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Abstract 
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Sierpiriski invented in 1932 a method for constructing examples, which is now known as the 

“technique of killing homeomorphisms”. This method was used by Ohkuma to construct a rigid 

homogeneous chain, and by van Douwen to construct a compact homogeneous space with a 

measure that “knows” which sets are homeomorphic, and by Keesling and Wilson to construct 

an almost uniquely homogeneous subgroup of Iw”. The aim of this paper is to derive these results 
simultaneously. 
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1. Introduction 

Sierpiliski [23] invented a method for constructing examples, which is now known 

as the “technique of killing homeomorphisms”. This method was used by various 

mathematicians for various purposes. For example, Sierpiriski [23] used it for the 

construction of a rigid subset of the real line R, van Douwen [2] used it for the 

construction of a compact space having a measure that “knows” which sets are 

homeomorphic, Shelah [21] and van Engelen [3] used it to prove that R can be 

partitioned into two homeomorphic rigid sets, TodorEeviC [24] used it for the 
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construction of various interesting examples concerning cardinal functions, 

Marciszewski [15] used it for the construction of a compact space K such that the 

function space C(K) is not weakly homeomorphic to C(K) x C(K), Keesling and 

Wilson [12] used it to construct an “almost uniquely homogeneous” subgroup of 

R”, and the author used it in [19] for the construction of an infinite-dimensional 

normed linear space L which is not homeomorphic to Lxlw. 

The aim of this paper is to construct a new example of a rigid homogeneous 

chain that can also be used for the construction of a compact space with a measure 

that “knows” which sets are homeomorphic. Also, its higher dimensional analogues 

are almost uniquely homogeneous subgroups of R”. We believe that the fact that 

we can derive these results simultaneously makes our construction of independent 

interest. 

Let X be a space, and let f be a homeomorphism such that dam(f) c_ X and 

range(f) C_ X. Suppose that we would like to “kill” f: There are several strategies 

that one could follow. First, one could try to refine the topology of X making sure 

that f is no longer continuous. Then f is certainly killed. However, by the refinement 

of the topology, it is possible that some other undesired function that is discontinuous 

in the old topology, becomes continuous in the new topology. So one has then to 

continue the process of refining the topology, and it is not impossible that at the 

end of all the killings, X carries the discrete topology. Then all the dead functions 

resurrect, and there is deep, deep trouble. One encounters the same difficulties when 

trying the opposite strategy of making the topology coarser. For then, it is not 

impossible to end with the indiscrete topology. So it seems that these kinds of 

strategies should not be considered. 

Another possibility is to restrict f to a subspace of X, say A, and hope for the 

best. If both dom( f) and range(f) are subsets of A, then nothing of importance 

happened. However, if we choose A in such a way that 

forsomexEdom(f)nA: f(x)&A, (1) 

i.e., f r A is not a function of A into itself, then, by restricting our attention to A, 

we successfully killed J Of course, if the killing off is part of a mass-murder, then 

we have to prevent f from resurrecting. That is simple. We make sure that the point 

x in (1) is not removed from A later on, while moreover the point f(x) is never 

added to A. 

We just described Sierpinski’s technique of killing homeomorphisms. 

2. Definitions 

As usual, R abbreviates the reals, Q the rationals, $ the irrationals, N the set of 

natural numbers, and Z the set of integers. 

The symbol “X = Y” means that X and Y are homeomorphic spaces. The closure 

of a set A c X is denoted by A. If X is a space, then R(X) denotes the group of 
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all homeomorphisms of X. The identity function on X will be denoted by lx. We 

say that X is homogeneous (or, topologically homogeneous) if for all x, y E X there 

exists f~ x(X) such that f(x) = y. 

As usual, a cardinal is an initial ordinal and an ordinal is the set of smaller 

ordinals. The domain and range of a function f will be denoted by dam(f) and 

range(f), respectively. If A and B are sets, then AB denotes the set of all functions 

from A to I?. If X is a set and K is a cardinal number, then, as usual, 

[Xl<, = {AE S?(X): IAl < K}; 

[Xl- = {A E p(X): IAl s K}; 

[XIK = {A E p(X): IAl = K}. 

Recall that a Cantor set is a space homeomorphic to the Cantor discontinuum “2. 

Observe that 2(“2) = “(“2) -w 2. Consequently, each Cantor set contains a family 

of c pairwise disjoint Cantor sets. In particular, for every Cantor set K and for 

every countable set E E K there exists a Cantor set Lc K which misses E. This 

fact will be used without explicit reference throughout the remaining part of this 

paper. 

If G is a group and A c G, then ((A)) denotes the subgroup of G generated by A. 

Let G be an Abelian group. A subset A of G is called algebraically independent 

if for all a,, . . . , a,, E A and m,, . . . , m, E Z we have 

i m,.a,=O j m,=...=m,=O. 
i=l 

It is easy to see that each Cantor set K c [w contains an algebraically independent 

Cantor set L [9, p. 4771. 

For every space X, let B(X) denote the collection of Bore1 subsets of X, i.e., 

%3(X) is the q-algebra generated by the open subsets of X. If Y is a subspace of 

X, then for every B E %‘( Y) there clearly exists an element B’ E 95’(X) such that 

B’n Y= B. 

3. Tools 

The technique works best with separable metrizable spaces. The following well- 

known results, the proofs of some of which we will include for the sake of complete- 

ness, will be important in our constructions: 

3.1. Theorem [14; 5, Theorem 4.3.201. Let X be a space and let Y be a completely 

metrizable space. If A E X and if f: A + Y is continuous, then there is a G,-subset 

A G A such that f can be extended to a continuous function f: A + Y. 
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3.2. Theorem [ 14; 5, Theorem 4.3.211. Let X and Y be completely metrizable spaces, 

let A G X and B c Y. Then for every homeomorphism h : A + B there are GA-subsets 

A”ofXand~ofYwithA~AcAandB~~~Bsuchthathcanbeextendedtoa 
__ I 

homeomorphism h : A+ B. 

3.3. Corollary. Let X be a completely metrizable space, and let Y s X. If S and Tare 

Bore1 sets of Y and tff: S+ T is a homeomorphism, then there exist Bore1 sets s^ and 

? of X such that 

(1) Sn Y=Sand ?n Y= T; 

(2) f can be extended to a homeomorphism j: s^+ i? 

Proof. Let S, f be elements of 93(X) such that s”n Y = S and ?n Y = T. By 

Theorem 3.2, there exist G,-subsets A, B E X containing S and T, respectively, such 

that f can be extended to a homeomorphism g : A+ B. Put s^ = s”n g-‘( B n f). 

Observe that S is a Bore1 set of X and that S n Y = S. Also, ? = g(S) is a Bore1 set 

ofBsuchthat ?nY=T.Putj=g]S. Cl 

3.4. Theorem [22; 5, Theorem 6.1.271. Zf X is a continuum and if& is a partition of 

X into countably many closed sets, then at most one element of ti is nonempty. 

We will also need the following result, basically due to Souslin, cf. Kuratowski 

and Mostowski [13, p. 4371 (see van Douwen [2,4.2]). 

3.5. Theorem. Let X be a separable completely metrizable space and let BE 98(X). 

Let 9 be a countable family of continuous functions from B to a space Y such that 

for every countable A c Y: {f-‘(A): f E 9} does not cover B. 

Then there exists a Cantor set K s B such that f 1 K is injective for each f E 9. 

Proof. There exists a continuous surjection 5: P’+ B [13, p. 4261. For every f E 4 

put J= f 0 5. Let M E P be maximal with respect to the property that 7 1 M is 

injective for each f E 9. We claim that M is uncountable. Suppose the contrary, 

and put 

A= u f(M). 
ft Y 

Then A is countable, so by assumption there exists x E X such that 

x gl_Jpf -‘(A). 
t” 

Then, for p E t-‘(x), p g M and f ] M u {p} is injective for each f E 9. This contra- 

dicts the maximality of M. Since each separable metrizable space is the union of a 

countable set and a set which is dense in itself (this is the so-called Cantor-Bendixson 

Theorem; for details, see [5, Problem 1.7.11]), the uncountability of M implies that 
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there is a dense-in-itself set P c_ M. Now enumerate 9 as (fn : n E w) such that every 

f~ 9 is listed infinitely often. Let p denote an admissible complete metric on P. 

For each XE$ and s>O, let B(x,~)={a~$:~(a,x)<~}, and D(x,E)= 

{a E $: p(a, x) s E}, respectively. Using finite disjoint unions of balls about points 

of P, we may construct a Cantor set 2 in the complete space P by the standard 

procedure; a little extra care will ensure that 7 1 Z? will be injective for each f~ R 

It suffices to describe the first two steps in the inductive construction. 

Pick two distinct point p. and p, in J? Since &( po) # f,( p,), there exists 0 < Q, < 1 

such that 

&(D(P o, eo)) do(D(p,, ~011 = B. 

Put Do= D(p,, eO) u D(p,, EJ. Since P is dense-in-itself, there exist two distinct 

points po,o and po,, in P n B( po, Ed). Similarly, pick two distinct points P,,~ and p,,, 

in P n B( p, , .so). Since 7, is one-to-one on P, there exists 0 < E, < $ such that the 

collection 

~,(D(Po,o, e,)), ~,(D(Po,, , &,)I, .?,U’(P,,O, &,)I, _~,V’(P,,, , &,)I 

is pairwise disjoint. Put D, = D(p,,,, E,)U D(p,,,, e,)u D(p,,,, e,)u D(p,,,, E,). It 

is clear that we may choose E, so small that D, E Do. 

Continuing with this procedure in the standard manner, we obtain a nested 

sequence (D,), of closed sets in iP. Let Z? = n,, D,. The requirements of the type 

D( ~0.0, &,) u m PO., 9 E,) c Do and D(p,.,, E,) n D(p,,, , E,) = 0, together with the 

requirement that F, +O and the fact that p is a complete metric, show that Z? is a 

Cantor set. The requirements of type 

fi(D( ~0.0. 4) nf,(D(po,,, E,)) =0 

show that f ] Z? is injective for each f E 9: observe that each f~ 9 is dealt with 

infinitely often. Now put K = ,$(I?). Then K is clearly as required. 0 

3.6. Corollary [8; 1; 13, p. 4271. Let S be a Bore1 set of a separable completely metrizable 

space. If S is uncountable, then S contains a Cantor set. 

Proof. Apply Theorem 3.5 with 9 consisting only of one function, namely the 

identity function on S. 0 

Let X be a separable completely metrizable space. A subset A of X is called a 

Bernstein set if A contains no uncountable compact subsets. In addition, A is called 

a BB-set if both A and X\A are Bernstein sets (BB stands for bi-Bernstein). Since 

every uncountable compact subset of X contains a Cantor set (Corollary 3.6), it 

easily follows that A is a BB-set if and only if, for every Cantor set K E X, 

AnKf@f(X\A)nK. 
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3.7. Lemma. Let X be a separable, completely metrizable, dense-in-itself space. If 

YE X is a BB-set, then Y is a Baire space. 

Proof. Let S be a dense G,-subset of X. Then the Baire Category Theorem implies 

that S is uncountable. So by Corollary 3.6, S contains a Cantor set, say K. By 

assumption, Y n S 2 Y n K # 0. So Y intersects every dense G,-subset of X, and 

therefore is a Baire space. 0 

3.8. Lemma. Let X be a separable, completely metrizable, dense-in-itself space. If 

Y G X is a BB-set, then 1 Y/ = c. 

Proof. Since X is dense-in-itself, X is uncountable and hence contains a Cantor 

set (Corollary 3.6). This Cantor set contains a family consisting of c-many pairwise 

disjoint Cantor sets, each member of which has to intersect Y. This proves that 

1 YI 2 c. That (Y( s c is trivial because Y is a separable metrizable space. 0 

3.9. Lemma. Let X be a separable, completely metrizable, dense-in-itself space. If 

Y G X is a BB-set and if B is a Bore1 set in X such that B n Y = 0, then B is countable. 

Proof. If B were uncountable, then it would contain a Cantor set by Corollary 3.6 

and so it would intersect X. 17 

Recall that the Sorgenfrey line s has [w as underlying set, and topology generated 

by the collection 

[X,X$_&) (XER,&>O). 

A network for a space X is a collection 3 of subsets of X such that for every x E X 

and for every neighborhood U of x there exists BE 93 such that x E B G U. If X is 

a separable metrizable space, then X has a countable base, so X has a countable 

network. More generally, if X is a continuous image of a separable metrizable space 

Y, then X has a countable network. To see this, let f: Y+ X be a continuous 

surjection, and let 2? be a countable base for Y. Then % = f( %) is a countable 

network for X. 

3.10. Lemma. If As s has a countable network, then A is countable. 

Proof. Let ?2 be a countable network for A. Assume that A is uncountable. For 

every a E A pick an element B, E 93 such that 

aEB,c[a,a+l). 

Since A is uncountable, there are distinct a, a’E A such that B, = B,.. Without loss 

of generality, assume that a’ < a. Then 

a’EB,9=B,c[a,a+1), 

so a’> a. This is a contradiction, 0 
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3.11. Corollary. If A c_ S is metrizable, then A is countable. 

Proof. Consider A to be a subspace of R and let D be a countable dense subset of 

A. It is easy to see that D is also dense in the Sorgenfrey topology on A. Consequently, 

A is a separable metrizable subset of s, and consequently has a countable base, so 

a countable network. Now apply Lemma 3.10. 0 

We will now describe a useful technique of compactifying a dense subset of the 

interval (0, 1). So assume that A c (0, 1) is dense. We split each x E (0, l)\A into 

two points, x- and x+. The points of A will not be split. Order the set 

S(A) = (0, 1) u Au {x-, x+: x E (0, l)\A} 

in the natural way, so that x- always precedes x+. Endow S(A) with the order 

topology derived from this order. Then S(A) is easily seen to be a compact ordered, 

zero-dimensional space. In addition, A as subspace of R is precisely the same space 

as A as subspace of S(A). Moreover, the sets 

and 

{x-: x E (0, l)\A}, 

{xi: x E (0, l)\A}, 

are both homeomorphic to subspaces of S. Finally, observe that S(A) is first 

countable. 

3.12. Lemma. Let A c_ (0, 1) be dense, and let f: S(A) + S(A) be a homeomorphism. 

Then there is a countable subset BE A such that f(A\B) = A\B. 

Proof. Put B = {a E A: (3n E Z)(f”(a) E A)}. Then by Corollary 3.11, B is countable, 

and clearly f( A\ B) = A\ B. 0 

4. A rigid homogeneous chain 

An ordered set is sometimes called a chain. The aim of this section is to prove 

that there exists an ordered set (X, s) with the property that for all x, y E X there 

exists a unique order-isomorphism f: X + X sending x to y. Of course Z has this 

property, so to make the result interesting, we want it also to be densely ordered. 

Such an ordered set is called a rigid homogeneous chain. It is called homogeneous 

for obvious reasons, and rigid because for every x and y in X there is only one 

isomorphism that takes x onto y. 

It can be shown that every rigid homogeneous chain is isomorphic to a subgroup 

of (W, +) ([20]; see also [6]). We will construct a rigid homogeneous chain in R by 

killing certain functions between Cantor sets. For later use, we will describe a killing 

process in (Rk, +) for arbitrary k. 
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So from now on in this section, let G = (Rk, +). Let K be a Cantor set, and 

consider the collection 

.‘X = {(J; g): f; g : K + G are embeddings and the functions 

f+ g andf- g are one-to-one}. (2) 

Observe that if (f; g) E Yt, then also (g,f) E Yt. For every (f; g) we would like to kill 

the homeomorphism g of-’ :f(K) + g(K), or if that is not possible, its inverse, 

namely the homeomorphism fo g-’ : g(K) +f( K). 

Observe that if A and B are separable metrizable spaces, then the number of 

continuous functions from A to B is at most c. It follows that 1x1 s c, so we can 

enumerate it as 

{(fa, g,): a <cl 

(repetitions permitted). Let 2 be an arbitrary countable subgroup of G, and let Q 

be an arbitrary countable subset of G\(O) disjoint from Z. These sets will play no 

role in this section, but they will become important later. By transfinite induction 

on (Y <c, we will pick a point x, E K and points pa, qa E G\(O) such that 

(1) {P,z, qal=K(xa), g,(x,)); 

(2) (({PO: P ~a}uZ))n({qp:~~cu}uQ)=O. 
(Observe that the subgroup of G that we are going to construct, will contain Z but 

will have empty intersection with Q. This will give us a little freedom later.) So 

assume that we picked x0, pP and q. for every p < LY <c (possibly, LY = 0). For 

convenience, put A=(({p,: p<(~}uZ)), V={q,: P<CY}U Q, f=_L and g=g,, 

respectively. Observe that max{lAl, 1 VI} s IcyI . w CC. 

4.1. Lemma. E, = {x E K: ((f(x) u A)) n V # 0} has cardinality less than c. 

Proof. For every x E E, there exists n, E Z such that n, *f(x) E V-A. Since A n V = 

0, V-A c G\(O), so always n, # 0. Then for every x E e,, 

1 
f(x)~--(V-A)E~P.(V-A). 

n, 

Since (0 * (V-A)1 CC, and f is one-to-one, we are done. 0 

By precisely the same argumentation one obtains: 

4.2. Lemma. E, = {x E K: ((g(x) u A)) n V # 0) has cardinality less than c. 

We now come to the crucial step in our argumentation. 

4.3. Lemma. If F G K has cardinality c, then there exists x E F such that f(x) & 
((k(x)lu 4) or g(x)a(({f(x)lu 4). 
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Proof. Fix an arbitrary F c K such that IF( = c and assume that for every x E F, f( x) E 

(({g(x)) u A)). Let K = IAl . co. Then IZ x Al = K <c, so there are an n E Z, an element 

a E A, and a subset fi c F of cardinality greater than K such that for every x E F, 

f(x) = n. g(x) + a. Since the functions f-t g and f-g are both one-to-one, IAl s K 

and IP( > K, n # 1 and n # -1. We claim that there exists an element x E fi such that 

g(x) & (({f(x)} u A)). Assume the contrary. Since IpI > K and IZ x Al = K, there are a 

subset P of P of cardinality greater than K, an m E Z, and an element a E A, such 

that for every x E F, g(x) = m . f(x) + a. Now pick an arbitrary element x E fi Then 

f(x)=n~g(X)+a=n~m~f(x)+n~a+a. 

Put a’= n. a + a. Then for every x E F, (nm - l)f(x) = g. If nm - 1 = 0, then InI = 1, 

which is impossible by the above. So nm - 1 # 0. This clearly contradicts the fact 

that .f is one-to-one. Cl 

Let E,- and E, be as in Lemma 4.1 and Lemma 4.2, respectively. Let F= 

K\( e, u &). Without loss of generality we assume that there exists x E F such that 

f(x)a(({g(x)}u A)) (Lemma4.3). Now put x, = x,p, = g(x,), and qCf =f(x,), respec- 

tively. It is clear that our choice of x,, is as required. This completes the transfinite 

construction. Put X = (({ pu : a < c} u Z)). 

We now formulate and prove a curious property of X. 

4.4. Theorem. Let S, T c X be Bore1 sets and let f : S + T be a homeomorphism. Then 

there is a countable subgroup A of X such that for every x E S there exists a E A such 

thatf(x)=x+a orf(x)=-x+a. 

Proof. By Corollary 3.3, there exist Bore1 sets s^ and ? in G such that in X = S 

and I?n X = T, while moreover f can be extended to a homeomorphism j: g-+ ? 

Let E E 3 be maxima1 with respect to the properties that the functions 6, n : E + G, 

defined by 

5(x) =x+?(x); 

77(x) = x-?(x), 

are one-to-one. 

Claim. E is countable. 

To the contrary, assume that E is uncountable. Let i: g+ 3 denote the identity. 

Since the functions i, 5 and 77 are one-to-one on E, and E is uncountable, by 

Theorem 3.5 there exists a Cantor set Ls 4 such that i, 5 and r) are one-to-one on 

L. By considering an arbitrary homeomorphism between K and L we can now 

define in the obvious way an element of 7C. Consequently, by construction, there 

exists x E L such that either x E X and f(x) & X, or f(x) E X and x g X. Suppose 

first that x E X and j(x) E X. Then x E dom( f ) n X = 4 n X = S. But now we contra- 

dict the fact that ,p extends f so that j(x) =f(x) E X. Next, suppose that p(x) E X 
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a_nd x @ X. T_hen j(x) E ? n X = T. Consequently, there exists y E S such that f( y) = 

f(x). Sincef extendsJ;f( y) =f(x). But this contradicts the fact that? is one-to-one. 

So we conclude that E is countable. Now let F = ((E u?(E))). Take an arbitrary 
A 

element x E S\ E. Then by maximality of E, 5 1 E u {x} or 77 1 E u {x} is not one-to- 

one. So assume e.g. that there exists e E E such that t(e) = t(x). Then 

x+_?(x) = e+?(e), 
1 

which implies that x +f(x) E F. If r] 1 E u {x} is not one-to-one, then similarly, 

x-j(x) E F. Moreover, if x E E, then j(x) E F so in that case we also have x -p(x) E 

F. It is now clear that for the required countable subgroup of X we may take F n X. 
Simply observe that for every XE S we have f(x) =f(x) and both f(x)+x and 

f(x) -x belong to X. 0 

We proceed by deriving another important property of X. 

4.5. Proposition. X is a BB-set. 

Proof. Let C s G be a Cantor set. Pick an algebraically independent Cantor set 

LG C. Now take disjoint Cantor sets A, B G L. It easily follows that iff: K + A and 

g : K + B are homeomorphisms, then (J; g) E .?C. By construction it therefore follows 

that Au B intersects both X and G\X. 0 

We are now prepared to derive the main result in this section: 

4.6. Theorem [20]. R contains a dense rigid homogeneous chain. 

Proof. In this proof we assume X to be constructed in R. We claim that X is a 

rigid homogeneous chain. Take arbitrary x, y E X. Since X is a subgroup, the 

translation 

P-P+(.)-x) (PEX) 

is an order-isomorphism of X that takes x to y. This proves that X is homogeneous. 

It remains to verify that X is rigid. 

Claim. If f is an order-isomorphism of X, then f is a translation. 

By Theorem 4.4 there exists a countable subgroup A of X such that for every 

x E X there exists a E A such that f (x) = x + a or f (x) = -x + a. There also exists an 

order-isomorphism cp of R that extends f: For every a E A and E E (-1, l} put 

Sf,={xER: cp(x)=e.x+a}. 

It is clear that for every a E A and F E { 1, -l}, S: is closed in R. Also, the collection 

of all Sz covers X. Consequently, 

Y = lR\u {Sz: F E (-1, l}, a E A} 



Sierpirkki’s technique and subset-v q/ R 251 

is a G,-subset of R that misses X. Since X is a BB-set (Proposition 4.5), we conclude 

that Y is countable (Lemma 3.9). 

Fix a E A and assume that there exist two distinct elements x, y E S;‘. Without 

loss of generality, x < y. Then 

q(y)=-y+a<-x+a=cp(x) 

contradicts the fact that cp is an order-isomorphism. So each Si’ contains at most 

one point. Now put 

B=Au Yu u S;‘. 
<I c A 

Then B is countable, and we claim that there exists a countable subgroup 
. ,. 

which contains B such that cp( B) = B. Indeed, inductively define subsets 

(n 6 w) as follows: 

B,,=B and B,,+,= 
t 

Lz cp”(B,) ’ 

Then 6 = Unt, B, is clearly as required. 

6 OfR 

B, c R 

We claim that for every x E R we have q(x) -x E B. This is clear for the elements 

in 6. So take an XE l?. Then there exists a E A such that x E Sf,. Consequently, 

q(x)-x=a~Ac Bck. 
The function g : R + R defined by g(x) = q(x) -x is continuous and has countable 

range. Consequently, g is constant, i.e., f is a translation. 0 

The following question still seems to be open, cf. [6]. 

4.7. Question. Is there a rigid homogeneous chain X c R such that X is Lebesgue 

measurable? 

5. A subgroup of Iw with a measure that “knows” which Bore1 sets are homeomorpbic 

Let X c R be a BB-set. Our aim is to define a natural Bore1 measure on X. To 

this end, let p denote Lebesgue measure on R, and let +* denote the inner measure 

induced by p, i.e., for every subset E G R, 

~.~.+.(E)=sup{p(B): BE 93(R) and BG E}. 

We claim that ~.,(R\X) = 0. To this end, pick B E 93(R) such that B c R\X. Then 

B is countable by Lemma 3.9, so p(B) = 0. This proves our claim. It now follows 

from Halmos [7, p. 751 that the following defines unambiguously a Bore1 measure 

j.i on X: 

if BE 93(X), B’E S’(R) and B’nX = B, then h(B) =p(B’). (3) 
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From now on, for a BB-set X, F denotes the Bore1 measure on X defined in (3). 

5.1. Theorem [2]. There exists a subgroup X of I$ with the following property: 

ifs, TE 3’(X) and ifs- T, then b(S)=@(T). 

Proof. Let X be the subgroup of R constructed in the previous section. Then X is 

the required example. To prove this, let S, T E 93 (X) and let f : S + T be a homeo- 

morphism. By Theorem 4.4 there is a countable subgroup A of X such that for 

every x E S there exists a E A such that f (x) = x + a or f (x) = -x + a. For every a E A 

and E E {-1,l) put 

Observe that each Si’ is closed in S, and hence is a Bore1 subset of X. Since f is a 

homeomorphism, f(SE) is a Bore1 subset of T, so f( Sz) is also a Bore1 subset of X. 

Finally, observe that f restricted to Sz is equal to the identity or the function x H -x, 

followed by a translation. Both these functions preserve measure, i.e., 

/I(SZ) = @(f(X)) (a E A, E E i-1,1)). (*) 

Claim. Zf u, a’E A are distinct and e, 77 E (-1, l}, then S: n Sz. undf(Si) n f (Sz,) are 

countable. 

Take an arbitrary x E Sz n S,“,. Then 

e*x+a=f(x)=r].x+a’. 

So e # r] for otherwise a = a’. But this now easily implies that x E Cl! . A, which is 

countable. The second part of the claim is a triviality because f is one-to-one. 

Since countable subsets of X have measure 0, the Claim now implies that 

P(S)= C P(SZ), and P(T)= C P(f(X)). 
l?tA CIEA 

FF{-I,l) Et(-l,l) 

By (*) we therefore obtain FL(S) = F(T), as required. 0 

Observe that this is a very curious result. For example, let A = (0, 1)nX and 

B = (0,2) n X. Then clearly b(A) = 1 and p(B) = 2. One would expect A and B to 

be homeomorphic, via a homeomorphism of type x ++ 2 . x. Theorem 5.1 disproves 

this. It is illustrative to find out precisely where in the construction we killed each 

candidate for a homeomorphism between A and B, such as x ++ 2 . x. 

5.2. Corollary. There exists a subgroup X of [w which is a BB-set such that if Y = R\X, 

then Y has the following property: 

IfS,TE%l(Y) andjfS=T, then$(S)=b(T). 
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Proof. Let X be such as in the proof of Theorem 5.1. By Corollary 3.3 there exist 

Bore1 sets S and ? in R such that S n Y = S and ? n Y = T, while moreover f can 

be extended to a homeomorphism f^: s^ + ? Observe that f^( S\S) = ?\ T. By Theorem 

5.1 we therefore obtain the following: 

We are done. 0 

6. The Homogeneity Lemma and applications 

In this section we discuss a criterion for proving homogeneity of certain spaces. 

Let X be a zero-dimensional space. We say that two points x and y have arbitrarily 

small homeomorphic clopen neighborhoods if for all neighborhoods U and V of x 

and y, respectively, there are clopen neighborhoods U’ of x and V’ of y with U’c U 

and V’ G V such that U’ = V’. Observe that we do not require the homeomorphism 

between U’ and V’ to map x onto y. 

6.1. Lemma [ 161. Let X be a zero-dimensionalfirst countable space. If x, y E X, then 

the following statements are equivalent: 

(1) there is a homeomorphism h : X + X with h(x) = y; 

(2) x and y have arbitrarily small homeomorphic clopen neighborhoods. 

Observe that the first countability in this lemma is essential. If X = po\w, then 

all clopen subsets of X are homeomorphic, so X satisfies condition (2) of Lemma 

6.1 for all x and y, but X is not homogeneous. For details, see [18]. 

From now on we refer to Lemma 6.1 as the “Homogeneity Lemma”. 

Let G be a dense subgroup of [w and let X be a proper subset of R such that 

X + G = X. Then clearly R\X is dense. We now construct a locally compact extension 

of R\X, similar to the spaces S(A) defined in Section 3. We split each x E X into 

two points, x and x+. The points of R\X with not be split. Order the set 

T(X) = (R\X) u {x-, x+: x E X} 

in the natural way, so that x- always precedes x+. Endow T(X) with the order 

topology derived from this order. Then T(X) is easily seen to be a locally compact, 

zero-dimensional first countable space. In addition, R\X as subspace of [w is precisely 

the same space as iR\X as subspace of T(X). Moreover, the sets 

and 

{x+: x E X}, 

{x-: x E X}, 

are both homeomorphic to subspaces of !5. Our aim is to prove that T(X) is 

homogeneous. 
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It will be convenient to introduce some notation. A basic clopen subset of T(X) 

is an interval of the form [a+, 6-1, where a, b E X and a < b. We call such clopen 

sets clopen arcs. The length of a clopen arc [a+, b-1 is b - a. 

6.2. Lemma. Let [a+, b-1 and [c+, d-1 be clopen arcs such that c - a = d - b E G. 

Then [a+, b-1 and [c+, d-1 are order-isomorphic. 

Proof. Put g = c - a. Define h : [a+, b-1 -+ [c+, d -1 as follows: 

if a+<y<b-, y~[w\X, then h(y)=y+g; 

if a+txx+<bP, XEX, then h(x+)=(x+g)+; 

if a+<xPsb-, XEX, then h(x-)=(x+g)). 

Since X + G = X, it is clear that h is a well-defined order-isomorphism. 0 

We now come to the main result in this section, which is implicit in [2]. 

6.3. Theorem. Let G be a dense subgroup of R and let X be a proper subset of R such 

that X + G = X. Then T(X) is homogeneous. 

Proof. Take p, q E T(X). In view of the Homogeneity Lemma 6.1, all we need to 

prove is that these points have arbitrarily small homeomorphic clopen neighbor- 

hoods. To this end, let U and V be arbitrary neighborhoods of p and q, respectively. 

We have to distinguish several cases: 

Case 1: p, q E R\X. There clearly exist x, y E X and g E G such that 

x<pcy and x+g<q<y+g, 

while moreover 

[x’,y-]c- U and [(x+g)+,(y+g))]c_ V. 

So we are done by Lemma 6.2. 

Case 2: p E R\X and q = a- for certain a E X. There clearly exist h, g E G\(O) such 

that 

[(a-s)+,a-lc_ v, a-g-h<x<a-h and 

[(a-g-h)+,(a-h)-1s U. 

So we are again done by Lemma 6.2. 

The remaining cases are left as exercises to the reader. 

Case 3: p=a andq=b forcertain a,bEX. 

Case 4: p = a and q = b+ for certain a, b E X. 

Case5: p=a+andq=b+forcertaina,bEX. 0 

6.4. Lemma. Let X be zero-dimensional and homogeneous. Then every clopen subspace 

of X is homogeneous. 
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Proof. This is easy. Let C c X be clopen and pick distinct x, y E C. Let f: X + X 

be a homeomorphism such that f(x) = y. There exists a clopen neighborhood U of 

x such that U nf( U) = 0 and U uf( U) c C. Now define 5: C + C as follows: 

It is clear that 5 is a homeomorphism such that t(x) = y. 0 

So by Theorem 6.3 and Lemma 6.4 we obtain: 

6.5. Corollary. Let G be a dense subgroup of R and let X be a proper subset of R 

such that X + G = X. Then every clopen arc of T(X) is homogeneous. 

6.6. Question (Aarts). Does there exist a homogeneous space X containing a clopen 

subspace Y such that Y is not homogeneous? 

7. A homogeneous compact space with a measure that “knows” which Bore1 sets are 

homeomorphic 

In Section 5 we constructed a subgroup of aB having a measure that “knows” 

which Bore1 sets are homeomorphic. This space is not compact of course. We would 

like to get a compact example. There exist of course infinite compact spaces which 

have a nonzero Bore1 measure invariant under all homeomorphisms: simply take 

one which is rigid [ll, lo]. So to make the result nontrivial, we want it to be 

homogeneous. The aim of this section is to construct an infinite compact 

homogeneous space with a Bore1 measure 6 invariant under all homeomorphisms. 

It turns out that fi really knows which clopen subsets are homeomorphic: two clopen 

subsets are homeomorphic if and only if they have the same measure. 

Let X be the rigid homogeneous chain constructed in Section 4. Recall that we 

constructed X in such a way that X contained a pre-given countable subgroup Z 

of I&!, and missed a pre-given countable subset Q of iR\{O} which is disjoint from 

Z. We now specify Z and Q by taking Z = Z and Q = O\Z. Observe that this implies 

that 

Xn(O,l)nQ=(d. (4) 

Also recall that X is a subgroup of [w, and also that X is a BB-set (Lemma 4.5). 

The space T(X) is homogeneous by Theorem 6.3. In addition, since 0,l E X, the 

clopen arc [O+, 1-l of T(X) is also homogeneous by Lemma 6.4. Put D = ([w\X) n 

(0, 1). Observe that the arc [O+, 1-1 is equal to S(D), the compactification of D 

constructed in Section 3. We already observed the following important: 



7.1. Theorem. S(D) is homogeneous. 

Since X is a BB-set, so is rW\X, so in Section 5 we defined a natural Bore1 measure 

@ on rW\X. The restriction of b to D will also be denoted by @. We will use @ to 

define a natural Bore1 measure F on S(D). Indeed, define 

E(B)=@(BmD) (BzS(D)Borel). 

7.2. Theorem. Let S and T be homeomorphic Bore1 sets in S(D). Then G(S) = G(T). 

Proof. Let f: S+ T be a homeomorphism. Put B = {d E D n S: f(d) & D}. Then by 

Corollary 3.11, B is countable. In addition, let C = {d E D n T: f”(d)& D}. Then 

again by Corollary 3.11, C is countable. Since f((Dn S)\B) = (Dn T)\C, by 

Corollary 5.2 we obtain 

fi(DnS)=p((DnS)\B)=fi((Dn T)\C)=fi(Dn T). 

Consequently, G(S) = F(T), as required. 0 

We now aim at a partial converse to Theorem 7.2. Before we can formulate what 

we mean, we need to derive the following: 

7.3. Proposition. Let [a+, b-1 and [c+, d-1 be clopen arcs in T( Y) such that b - a = 

d-c. Then [a’,b-]=[c+,dP]. 

Proof. Since X is dense in [w, there is z E X such that 

d-(b+z)<$(d-c). (*) 

Observe that b, c E X implies c - z, b + z E X. So we can consider the clopen arcs 

[a+, (c-z)-] and [(b+z)+, d-1. 

These arcs have the same length, while moreover the clopen arcs 

(**) 

[(c-z)+, b-1 and [c’,(b+z)-] 

are order-isomorphic by Lemma 6.2. By (*), the clopen arcs in (**) have length less 

than i times the length of the arcs we started with. So by repeating the same 

construction infinitely often, we can easily construct a partition (A,), of (a+, b-1 

into clopen arcs, and a partition (B,), of [c+, d-) into clopen arcs, such that for 

every n, A, = B,. From this we conclude that (a+, b-1 = [c+, d-). Since [a+, b-1 is 

the one-point compactification of (a+, b-1, and similarly since [c+, d-1 is the 

one-point compactification of [c+, d -), we conclude that [a+, b-1 = [c+, d -1. (Recall 

that each homeomorphism between locally compact spaces extends to a homeo- 

morphism between their respective one-point compactifications.) 0 
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7.4. Corollary. Let E G S(D) be clopen and nonempty. 

LO+, F(E)-I. 
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Then ~.I(E)EX and E= 

Proof. It is clear that E is the union of a finite family of pairwise disjoint clopen 

arcs, say 

[a:, aJ, [a:, ad,. . . , [aLI, ail. 

Without loss of generality we may assume that 

a,‘<a~<a~<a~<~~~<a~_,<a~. 

For every 1 G i C n put 

bi = a, -a,_, 

and let 

b= i bi. 
i=l 

Then b < 1 and F(E) = b. Since X is a subgroup of R, for every i, bi E X and also 

b E X, i.e., the clopen arcs 

[O+, b;l, Lb:, (b, + WI,. . . , [(Ii; bi)-.b+] 

exist. By Proposition 7.3, it now follows that E is homeomorphic to [0’, b-1. 0 

This result is the key in the proof of the following interesting: 

7.5. Theorem. If E and Fare clopen subspaces of S(D), then 

E=F ifs t.?(E)=fi(F). 

Proof. By Theorem 7.2, it suffices to prove sufficiency. Without loss of generality 

assume that E # (b # F. So F(E) = tZ( F) > 0. By Corollary 7.4, E is homeomorphic 

to [O+, F(E))] and F is homeomorphic to [O+, F(F))]. So we are done. 0 

We summarize the results obtained so far in this section: 

7.6. Theorem [2]. There exists a compact zero-dimensional homogeneous space S(D) 

having a nonzero Bore1 measure fi with the following properties: 

(1) if S and T are homeomorphic Bore1 sets of S( D), then tI( S) = p( T); 

(2) ifE,FsS(D) areclopen, then E=FiflF(E)=p(F). 
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We finish this section by establishing a few other curious properties of S(D). 

7.7. Theorem. Zf E G S(D) is clopen and d;l# E # S(D), then E(E) is irrational. 

Proof. By Corollary 7.4, F(E) E X. Also, 0 # p(E) # 1. So we are done by (4). 0 

So S(D) has the amusing property that since it has no clopen subspace of measure 

4, no clopen subspace of it is homeomorphic to its complement. In [2], van Douwen 

claimed to be able to construct a space CC with this property, but did not give 

details; presumably because his space CC is not perfectly normal. Our construction 

of S( D) differs essentially from van Douwen’s spaces bH and cG: in our construction 

it is a triviality to build in that all proper nonempty clopen sets have irrational 

measure, while moreover S(D) is clearly perfectly normal (it is a separable ordered 

space). Another reason why we find S(D) more interesting than bH and CC is the 

following. It is still unknown whether there exists a compact homogeneous zero- 

dimensional space with the fixed-point property for homeomorphisms. Although 

S(D) does not seem to answer this problem, we can prove the following: 

7.8. Theorem. Let h : S(D) + S(D) be a homeomorphism such that h 0 h = 1 s( [,, Then 

h has a jixed point. 

Proof. To the contrary, assume that h has no fixed point. Let U = 

{x E S(D): x < h(x)}, and V = {x E S(D): h(x) <x}, respectively. Then U and V are 

complementary clopen sets, and h(U) = V because h 0 h = l,(,,. Consequently, 

g(U) = F( V) = $ (Theorem 7.2). This contradicts Theorem 7.7. (Observe that such 

a simple argument does not work if the space under consideration is not ordered.) cl 

7.9. Question (van Douwen and van Mill). Is there a zero-dimensional 

homogeneous compact space with the fixed-point property for homeomorphisms? 

Below we will present an example of a locally compact zero-dimensional 

homogeneous space with the fixed-point property for homeomorphisms. 

A space X is said to be halvable if it contains a subset homeomorphic to its 

complement. A space with precisely one isolated point, or with precisely one 

nonisolated point, is of course not halvable. There also exist spaces without isolated 

points that are not halvable. For example, consider the one-point compactification 

of the topological sum of the spaces Z, I’, . . . , I”, . . . . (Use a dimension argument.) 

The following question is still open: 

7.10. Question [4]. Is there a homogeneous metrizable (preferably: separable) space 

that cannot be halved? 

The reason that this question seems only of interest for metrizable spaces, is 

because of the following: 
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7.11. Example. There exists a locally compact, locally metrizable homogeneous 

zero-dimensional space X that cannot be halved. Moreover, X has the fixed-point 

property for homeomorphisms. 

Consider the ordinal space w, , and replace each isolated point by a copy of the 

standard Cantor set in [0, I]. Order the resulting set X in the natural way, and give 

it the order topology. Then X is locally homeomorphic to the Cantor set, and is 

therefore locally metrizable, zero-dimensional and homogeneous (apply Lemma 6.1, 

or use a direct argument). Observe that each initial segment of X is separable and 

metrizable. We will proceed to prove that X cannot be halved. Suppose that A c X 

and its homeomorphic image h(A) = B = X\A are two “halves”. Either CI <h(a) 

for all a in some unbounded subset of A, or the analogue holds for B and K’, so 

we may assume the former. Pick a sequence a,, u2,. . . in A such that 

let p = sup, ui and observe that p = sup; h(u,) = h(p), a contradiction. 

That X also has the fixed-point property for homeomorphisms follows by a similar 

argumentation. 

7.12. Question (van Douwen and van Mill). Is there a zero-dimensional separable 

metrizable space with the fixed-point property for homeomorphisms? 

Haar measure on a compact group has the property of being invariant under left 

and right translations, as well as under all topological isomorphisms, i.e., is invariant 

under all algebraically significant homeomorphisms. In view of Theorem 7.6 it is 

therefore natural to ask: 

7.13. Question (van Douwen). Does there exist an infinite compact connected 

topological group G such that every homeomorphism of G preserves Haar measure? 

8. A subgroup of R” with few homeomorphisms 

The author constructed in [17] an example of a topological group having no 

homeomorphisms other than translations. The aim of this section is to present a 

proof of the following related result: 

8.1. Theorem [12]. For every k > 1 there exists a subgroup G c R” such that, for each 

homeomorphism f : G + G, there exists a E G such that 

either f (x) = x + a for every x E G, 

or f (x) = -x + a for every x E G. 
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Proof. Let G be the subgroup of lRk constructed in Section 4 and let f: G+ G be 

a homeomorphism. By Theorem 3.1 there exists a G8-subset S of Rk such that f 
can be extended to a continuous function f: S -+ [Wk. In addition, by Theorem 4.4, 

there exists a countable subgroup A of G such that for every x E G there exists 

UEA such that f(x)=x+a or f(x)=-x+a. For every UEA and SE{-1, 1) put 

s~={XES:~(X)=F~X+a}. 

It is clear that every Sz is closed in S. 

Claim 1. lf (a, E) # (a’, E’), then Sz n Sz: is countubZe. 

Take an arbitrary x E Sz n SS;:. Then 

&‘X+u=f(x)=&‘~X+u’. 

So if E = F’, then a = a’. We may therefore assume that F f 8’. Consequently, 

x E Q . A, which is countable. 

Put v=U{S:nS::: (u,F)#(u’,E’)} and ~=U{SJ,:~EA,EE{-~,~}}, respec- 

tively. 

Claim 2. T = lR”\g is countable. 

First observe that T is a Bore1 subset of lRk, being the union of an F,- and a 

G,-subset of Rk. So T is countable by Proposition 4.5 and Lemma 3.9. 

Claim 3. At most one of the collection {Sz\ V: a E A, E E {- 1, 1)) is nonempty. 

Suppose that there exist distinct (a, E) and (a’, E’) such that there exist x E Sz\ V 

and y E S$\ V. Since x, y 6 V and since by Claim 2 the set T is countable, there is 

an arc J in Rk connecting x and y and contained in S\ V. (Here we use the fact 

that k > 1.) Consequently, J is partitioned by the collection 

{JnSE: UEA,EE{-1, l}}. 

Since this collection contains at least two distinct members, and consists of closed 

subsets of J, we contradict Theorem 3.4. 

So there exists a unique (a, E) for which Sz\ V is nonempty. Observe that Sz is 

a closed subset of S having countable complement. By another application of 

Proposition 4.5, every nonempty open subset of G is uncountable. So we conclude 

that SE = S, which is obviously as required. q 

Notes 

The construction in Section 4 is new. It has the advantage over the constructions 

in [20] and [6] that it simultaneously gives a rigid homogeneous chain as well as 

the examples in [2] and [12]. Also, for technical reasons it turned out to be simpler 

to split the points of X n [0, l] instead of splitting the points of its complement. 
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This is rather unusual, but it simplified the argumentation. The idea of splitting the 

points of a subset of R is well known of course. 

I am indebted to the referee for simplifying the proof of Example 7.11. 
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