CL - C’, = K,. Then C,, = Ci u C’, is a Cantor set 

as well, and lin( C,) 2 K,. The union C = UT=:=, A,C,, for some small enough positive 

numbers A, is again a Cantor set and its linear hull contains all of E. 0 

Theorem 2.12. The following assertions are equivalent: 

(i) every linear space is admissible, 

(ii) every linear space, which is spanned by a Cantor set, is admissible, and 

(iii) every linear space, which is spanned by a Cantor set, is an AR. 

Proof. (i)*(ii) is a triviality. 

(ii)e (iii) follows from the u-compactness. 

(ii)*(i): Theorem 2.9 allows us to assume that the linear space L is topologically 

complete. If dim L<co, then there is nothing to prove because in that case L is 

homeomorphic to R” for some n. So, in addition, assume dim L = 00. Pick a compact 

subset K of L. It suffices to find an admissible linear subspace L, of L such that 

L, =I K. From Corollary 2.11, applied to lin(K) we deduce such a space L,. 0 
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We have tried to replace the linear spaces in this theorem by convex sets and the 

linear hull by the convex hull. In order to prove the resulting conjecture we have 

tried to generalize Corollary 2.11 to this situation. This amounts to the following 

question: 

Question. Let L be a non-a-compact linear space and let K c L be a a-compact 

convex subset of L. Does there exist a Cantor set C c L such that K c conv( C)? 

Given a compactum K and two positive constants u and v we get from Proposition 

2.10 a pair C, D of Cantor sets in L with U* C+v. DI K, for take C=l/u. C, 

and D = -l/ v . C, , where C, and C2 are given by the mentioned proposition. We get 

C+(K, F) and D&O, e). (*) 
V 

Write K = lJy==, K,, where K, is compact for every n. We would like to take 

something like C = C, w D, u C,u . . *, where C, and D, are to satisfy 

For C be compact, would like have the and D, to some 

(0) or for example. the D,, causes no Alas, by 

we see the C,, converge to And when more precise, 

phenomenon seemed us to persistent. 

3. The homeomorphism extension property 

We start this section by a simple proposition, showing that finite-dimensional 

linear spaces are of minor interest in studying the HEP. 

Proposition 3.1. If the linear space X # (0) has the HEP for the class Xfd, then 

dimX=co. 

Proof. Suppose that X has the HEP for Ylrd and X is finite dimensional. We may 

suppose X = R” for some n E N, cf. [ 16, 1.3.21. Consider the compactum K, given by 

K={x~lR~Ix=Oor I]x]I=l or llx]l=2} 

(11. II denotes the Euclidean norm) and define h E X(K) by 

0, x =o, 

h(x)= 2x, l]xll = 1, 

ix, llxll =2. 
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By elementary arguments it is easily seen that h is not extendible to any homeo- 

morphism of Iw”. 0 

The next lemma will be very useful in the sequel. 

Lemma 3.2. Let C be a convex subset of a linear space L and let K and K’ be compact 

subsets of C, such that there is a homeomorphism h : C -+ C with h(K) = K’. Then K 

is admissible in C iff K’ is admissible in C. 

Proof. Let K be admissible in C. Pick an open cover %’ of C. Choose an open 

cover “21 of C such that h(%) refines %‘. There is a map f: K + C such that 

dimf(K)ta and {{f(x),x}},tK refines %. Define the map f’: K’+C by f’(x)= 

h of 0 h-‘(x). Then {{f’(x), x}},, K, refines %’ and dim f ‘( K’) < 00, Lemma 2.6. 0 

We call a convex subspace C of a linear space L locally complete at x E C if there 

is a neighborhood of x in C, which is complete with respect to an invariant metric 

on L, cf. [.5]. 

Proposition 3.3. Let C be an infinite-dimensional convex subset of some linear space, 

such that C is locally complete at some point. If C has the HEP, then C is admissible. 

Proof. Pick an arbitrary compact subset K of C. There exists an embedding i : K + Q. 

Now [S, Proposition 3.51 gives an embedding j: Q+ C. The Hilbert cube j(Q) is 

admissible in C since we have the projections 

~x:Q=~~,io.~l-;~,~~,~l~~~~+,~~~. 

The subset j 0 i(K) of j( Q) is of course admissible in C as well. Now there is a 

homeomorphism h of C with h(K) = j 0 i(K). Lemma 3.2 easily implies the admissi- 

bility of K in C. U 

The following was already stated in [7] without proof. 

Corollary 3.4. Let L be a complete linear space with the HEP Then L is admissible. 

Now we shall prove the HEP from the CEP in a rather restricted case. An 

interesting corollary is, that the HEP does not imply the AR-property in linear 

spaces, unless every linear space is an AR. We start with recalling an old result of 

Klee. 

Proposition 3.5. Let x be a class of compacta; let X, and X2 be linear spaces with 

the Yt-EP. Furthermore, let X = X, x X, contain K, L E Yt such that 

(i) V, : K u L + X, is an embedding, 

(ii) X, contains a copy of K, and 

(iii) there is a homeomorphism h : K + L. 

Then there is an HE R(X) such that H ( K = h. 
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Proof. See [13, 0 31. 0 

Proposition 3.6. If the linear space Y is admissible, then X = Y x R” has the homeo- 

morphism extension property. 

Proof. Pick compacta K and L in X and a homeomorphism h : K + L. There are 

compacta M, and Mz such that 

KvLcM,xM,c YxR”. 

Noting that the pseudointerior (0,l)” of the Hilbert cube is homeomorphic to [w”, 

we get from [ 19,6.3.2] a homeomorphism Ic, : R” + R” x R” satisfying (cr( M2) c R” x 

(0). Identifying Y x (R” x R”) and ( Y x R”) x R”, we have a homeomorphism q = 

id,x$:X+XxxIW”, such that 1v (K u L) c X x {O}. Both of X and [w” are admiss- 

ible, hence by Corollary 2.3 they have the CEP. Furthermore [w” contains a copy 

of q(K), so Proposition 3.5 is applicable to the homeomorphism FhV’ : P(K) + 

p(L). Composition with W and ‘Y-l gives the required homeomorphism of X. 0 

Theorem 3.7. If there exists a linear space which is not an absolute retract, then there 

exists a linear space with the homeomorphism extension property, which is not an 

absolute retract. 

Proof. Suppose there is a linear space which is not an AR. In [17, Theorem 3.81 

an admissible linear space Y is constructed, which is not an AR. Consider the 

product X = Y x R”. By the equivalence of the CEP and admissibility, Y is admiss- 

ible, so by Proposition 3.6, X has the HEP. Furthermore it is not an AR, for Y is 

not. 0 

Next we shall prove the HEP for the class YC,, for any non-a-compact linear 

space. We need an easy proposition. 

Proposition 3.8. If the space X is contractible and locally contractible, then X has the 

7c,, -EP. 

Proof. Pick a subspace A E Z4Cf,, of an arbitrary space Y. There is an embedding 

j:A+ B of A into the n-cube B = I” for some n EN. The space X is an absolute 

extensor for the class of finite-dimensional spaces, [12, Chapter V], so the map 

fo j-’ : j(A) + X has an extension g : B + X. Next, B is an AR, so j: A+ B has an 

extension h : Y + B. The map g 0 h : Y + X extends f: 0 

Theorem 3.9. Let X be a non-u-compact linear space. Then X has the homeomorphism 

extension property for the class 7C,, . 

Proof. The proof is strongly inspired by that of [7, Lemma 2.91. Pick finite- 

dimensional compacta K and L in X and a homeomorphism h : K + L. Let r = 

2 + dim K + 1. Using the a-compactness of lin(K u L) we can inductively find 
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Xl,..., x, E X such that 

xi5Zlin(KuLu{x ,,..., Xi_*}), i=l,..., r. 

Let E = lin{x,, . . . , x,}. Then E is a linear subspace, such that dim E = 2 . dim K + 1 

and E n lin( K u L) = (0). It is well known that the quotient space X/E is a metriz- 

able linear space as well and also that there exists a map (Y : X/E + X such that 

a(O) = 0 and K 0 (Y = id,,, (denoting the canonical map from X onto X/E by K). 

Define ti:X+(X/E)xE by 

4(X) = (K(X), x - mK(x)). 

Then 4 is a homeomorphism (its inverse is 4-‘(x, y) = a(x) +y) and n, : +(K u L) -+ 

X/E is an embedding. Furthermore, by dim E = 2 . dim K + 1, E contains a copy 

of 4(K), [19, Theorem 4.4.41, and 4 0 h 0 4-l : 4(K) + 4(L) is a homeomorphism. 

From Proposition 3.5 we find a GE %!((X/E) x E) with 

Now H=+~‘~G~~E%(X) satisfies H(K=h. cl 

For the deduction of an estimated version of this theorem we need an embedding 

result. 

Lemma 3.10. Let X be a linear space, Y compact, A c Y closed, such dim Y\A 

~0. Then f: Y + X can be approximated by maps g : Y + X with glA = f IA and 

g( Y\A) contained in an NO-dimensional linear subspace of X. 

Proof. Pick E > 0. Let n = dim Y\A. Fix (see for example [ 121) a locally finite open 

cover 3 = { Ur].5tS of Y\A of order at most n such that 

{Y,Y’]E U, * d(f(yLfW))<fs, scs, 

diam US s d( CJ,, A), s E S. 

Pick arbitrary b, E CJ, (s E S) and choose a locally finite partition of unity {$S}3ES 

on Y\A. We define g : Y + X by 

f(u), 

g(y)= 
i 

YEA, 

CC&(Y) .f(b,), YE Y\A. 
7 

The continuity of g in every point of Y\A is clear, so pick YE A and an open 

neighborhood W of 0 in X. Determine n > 0 with B(O,2( n - 1)~) c W and 6 > 0 

with f(B(y, 8)) c B(f(y), r]). Continuity in y is clear after 

Claim. g(B(y, $6)) c f(y)+ W. 
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Proof. Take y’ with d (y, y’) < SS. For every s E S with y’ E U, we have d( U,, A) < $8, 

so d (b,, y’) G diam U, < 48, so d (6,) y) < 2 . $8 = 6, from which it follows that f( b,) E 

B(f(y), 7). There are at most n of these s E S, so by [ 17, Lemma 3.11 we have 

g(Y’) E conv]f(b,) I Y’E cr,]c W(Y),2(n-l)n)cf(Y)+ w. 

Furthermore, d(f, g) s F, for take y E Y\A. Then for every s E S with y E U, we have 

_I-(&) -f(y) E WO, &/(2n)), so by [I71 

dY)~convCf(b,)I YE ~,Icf(Y)+NO,s) 

and we are done. 0 

Proposition 3.11. Let X be a linear space with the HEP for YCCd, let Y be finite 

dimensional compact, and A c Y closed. Then every map f: Y -+ X such that f 1 A is 

an embedding is approximable by embeddings g : Y + X such that glA = f IA. 

Proof. Pick an embedding i: A+ X such that i(A) is contained in some finite- 

dimensional linear subspace of X. By the HEP for YC,, there is a ,$E Z(X) with 

5 0 i = f I A. If we can approximate 5-l 0 f by embeddings h: Y+X with hlA= 

t-‘f IA, then h t e embeddings g = 5 0 h are as required. From this it follows that 

without loss of generality we can assume that f(A) is contained in some finite- 

dimensional linear subspace of X. 

Now pick & > 0. Lemma 3.10 gives a map k: Y + X such that 

and 

4 Y\A) = X,, 

where X0 is an &dimensional linear subspace of X. The linear subspace X, = 

lin(X,u f(A)) is &,-dimensional as well, so by [S, Corollary 4.21 it is homeomorphic 

to the space 1;. This subspace contains k(Y), so by [15, Theorem 51 there is an 

embedding g : Y + X, with 

d(g, k) <is, 

glA = k]A. 

This gives an embedding g : Y + X such that glA = f IA and d(g, f) < E. Cl 

By well-known methods (for example, see [19, Ei 7.41) and the help of this 

proposition we can prove the desired theorem. 
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Theorem 3.12. Let X be a linear space with the HEP for YCfd, V c X open and % a 

collection of open subsets of V; let K bejinite dimensional compact and F: K x I + V 

a map such that F, and F, are embeddings and F is a Whomotopy. Then there is an 

isotopy H : X x I + X such that 

(i) H,, = id, 

(ii) H, 0 F0 = F, , 

(iii) H,IX\V=idfor tE 1, and 

(iv) HIVxZ:V X I + V is a %-isotopy. 

Corollary 3.13. Any non-u-compact linear space has the estimated form, as described 

in the above theorem, of the HEP for Xsd. 

Proof. Combine Theorems 3.9 and 3.12. 0 

4. The HEP in two more or less concrete cases 

In the first part of this section, let C be a fixed, infinite-dimensional, convex, 

compact set in some linear space. Remember that metrics on linear spaces are always 

chosen to be invariant and strictly monotone. 

Lemma 4.1. There exists an X”E C such that 

inf diam([O, ~0) . (z - x0) n (C - C)) = 0. 
ZiC‘ 

Proof. We may assume 0 E C. Note that this has the effect that every point of the form 

i LG, 
I, 

z,l E c, A, BO, 1 A, s 1 
n-, n=l 

is an element of C. Fix a dense set {x,}z=, with x, # x, (n # m) in C. Let 

SD = i 2_“x,. 

Since s,, E C, there is a subsequence (s,,)~, convergent to some ?c,,E C. Suppose that 

this x0 does not satisfy the requirement. Then there is E > 0 such that 

diam([O,oo).(z-x,)n(C-C))>e, ZEC. 

Set zk,, = x,+2 -‘(xk -x,). These points are elements of C for zk,, is limit of the 

sequence ( sb,Jr, where s; is given by an expression, analogous to the one for spr 

with the single term 2-/x, replaced by 2-k,. We have 

diam([O, co) . (xk -x,) n (C - C)) > F. 

It follows that 

B=(;[O,+(xk-x,))nR,(O,+C-C. 
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(We denote the “ambient” linear space by L.) Let E = lin( C). From the convexity 

of C and OEC it follows that E=UT==, n(C-C). 

Claim. BE (0,;~) c C - C. 

Proof. Let z E E, IzI < ie. Then z = n(x - y) for some x, y E C and n E N. There are 

strictly increasing integer sequences {Q}?=, and { mk}p= 1 such that n (x,,~ - xmJ + z. 

Since for large k we have In(x,, - x,,,~)I < a, we find z E B c C - C. 

By infinite dimensionality of E and compactness of C-C this gives a 

contradiction, [ 161. 0 

Remark. We could take x0 = CT=, t,,x,, where t,, 3 0, Cy==, t, S 1 and C t,x, is con- 

vergent. 

We recall a few standard definitions, cf. [3; 4, V.21. 

(i) A subset A of C is a Z-set in C iff A is closed and for every n 2 0, every 

map f: I” + C is uniformly approximable by maps g : I”+ C\A. 

(ii) The subset A is a Z,-set in C iff A is the union of countably many Z-sets 

in C; equivalently (by completeness of C): iff A is a union of countably many 

closed sets and for every n 3 0, every map f: I” + C is uniformly approximable by 

maps g : I” -+ C\A. 

(iii) The point x in C is called a central point for C if the set x+[O, 1) . (C -x) 

is a Z,-set in C. 

In [3] it is proved that every Keller cube (see a few lines below) contains a central 

point. We start with strengthening this result. 

Proposition 4.2. There exists a central point for C. 

Proof (cf. [3, Proposition 2.61). Take x0 from Lemma 4.1. We may assume that 

x0 = 0 and we shall show that 0 is central. By compactness, the set [0, 1) . C is a 

countable union of closed sets. We check the approximation property. Take F > 0 

and a map f: I” + C. By Lemma 2.4 there are linearly independent x, , . . . , x, in C 

and there is a map f, : I” + C’, where C’= C n L, L = lin{x,, . . . , x,}, such that 

d(f,, f) <+s. By replacing f, by p + h . (fi -p) for some A E (0, I), p E intL C’, we 

have A:=f,(l”) c int, C’. Since 

inf diam([O, 00) . z n (C - C)) 2 &f, diam([O, ~0) * z n (C’- C’)) > 0, 
ztC’ 

there is q E C\L such that 

diam([O,co).qn(C-C))<$s. 

Write E = lin( L, q) and {f2(x)} = (x + [0, CO) . q) n BdE (C n E) for x E A. Note that 

this set indeed contains precisely one point for every x E A and that f2 : A + C is 

continuous. It is easy to check that _&(A) c C\[O, 1) . C and 

d(f,,id)~diam([O,co). qn(C-C)). 

The map g =f2 ofi approximates f and satisfies g(l”) = C\[O, 1) . C. q 
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Remark. By almost the same proof we see that every point X,,E C, satisfying the 

conclusion of Lemma 4.1, is a central point for C. 

Theorem 4.3. If C has the HEP for Z-sets, then C is an AR. 

Proof. By [6, Corollary l] it is enough to prove admissibility of C. To that end take 

a central point x0 for C, Proposition 4.2. We may assume x0 = 0. Since the sequence, 

formed by the maps 

1 
x+ l-- .x, ( > XE c, 

n 

converges uniformly to idc, it suffices to show that every Z-set AC C is admissible 

in C. By [5, Proposition 3.51 there is a copy of Q contained in ;C. Since this Q is 

a Z-set in C, there is a homeomorphism h E SY( C) with h(A) c Q. Lemma 3.2 finishes 

the argument. 0 

Corollary 4.4. C has the HEP for Z-sets if C is homeomorphic to Q. 

Proof. See [8]. Cl 

We point out that usually for non-ANR’s, Z-sets are defined in a different way, 

namely as what we call for the moment Z*-sets (while our Z-sets are commonly 

named locally homotopy negligible): 

(i’) The closed subset A of the space X is said to be a Z*-set iff the identity map 

id: X + X can be approximated uniformly by maps f: X + X\A. 

It is obvious that every Z*-set is a Z-set and we are led to the following question: 

Question. If C has the HEP for Z*-sets, can we conclude that it is an AR? 

Furthermore, we would like to have an answer to: 

Question. Can we weaken “compactness” in Theorem 4.3 to “local compactness”? 

In the light of Theorem 3.9 we are interested in: 

Question. Does every compact convex infinite-dimensional subset of a linear space 

have the HEP for finite-dimensional Z-sets? 

This question is somewhat premature, for singletons are Z-sets, and we even do 

not know the answer to: 

Question. Is every compact convex infinite-dimensional subset of every linear space 

homogeneous? 

The second part of this section is devoted to the HEP in linear spaces, spanned 

by a Cantor set. 
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Recall that a Keller cube in some linear space is a convex subset which is affinely 

homeomorphic to a compact, convex, infinite-dimensional substt of I,, cf. [4]. Let 

Z denote the linear space 

2 ={xE lz~s~p~ixi~<cO}. 

Proposition 4.5. The following assertions are equivalent: 

(i) every linear space, which is spanned by a Cantor set and contains a Keller cube, 

has the HEP, 

(ii) every u-compact linear space, which contains a Keller cube, is homeomorphic 

to E, 

(iii) every linear space is admissible. 

Proof. (iii)+(ii): a linear space as in (ii) is admissible, so by a-compactness it is 

an AR, [6]. By [5, Corollary 4.21 we have homeomorphy to 1. 

(ii)=+(i): a linear space as in (i) is cT-compact, so homeomorphic to 2, which has 

the HEP by [4]. 

(i)=+(iii): by Theorem 2.9 we may take a complete linear space L. Pick Kc L 

compact. By [S, Proposition 3.51 there exists a Keller cube Q in L. This cube contains 

a homeomorph K’ of K. Using Proposition 2.10 we find a Cantor set C in L such 

that K u Q c lin( C). The linear space L’ = lin( C) has the HEP, so 

3h E X(L’): h(K) = K’. 

Now Lemma 3.2 implies the admissibility of K’ in L’, so certainly in L. q 

Remark [S, after Proposition 3.51. For a linear space the condition that it contains 

a Keller cube may be (apparently) weakened by the condition that it contains an 

infinite-dimensional convex subset, which is somewhere locally complete. 
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