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1. Introduction

There are two infinite-dimensional generalizations of the euclidean spaces Rn (n ∈
N) that are important in analysis: s = R∞, the countable infinite product of lines,
and `2, separable Hilbert space. For an analyst, these two spaces have very lit-
tle in common: s is locally convex, but not normable, and `2 is even a Hilbert
space. As a consequence, there cannot be a homeomorphism f : s → `2 that is
linear. For a topologist s and `2 are very similar. For example because they are
both topologically complete, infinite-dimensional, connected and locally connected,
nowhere locally compact, separable metrizable spaces, to mention a few topolog-
ical properties that they share. It was asked in [1928] by Fréchet and also by
Banach in [1932] whether s and `2 are topologically homeomorphic. Observe that
homeomorphisms need not be linear in topology.

The question of Fréchet was answered affirmatively by Anderson in [1966].
His proof was based on the result earlier obtained by Bessaga and Pe lczyński
in [1959] that `2 × s ≈ `2, and on the theory of deleting σ-compact sets from
products of the form X × s in Anderson [1967]. A more elementary proof was
later found by Anderson and Bing [1968].

The simplest proof of Anderson’s Theorem was found by Bessaga and Pe lczyń-
ski in [1969]. Their proof uses so called absorbing sets in the Hilbert cube Q as well
as Keller’s Theorem [1931] that all infinite-dimensional compact convex subsets
of `2 are homeomorphic. See also van Mill [1989, §6.6].

To explain what an absorbing set is, consider the subspace of rational numbers Q
in R. If one adds π to Q, i.e., if one considers the subspace E = Q∪{π} of R, then a
straightforward back-and-forth argument yields the existence of an order preserving
bijection f : Q → E, which can, of course, be extended to an order preserving
bijection f̄ : R → R. So Q and E are homeomorphic, via a homeomorphism that
extends to R. In other words, within R we can add a point of R to Q without
changing the topology of Q or, equivalently, Q can absorb a point of R. It can be
shown that a set C ⊆ R can be absorbed by Q if and only if C is countable. So sets
that can be absorbed are special: uncountable sets can (evidently) not be absorbed.
Also, it turns out that “absorbers” for R are unique: there is only one absorber.
If A is a countable subset of R that can absorb every countable subset of R, then
there is a homeomorphism f : R → R such that f(Q) = A. The assumption on
countability is essential in this result. It can be shown that if K ⊆ R is dense,
and a countable union of Cantor sets, then K has also the property that it can
absorb every countable subset of R; in fact it can absorb every zero-dimensional
σ-compact subset of R. Absorbing sets tend to absorb small sets: countable sets
in the case of Q and zero-dimensional sets in the case of K.

We now turn our attention to the Hilbert cube Q =
∏∞

i=1[−1, 1]i. It turns out
that Q has also a subset with an absorption property. The set we mean is

B = {x ∈ Q : |xi| = 1 for some i ∈ N},

the so-called pseudoboundary of Q. It can be shown that B can absorb every
countable subset of Q. But it can absorb much more. In fact, it can absorb
precisely the σZ-sets in Q, i.e., sets that are a countable union of Z-sets. For
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148 Dijkstra and van Mill / Infinite-dimensional spaces [ch. 3

details see Bessaga and Pe lczyński [1975] and van Mill [1989, Chapter 6].
Recall that a Z-set in Q is a closed set A ⊆ Q such that the identity function
1Q: Q → Q can be approximated arbitrarily closely by maps Q → Q \ A. There
also holds a uniqueness theorem here. If a σZ-set A can absorb every Z-set then
there is a homeomorphism f : Q → Q such that f(B) = A. So the property of
absorbing Z-sets in a sense characterizes the pseudoboundary B of Q.

The proof of Bessaga and Pe lczyński of Anderson’s Theorem now roughly goes
as follows. First consider the subspace

K =

{
x ∈ Q :

∞∑
i=1

x2
i ≤ 1

}
of Q. This space is the so-called elliptical Hilbert cube. That it is a Hilbert cube,
i.e., a space homeomorphic to Q, follows from Keller’s Theorem cited above. This
can also be shown directly by elementary means, van Mill [1989, §6.6]. Then it
is shown that the subspace

B̂ =

{
x ∈ K :

∞∑
i=1

x2
i < 1

}
can absorb arbitrary σZ-sets. By the above remark about uniqueness of absorbers,
it therefore follows that there is a homeomorphism of pairs (Q,B) ≈ (K, B̂). This
is quite interesting. The points of B are intuitively on the “boundary” of Q, while
the points of B̂ are intuitively in the “interior” of K. It follows that the subspace

Ŝ =

{
x ∈ K :

∞∑
i=1

x2
i = 1

}
is homeomorphic to s ≈ (−1, 1)∞, the complement of B in Q. On the unit sphere
S = {x ∈ `2 : ‖x‖ = 1} of `2, the topology of pointwise convergence coincides with
the subspace topology that S inherits from `2. As a consequence, S and Ŝ are
homeomorphic. It is an easy exercise to prove that `2 and S \ {(−1, 0, 0, . . .)} are
homeomorphic (Hint: Find an explicit homeomorphism between S1 \ (−1, 0) and
R). So we arrive at the following situation:

s ≈ Ŝ ≈ S,

`2 ≈ S \ {pt}.

It remains to prove that s ≈ s \ {pt}. But this clearly follows from the absorption
property of B. Since B can absorb every point of Q, for every x ∈ (−1, 1)∞

there is a homeomorphism f : Q → Q with f(B) = B ∪ {x}. But this means that
f((−1, 1)∞) = (−1, 1)∞ \ {x}, i.e., s ≈ (−1, 1)∞ can loose an arbitrary point.

The aim of this paper is to give an overview of the work that has been done in
infinite-dimensional topology on absorbing sets and absorbing systems during the
last decade. As is clear from the above, the interest in absorbing sets stems from the
desire to prove that certain spaces are homeomorphic. It turns out that the theory
of absorbing sets is extremely useful in several situations ranging from hyperspaces
and function spaces, to finite-dimensional absorbers in euclidean spaces.
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2. Absorbers and generalized absorbers

We start with some definitions. A closed subset F of a space X is called a Z-set if
for every open cover U of X there is a map ( = continuous mapping) f : X → X \F
that is U-close to the identity 1X . A closed subset F of a space X is called a strong
Z-set if for every open cover U of X there is a map f : X → X that is U-close to
1X and is such that ClX(f(X)) ∩ F = ∅. A countable union of (strong) Z-sets is
called a (strong) σZ-set. A space X that can be written X =

⋃∞
i=1 Xi, where each

Xi is a (strong) Z-set in X, is called a (strong) σZ-space. An embedding f : X → Y
is called a (strong) Z-embedding if f(X) is a (strong) Z-set in Y .

We now review some topological properties of Hilbert space and the Hilbert cube
(see Bessaga and Pe lczyński [1975] and van Mill [1989] for additional infor-
mation). Let E be a topological Hilbert space (respectively, a Hilbert cube). Every
Z-set in E is a strong Z-set (in general, Z-sets need not be strong Z-sets, even within
the class of topologically complete AR’s, cf. Bestvina et al. [1986]). A closed
σZ-set in E is a Z-set. Every continuous map f from a complete (compact) space X
into E that restricts to a Z-embedding on some closed set K can be approximated
by a Z-embedding g: X → E with g | K = f | K. Every homeomorphism between
Z-sets in E can be extended (with control) to an autohomeomorphism of E.

We now turn to absorbers in E. The first attempts to axiomatise this concept
can be found in Anderson [19??] and Bessaga and Pe lczyński [1970]. Their
notions were generalized by Toruńczyk [19??] and West [1970]. Because it is
relatively easy to use, West’s concept of an absorptive set (and its derivatives) is
currently the classification method of choice. The definition that follows is inspired
by West and can in essence be found in Bestvina and Mogilski [1986].

Let M be a class of topological spaces that is topological (spaces homeomorphic
to elements of M are in M) and closed hereditary (closed subspaces of elements
of M are also in M). A subset X of E is called strongly M-universal in E if for
every map f : E → E that restricts to a Z-embedding on a closed set K ⊆ E and
for every subset A of E that is in the class M there exists a Z-embedding g: E → E
that can be chosen arbitrarily close to f with the properties g � K = f � K and
g−1(X) \K = A \K. The set X is called an M-absorber in E if

(1) X is contained in a σZ-set of E,
(2) X ∈Mσ = {

⋃∞
i=1 Ai : Ai ∈M},

(3) X is strongly M-universal.

The pseudoboundary B of the Hilbert cube is the standard example of an ab-
sorber for the class of compacta. The most important property of absorbers is
the uniqueness theorem (Anderson [19??], Bessaga and Pe lczyński [1970],
Toruńczyk [19??], West [1970] and Bestvina and Mogilski [1986]).

2.1. Theorem. If X and Y are two M-absorbers in E then there exists a home-
omorphism h: E → E, arbitrarily close to the identity, that maps X onto Y .

It is also possible to study absorbers without an ambient Hilbert space or Hilbert
cube as was shown by Bestvina and Mogilski [1986]. Let M be a topological
class that is closed hereditary. In addition, assume that M is additive: A ∈ M
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whenever A can be written as a union of two closed subsets that are in M. An
ANR X is called strongly M-universal if for every A ∈M and every map f : A → X
that restricts to a Z-embedding on a closed set K ⊆ A there exists a Z-embedding
g: A → X that can be chosen arbitrarily close to f with the properties g | K = f |
K. The ANR X is called a generalized M-absorber if

(1) X is a strong σZ-space,
(2) X ∈Mσ,
(3) X is strongly M-universal.

Bestvina and Mogilski prove the following characterisation theorem for gener-
alized absorbers in [1986, Theorem 5.3]):

2.2. Theorem. If X is an M-absorber in E and an AR Y is a generalized M-
absorber then X and Y are homeomorphic.

Bestvina and Mogilski also show that there exists a “standard absorber” in
Hilbert space for every Borel class.

3. Absorbing systems

Where as the generalized absorber method that is discussed in the preceding section
applies to the widest range of classification problems, we find that in practice
virtually every space that merits consideration has a canonical embedding in a
topological Hilbert space or Hilbert cube. In order to deal with these spaces in a
more efficient way absorbing systems were introduced in the papers Dijkstra et
al. [1992] and Dijkstra and Mogilski [1991]. The material in this section has
been taken from these publications. Throughout this section E stands for either a
topological Hilbert space or Hilbert cube.

Let Γ be a fixed index set. A collection X = (Xγ)γ∈Γ of subsets of the space
E (formally the pair (E,X)) is called a Z-system if

⋃
{Xγ : γ ∈ Γ} is contained

in a σZ-set of E. Let ∆ be a subset of Γ . We say that a Z-system (E,X ) is
∆-embeddable in (∆-homeomorphic to) a Z-system (E′,Y) if there exists a closed
embedding (homeomorphism) f : E → E′ such that f−1(Yγ) = Xγ for each γ ∈ ∆.
The map f is called a ∆-embedding (∆-homeomorphism). If ∆ = Γ then we simply
say that X is embeddable in (homeomorphic to) Y.

A Z-system X is called reflexively universal if for every map f : E → E that
restricts to a Z-embedding on some closed set K ⊆ E, there exists a Z-embedding
g: E → E that can be chosen arbitrarily close to f with the properties: g | K = f |
K and g−1(Xγ) \K = Xγ \K for every γ ∈ Γ .

These notions come together in the following:

3.1. Theorem. Let X and Y be reflexively universal Z-systems in E respec-
tively E′. If X is ∆-embeddable in Y and Y is ∆-embeddable in X then X is
∆-homeomorphic to Y.

tu This is a standard back and forth argument. Obviously, we may assume that
E = E′. Let

⋃
γ Xγ ⊆

⋃
i Ai and let

⋃
γ Yγ ⊆

⋃
i Bi, where ∅ = A0 ⊆ A1 ⊆ A2 ⊆

· · · and ∅ = B0 ⊆ B1 ⊆ B2 ⊆ · · · are sequences of Z-sets in E. By induction we
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shall construct sequences of homeomorphisms fi: E → E and gi = fi ◦ · · · ◦ f0 with
the properties (for each γ ∈ ∆):

Ai ∩Xγ = Ai ∩ g−1
i (Yγ),

Bi ∩ gi(Xγ) = Bi ∩ Yγ ,

fi | (gi−1(Ai−1) ∪Bi−1) = 1,

where 1 denotes the identity map. Put f0 = 1.
Assume that fi has been constructed. Put K = gi(Ai) ∪ Bi and observe that

gi(Xγ) ∩K = Yγ ∩K. Let p: E → E be a ∆-embedding of the system X into Y.
Then the inverse of p ◦ g−1

i is defined on a closed subset of E and can therefore be
extended to a map r: E → E. Since Y is reflexively universal we can approximate
r by a Z-embedding r̃: E → E with the properties r̃−1(Yγ) = Yγ for each γ ∈ ∆
and r̃ coincides with r on p ◦ g−1

i (K). Let α be the Z-embedding r̃ ◦ p ◦ g−1
i and

note that α fixes K and that it has the property α−1(Yγ) = gi(Xγ) for each γ ∈ ∆.
Observe that α | gi(Ai+1)∪Bi is a homeomorphism between Z-sets in E and hence
it can be extended to a homeomorphism α̃ of E. This homeomorphism satisfies

α̃−1(Yγ) ∩ gi(Ai+1) = gi(Xγ ∩Ai+1).

By a similar argument we can find a homeomorphism β̃ of E that fixes K ′ =
α̃ ◦ gi(Ai+1) ∪Bi and that has the property

β̃−1(α̃ ◦ gi(Xγ)) ∩Bi+1 = Yγ ∩Bi+1.

If we put fi+1 = β̃−1 ◦ α̃ then one can easily verify the induction hypothesis for
i + 1. Since α̃ and β̃ and hence fi+1 can be chosen arbitrarily close to the identity
we may assume that h = limi→∞ gi is a homeomorphism of E. The function h
maps Xγ onto Yγ for each γ ∈ ∆. tu

The reflexive universality of a system can often be obtained without much effort.
We mention the most common method for recognizing reflexive universality.

A subset A is locally homotopy negligible in X if for every map f : M → X
from an absolute neighbourhood retract M and for every open cover U of X there
exists a homotopy h: M × [0, 1] → X such that {h({x} × [0, 1])}x∈M refines U ,
h(x, 0) = f(x) and h(M × (0, 1]) ⊆ X \A. For a space X and ∗ ∈ X we define the
weak cartesian product

W (X, ∗) = {x ∈ XN : xi = ∗ for all but finitely many i}.

3.2. Lemma. Let X = (Xγ)γ∈Γ be a system in E such that E \
⋂

γ∈Γ Xγ is
locally homotopy negligible in E and let ∗ ∈

⋂
γ∈Γ Xγ . Assume that there exists a

homeomorphism Φ: E → EN satisfying

W (Xγ , ∗) ⊆ Φ(Xγ) ⊆ XN
γ

for all γ ∈ Γ . Then X is reflexively universal.
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All of this is closely related to absorbing systems which we introduce presently.
Let Γ be an ordered set and let Mγ be a collection of spaces for each γ ∈ Γ . Each
Mγ is assumed to be topological and closed hereditary. Let M stand for the whole
system (Mγ)γ∈Γ . Let X = (Xγ)γ∈Γ be an order preserving indexed collection of
subsets of a topological Hilbert cube (Hilbert space) E, i.e., Xγ ⊆ Xγ′ if and only
if γ ≤ γ′.

The system X is called M-universal if for every order preserving system (Aγ)γ

in E such that Aγ ∈ Mγ for every γ ∈ Γ , there is a closed embedding f : E → E
with f−1(Xγ) = Aγ . The system X is called strongly M-universal if for every
order preserving system (Aγ)γ in E such that Aγ ∈ Mγ for every γ ∈ Γ , and for
every map f : E → E that restricts to a Z-embedding on some compact set K, there
exists a Z-embedding g: E → E that can be chosen arbitrarily close to f with the
properties: g | K = f | K and g−1(Xγ) \K = Aγ \K for every γ. Observe that
X is strongly M-universal whenever X is M-universal and reflexively universal. If
Xγ ∈Mγ then the converse is also true.

The system X is called M-absorbing if

(1) Xγ ∈Mγ for every γ ∈ Γ ,
(2) {Xγ : γ ∈ Γ} is a Z-system of E, and
(3) X is strongly M-universal.

This notion appears to be a successful synthesis of the Q-matrices technique of
van Mill [1987] and the generalized absorbers of Bestvina and Mogilski [1986].
The power of the method we introduce here comes mainly from the relative ease
of application.

The following uniqueness result follows immediately from 3.1. It contains 2.1 as
a special case.

3.3. Corollary. If X and Y are both M-absorbing systems in E respectively
E′ then (E,X ) and (E′,Y) are homeomorphic, i.e., there is a homeomorphism
h: E → E′ such that h(Xγ) = Yγ for all γ ∈ Γ . If E = E′ then the map h can be
found arbitrarily close to the identity.

We mention a special case that is particularly useful. A Z-system (Xi)i∈N is called
a δ-sequence if Xi ⊇ Xi+1 for every i. The following situation is very common.
One needs to show that a certain set is an absorber for the class of absolute Fσδ-
sets. It would suffice to show that the set is the intersection of a δ-sequence that
is Fσ-absorbing. Absorbers for σ-compacta are copies of the pseudointerior B and
are well understood and easily recognized.

4. Infinite-dimensional applications

As we said in the introduction, interest in absorbers comes from the desire to
prove that certain spaces are homeomorphic. The aim of this section is to present
evidence that absorbers are a very useful tool for obtaining that goal in the infinite-
dimensional setting. In the next section we will show that the interplay between
finite-dimensional and infinite-dimensional absorbers sometimes works very well
in the realm of finite-dimensional spaces. That this is so, is not very surprising.
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Consider for example the elegant proof via infinite-dimensional topology that every
compact ANR X (which may be finite-dimensional) has the homotopy type of a
compact polyhedron: all one needs to remark is that X × Q is a compact Q-
manifold, and that every compact Q-manifold M is homeomorphic to P × Q for
some compact polyhedron P . For details, see Chapman [1975].

The first topic that we discuss is that of function spaces with the topology of
point-wise convergence. Let X be a Tychonov space and let Cp(X) stand for the
space of all continuous real-valued functions on X endowed with the topology of
pointwise convergence. In other words, we regard Cp(X) to be a subspace of the
product RX . In the last decade, these function spaces have been studied intensively,
primarily in the Soviet Union. For more information, see Arhangel′skĭı [1987].

It is known that Cp(X) is always a dense linear subspace of RX , so it follows
that Cp(X) is metrizable iff X is countable iff Cp(X) can be thought of as a
linear subspace of s. It therefore comes as no surprise that in infinite-dimensional
topology one is mostly interested in function spaces of countable spaces.

It is known by Dijkstra et al. [1985] that for non-discrete X, Cp(X) cannot
be an Fσ and a Gδσ-subset of RX . In contrast, it is easily seen that Cp(X) can be
an Fσδ-subset of RX . For example, let X be ω + 1, a convergent sequence. Then
Cp(X) can be described as follows:

Cp(X) =
{

f ∈ Rω+1 : (∀m) (∃N) (∀n ≥ N) (|f(n)− f(ω)| ≤ 1
m

}
=

⋂
m∈N

⋃
N∈ω

⋂
n≥N

{
f ∈ Rω+1 : |f(n)− f(ω)| ≤ 1

m

}
,

which is clearly an Fσδ-subset of Rω+1.
It is easy to see that the above observation can be generalized for arbitrary count-

able metrizable spaces: for such spaces Cp(X) is an Fσδ-subset of RX ≈ s. Notice
that since s is topologically complete, it follows that if Cp(X) is a Borel subset
of RX then it is absolutely Borel. It can be shown that for countable X, Cp(X)
can in fact be of arbitrarily large Borel complexity. See Lutzer et al. [1985] and
Calbrix [1985, 1988] for more information. The following interesting result was
recently obtained by Cauty et al. [19??]:

4.1. Theorem. If X is countable and non-discrete and if Cp(X) is a Borel subset
of RX then for some α < ω1, Cp(X) is of multiplicative class α in RX .

This result had been obtained earlier for spaces with only one non-isolated point
by Calbrix [1988].

Arhangel′skĭı [1982] proved that if X is compact, and Cp(X) is linearly homeo-
morphic to Cp(Y ), then Y is compact. This result has motivated several questions,
among them whether the linearity of the homeomorphism involved is essential. This
question was answered by Gul′ko and Khmyleva [1986], who proved that Cp(R)
and Cp([0, 1]) are homeomorphic. More recently, it has been shown by Dobrowol-
ski et al. [1990], and independently Cauty [1991], that if X is any countable
metrizable non-discrete space then Cp(X) is homeomorphic to σω, the countable in-
finite product of copies of the space `2f = {x ∈ `2 : xn = 0 for almost all n}. In par-
ticular, it follows that the compact space ω + 1 and the non-compact space Q have
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homeomorphic function spaces. This result was generalized even further by Do-
browolski et al. [1991], who proved that for a countable non-discrete space X,
if Cp(X) is an Fσδ-subset of RX then Cp(X) is homeomorphic to σω. Their result
provides a very satisfactory classification result for function spaces of the lowest
possible Borel complexity, i.e., the class Fσδ of all absolute Fσδ-spaces.

The proofs of the above results all use the technique of absorbing sets as proposed
by Bestvina and Mogilski [1986]. A drawback of this method is that one does
not obtain homeomorphisms of pairs of spaces. Since for countable X, Cp(X) can
be thought of as being a subspace of the Hilbert cube Q = [−∞,∞]X , it is natural
to try to find homeomorphisms of pairs

(
Q,Cp(X)

)
≈
(
Q,Cp(Y )

)
. This can be

done with the help of our technique of absorbing sets as explained in section 2.
For countable, metric, non-discrete spaces it was shown in Dijkstra et al. [1992]
that Cp(X) is an Fσδ-absorber in Q; there consequently is a homeomorphism of
pairs

(
Q, Cp(X)

)
≈ (Q∞, B∞), see section 2. This result was later generalized by

Baars et al. [19??] and independently by Dijkstra and Mogilski [19??] who
proved that for countable non-discrete X, if Cp(X) is an Fσδ-subset of RX then it is
an Fσδ-absorber in Q; in this case there consequently also exists a homeomorphism
of pairs

(
Q,Cp(X)

)
≈ (Q∞, B∞). A slightly different approach is to classify Cp(X)

with s = R∞ as ambient space. This is done in Dijkstra and Mogilski [19??].
Cauty et al. [19??] recently obtained similar results about equivalence of triples
of the form (Q, s, Cp(X)) and quadruples of the form

(
Q, s, C∗p (X), Cp(X)

)
, where

C∗p (X) denotes the subspace of Cp(X) consisting of all bounded functions.
This completely solves the problem of the classification problem for function

spaces of the lowest possible Borel complexity.
We now give an application of the absorbing systems method (in particular δ-

sequences). Define the following subspaces of s:

c0 = {x ∈ RN : lim
i→∞

xi = 0}

and for n ∈ N

Σn = {x ∈ RN : |xi| ≤ 2−n for all but finitely many i}.

Observe that Σ = (Σn)n is a δ-sequence of σZ-sets in Q with the property that its
intersection is c0.

4.2. Proposition. The system Σ is Fσ-absorbing (and hence c0 is an Fσδ-
absorber) in Q = [−∞,∞]N.

This is Theorem 6.3 of Dijkstra et al. [1992]. The fact that Cp(X) is an
Fσδ-absorber in Q if X is countable and metric follows easily from this result.

tu It is obvious that we only need to prove that the δ-sequence is strongly Fσ-
universal, i.e., Fσ-universal and reflexively universal. Now let Φ: [−∞,∞]N →
([−∞,∞]N)N be any map that simply rearranges coordinates. It is easily seen
that with this map the system Σ satisfies the conditions of 3.2. So the system is
reflexively universal.

To prove Fσ-universality we shall use the following fact: if A is an Fσ-absorber
in Q and A′ is a σZ-set then for every σ-compactum C in Q there is an embedding
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f : Q → Q such that f−1(A) = C and f(Q \ C) ∩ A′ = ∅ (see Dijkstra et
al. [1992, Lemma 6.1]).

Let A1 ⊃ A2 ⊃ · · · be a sequence of σ-compacta in Q. Let α be a bijection from
N×N onto N and define Ni = {α(i, j) : j ∈ N}. For every i ∈ N define the Hilbert
cube Qi = [−2−i+1, 2−i+1]Ni . It is easily verified with the capset characterization
theorem in Curtis [1985] that

Ci = {x ∈ Qi : |xα(i,j)| ≤ 2k−j for some k}

is an Fσ-absorber in Qi. Observe that for every x ∈ Ci we have limj→∞ xα(i,j) = 0.
Define in Qi the σZ-set

Di = {x ∈ Qi : |xα(i,j)| ≤ 2−i for all but finitely many j}.

Let fi: Q → Qi be an embedding such that f−1
i (Ci) = Ai and fi(Q \ Ai) does

not meet Di. Consider the embedding f = (fi)i∈N : Q →
∏∞

i=1 Qi ⊆ Q. Let
x ∈ An. If i > n then we have fi(x) ∈ Qi and hence all components of fi(x)
are in [−2−n, 2−n]. If i ≤ n then we have x ∈ Ai and hence fi(x) ∈ Ci. Note
that only finitely many components of fi(x) are outside [−2−n, 2−n] and hence
only finitely many components of f(x) are outside this interval. This means that
f(x) is an element of Σn. If x /∈ An then we have fn(x) /∈ Dn. This means that
infinitely many components of fn(x) have absolute value greater than 2−n and
hence f(x) /∈ Σn. So we may conclude that f−1(Σn) = An, proving that Σ is
Fσ-universal. tu

The question naturally arises what can be said of function spaces of higher Borel
complexity. The following was conjectured in Dobrowolski et al. [1991].

4.3. Conjecture. If X is countable and non-discrete and if Cp(X) is an absolute
Borel subset of RX then Cp(X) is an absorber for the Borel class to which it
belongs. In other words, we conjecture that the topological type of Cp(X) is for
absolutely Borel Cp(X) completely determined by its Borel type.

There is quite a lot of interesting evidence supporting this conjecture. Cauty,
Dobrowolski, and Marciszewski have shown in Cauty et al. [19??] that for count-
able spaces X and Y , if Cp(X) and Cp(Y ) are Borel then they are homeomorphic if
and only Cp(X) contains a closed homeomorph of Cp(Y ) and vice versa. They also
proved that for each countable ordinal number α ≥ 2 (natural number n) there
exists a countable space X for which Cp(X) is an absorbing set for the class of
absolute Borel sets of the multiplicative class α (the class of projective sets of the
class n).

It is known that for countable X, Cp(X) need not be a Borel subset of RX .
Marciszewski [19??] recently showed that in Gödel’s constructable universe L
there exist countable spaces X and Y such that Cp(X) and Cp(Y ) are analytic,
non-Borel, and not homeomorphic. So it is essential that in 4.3 we restrict our
attention to Borel sets.

It seems that our technique of absorbing systems is the right framework for
obtaining results on function spaces as mentioned above.
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The second topic is that of hyperspaces. If X is a compact metric space, then 2X

denotes the hyperspace consisting of all non-empty closed subsets of X, endowed
with the Hausdorff metric. It is known that 2X ≈ Q if and only if X is a non-
degenerate Peano continuum (Curtis and Schori [1978]; see also van Mill [1989,
Chapter 8]). For a space X we let dim X denote its covering dimension. In addition,
for k ∈ {0, 1, 2, . . . ,∞} we let dim≥k(X) denote the subspace consisting of all ≥ k-
dimensional elements of 2X . We define dim k(X) and dim≤k(X) in the same way.
Let Dim≥k(X) stand for all uniformly ≥k-dimensional compacta in 2X , i.e., spaces
such that every nonempty open subset is at least k-dimensional. Define, for n ∈ N,
the set Gn to be the set of elements A of 2X for which is in X a finite open cover
of A with mesh ≤ 1/n and order ≤ k Obviously, Gn is an open subset of 2X . Note
that dim≥k(X) = 2X \

⋂∞
n=1 Gn is therefore an Fσ-set.

It is natural to consider the sequence
(
dim≥k(Q)

)∞
n=1

in 2Q. By the above, this
sequence consists of Fσ-subsets of 2Q. As a consequence,

dim∞(Q) =
∞⋂

n=1

dim≥k(Q),

“the space of all infinite-dimensional compacta” is an Fσδ-subset of 2Q. The main
result in Dijkstra et al. [1992] is the following:

4.4. Theorem.
(a) There exists a homeomorphism α from 2Q onto Q∞ =

∏∞
i=1 Q such that

for every k ∈ {0, 1, 2, . . .},

α(dim≥k) = B × · · · ×B︸ ︷︷ ︸
k times

×Q×Q× · · · .

This implies that α(dim∞) = B∞.

(b) There exists a homeomorphism β from 2Q onto Q∞ such that for every
k ∈ {0, 1, 2, . . .},

β(dim≤k) = Q× · · · ×Q︸ ︷︷ ︸
k times

× s× s× · · · . tu

The proof of 4.4 is based in an essential way on the “convex” structure of Q as well
as on the technique of absorbing systems. Since for every non-degenerate Peano
continuum X we have 2X ≈ Q, it is natural to ask for which Peano continua X there
is a homeomorphism of pairs (2X , dim∞(X)) ≈ (Q∞, B∞). Since dim∞(X) 6= ∅
iff dim X = ∞, this is of interest only when X is infinite-dimensional. This question
was considered in Gladdines and van Mill [19??] who proved that if X is an
infinite product of non-degenerate Peano continua then there is a homeomorphism
of pairs (2X , dim∞(X)) ≈ (Q∞, B∞). This partly generalizes 4.4 above. The proof
of their result differs from the proof of 4.4: a “convex” structure is not available on
an arbitrary infinite product of Peano continua. They also present an example of
an everywhere infinite-dimensional Peano continuum X such that for every n ∈ N,
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dim∞(Xn) 6≈ B∞. So their result is in a sense “best possible”. Gladdines [19??]
has recenly improved this result by showing that 4.4 holds with Q replaced by an
arbitrary countable infinite product of Peano continua. She has also shown that
the sequence

(
dim≥k(Q) ∩ C(Q)

)∞
k=2

is Fσ-absorbing in the subspace C(Q) of 2Q

consisting of all subcontinua of Q.
The third and last topic of this section concerns the classification of dense sub-

spaces of Banach spaces. We restrict our attention to the standard examples lp

and Lp, which are homeomorphic to R∞, according to the Anderson-Kadec Theo-
rem (Anderson [1966], Kadec [1967]).

Consider the Banach space consisting of all sequences of real numbers that con-
verge to 0, equipped with the norm

|x|∞ = max{|xn| : n ∈ N}.

We shall call this space l∞. Let p be an arbitrary element of the interval (0,∞].
For every p < ∞ define the following function from l∞ into [0,∞]:

|x|p =

( ∞∑
n=1

|xn|p
)1/p

.

The Banach space (lp, | · |p) consists of all x ∈ l∞ with |x|p < ∞ — actually lp is a
quasi-Banach space if p < 1. If q ∈ (0, p) then

lpq = {x ∈ lp : |x|q < ∞}

is considered a subspace of lp. Since the expression |x|q is nonincreasing as a
function of q we have lpq ⊆ lpq′ whenever q < q′. We are also interested in the spaces

l̃pq =
⋂

q<q′<p

lpq′ ⊆ lp.

The topological classification of these spaces was carried out by Cauty and Do-
browolski [19??] and Dijkstra and Mogilski [1991]. The method described
here is the one in Dijkstra and Mogilski [1991]. We note that (lpq)q is an or-
dered system like the ones in the previous section.

The central idea is to compare this system with systems in R∞ that are linked
to the product structure of that topological Hilbert space.

We need some definitions. If A is a countable infinite set then we define the
following subspaces of the topological Hilbert space RA: the capset

Σ(A) = {x ∈ RA : x = (xa)a∈A is bounded}

and the fd-capset

σ(A) = {x ∈ RA : xa = 0 for all but finitely many a ∈ A}.

In the standard model RN we have Σ = Σ(N) and σ = σ(N). It is easily seen
that every lpq is a so-called σZ-set in lp and one may expect that lpq is a Z-absorber,
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i.e., the pair (lp, lpq) is homeomorphic to the pairs (RN × RN, RN × Σ) and (RN ×
RN, RN × σ). This leads to the following definitions. Let p be some fixed number
in (0,∞] and let A be a countable dense subset of the interval (0, p). If q ∈ (0, p)
then we have

Zp
q = Zp

q (A) = R(0,q]∩A ×Σ((q, p) ∩A) ⊆ RA

and
ζp
q = ζp

q (A) = R(0,q]∩A × σ((q, p) ∩A) ⊆ RA.

The main result of Dijkstra and Mogilski [1991] can now be formulated.

4.5. Theorem. If ∆ is an arbitrary countable dense subset of (0, p) then the
systems lpq , Zp

q , and ζp
q are ∆-homeomorphic, i.e., there exist homeomorphisms α

and β from RA onto lp such that for every q ∈ ∆

α(Zp
q ) = lpq and β(ζp

q ) = lpq .

Consequently, every lpq is a Z-absorber and homeomorphic to RN×σ. Theorem 4.5
is obtained as an application of 3.1. It is obvious that the systems are Z-systems
and their reflexive universality follows from lemmas similar to 3.2. Most of the
work is in proving that the three systems lpq , Zp

q , and ζp
q are embeddable in each

other.
If q ∈ [0, p) then we define the subspaces

Z̃p
q =

⋂
q<q′<p

Zp
q′ ⊆ RA

and
ζ̃p
q =

⋂
q<q′<p

ζp
q′ ⊆ RA.

Since the spaces originate from the product structure it is easily seen that they are
homeomorphic to Σ∞ and σ∞ and hence to B∞.

It follows from 4.5 that we have for every q ∈ [0, p),

α(Z̃p
q ) = l̃pq and β(ζ̃p

q ) = l̃pq .

This implies that (lp, l̃pq) is homeomorphic to the pairs (s∞, Σ∞) and (s∞, σ∞).
Consequently, l̃pq is an Fσδ-absorber in lp.

Similar results are obtained for the function spaces Lp.
A number of other pre-Banach spaces have been classified, most notably by

Cauty. We mention one of the more interesting results (see Cauty [19??]). Let L1

stand for the space of Lebesque integrable real functions on the interval I, equipped
with the usual norm ‖f‖ =

∫ 1

0
|f(t)| dt.

4.6. Theorem. Both the space of continuous functions and the space of Riemann
integrable functions in L1 are homeomorphic to B∞.

We finish this section with a classification problem that is related to the lpq ’s.
Let lp stand for the subspace of p-summable sequences in s. So instead of a norm
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topology we have the topology of coordinate-wise convergence. Put l̃p =
⋂

q>p lq.
These spaces are less natural than the normed spaces above but important because
they were classified first. Dobrowolski and Mogilski [19∞] used generalized
absorbers to show that every l̃p is homeomorphic to B∞. This result was later
strengthened (using absorbing systems) by Dijkstra and Mogilski [19??] to:
(s, l̃p) ≈ (s, c0) and (Q, l̃p) ≈ (Q∞, B∞).

5. Finite-dimensional applications

In this section we consider absorbers in Rn and their complements in Rn. Let k and
n be two fixed integers that satisfy 0 ≤ k < n. The k-dimensional Nöbeling space
Nn

k in Rn consists of all points of Rn that have at most k rational coordinates.
These spaces were introduced by Nöbeling in [1931], who essentially proved the
following:

5.1. Theorem. If n ≥ 2k + 1 then every k-dimensional space can be embedded in
Nn

k .

The Nöbeling spaces were the first examples of universal spaces in Dimension
Theory. Let Pn

k stand for the space Rn \Nn
n−k−1 and note that this space consists

of a countable union of k-dimensional hyperplanes in Rn.
The notion of an absorber of a class of spaces as presented in sections 2 and 3 is

particularly useful when we are dealing with infinite-dimensional manifolds but not
appropriate in the finite-dimensional setting. In this section we shall use West’s
original definition of absorbers.

Let M be a collection of closed subsets of a complete space X that is invariant
under autohomeomorphisms of X. An element A of Mσ is called an M-absorber
in X if for every S ∈ M and every collection U of open subsets in X there is a
homeomorphism h: X → X such that h is U-close to 1X and h(S ∩

⋃
U) ⊆ A. If

X is complete then the Uniqueness Theorem holds (West [1970]).
Toruńczyk [19??] showed that Pn

k is an absorber for the collection of ≤ k-
dimensional tame polyhedra in Rn. In [1974], Geoghegan and Summerhill in-
troduced the following similar spaces. They consider the k-skeleton of the barycen-
tric subdivisions of some triangulation of Rn, called the k-dimensional polyhedral
pseudoboundary. Since this object is just as Pn

k an absorber for the ≤k-dimensional
tame polyhedra we have with the Uniqueness Theorem that it is homeomorphic
to Pn

k ; its complement, the (n − k − 1)-dimensional polyhedral pseudointerior, is
homeomorphic to Nn

n−k−1.
Define the collection

Mn
k = {h(S) : h a homeomorphism of Rn andS a compact subset of Nn

k }.

Geoghegan and Summerhill construct in [1974] an Mn
k -absorber. This is the

k-dimensional universal pseudoboundary in Rn and we denote it by Bn
k .

We now sketch the construction of Bn
k . Define for i = 0, 1, 2, · · ·,

Ki = {(m + 1/2)3−i : m an integer}
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and let P be the group of homeomorphisms of Rn that correspond to coordinate
permutations. We denote the open ε-ball with respect to the max metric in Rn

by Uε. Define for m ∈ N the following closed subset of Rn:

Am = Rn \
∞⋃

i=0

⋃
α∈P

α(U 1
2 3−i−m(Kk+1

i × Rn−k−1)).

Then the set Bn
k =

⋃∞
m=1 Am is an Mn

k -absorber. For details, see Geoghegan
and Summerhill [1974] and Dijkstra [1985].

The k-dimensional universal pseudointerior sn
k is the complement of Bn

n−k−1

in Rn. The space Bn
k is a countable union of topological copies of µn

k , the k-
dimensional universal Menger compactum in R. The space µn

k was introduced by
Menger in [1926] — its universality was proved by Lefschetz [1931] (see also
Bothe [1963] and Štan’ko [1971]). In addition, there exists an absorber Bω

k

for the ≤ k-dimensional compacta in the topological Hilbert space Rω, see Dijk-
stra [1985]. If n ≥ 2k +1, then a slight modification of the construction presented
in Geoghegan and Summerhill [1974] or Dijkstra [1985] gives an absorber
βn

k for the ≤k-dimensional Z-sets in µn
k . Let νn

k = µn
k \ βn

k be the corresponding
pseudointerior.

The following classification result was obtained by Dijkstra et al. [1990, 19∞].

5.2. Theorem. If m,n ≥ 2k + 1 then

(a) Bω
k is homeomorphic to Bn

k and

(b) sn
k is homeomorphic to sm

k .

tu Idea of the proof. First we note that (b) follows from (a). The pseudointeriors
sm

k and sn
k contain embedded copies of Bm

k and Bn
k , respectively. By a classic

Theorem of Lavrentiev the homeomorphism between Bm
k and Bn

k can be extended
to a homeomorphism between Gδ-subsets X and Y of sm

k and sn
k , respectively.

Since it can be shown that the complements of X and Y are negligible we have a
homeomorphism between sm

k and sn
k .

We now give a rough sketch of the most important part of the proof. Let π: % →
Rn stand for the projection onto the first n coordinates. Using the fact that
Bω

k and Bn
k are absorbers and that homeomorphisms between compacta can be

extended with control to global homeomorphisms of %, we can reposition Bω
k in %

so that π(Bω
k ) = Bn

k . Put f = π | Bω
k : Bω

k → Bn
k . We then use a version of Bing’s

shrinking criterion that was developed by Toruńczyk [1985] for incomplete spaces
to show that f is a near homeomorphism. Since we use shrinking all the “work”
is done again in the Hilbert space % making the proof “infinite-dimensional” in
spirit. tu

From 5.2 one may derive:

(c) Pn
k is homeomorphic to Pm

k if m,n ≥ 2k + 1.

If n and m are distinct and not both n and m are greater than 2k then Bn
k , sn

k

and Pn
k are not homeomorphic to Bm

k , sm
k and Pm

k , respectively. Hence we have
obtained a complete classification of these spaces. Observe that a similar classifi-
cation of βn

k and νn
k follows immediately from Bestvina’s characterisation [1988]
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of µn
k . The following conjecture can essentially be found in Geoghegan and Sum-

merhill [1974].

5.3. Conjecture. If n ≥ 2k + 1 then Nn
k and sn

k are homeomorphic.

There are also strong indications for the validity of the following conjectures.

5.4. Conjecture. If n ≥ 2k + 1 then βn
k is homeomorphic to Bn

k .

5.5. Conjecture. If n ≥ 2k + 1 then sn
k and νn

k are homeomorphic.

5.6. Conjecture. Nn
k is homeomorphic to Nm

k if and only if n = m or n, m ≥
2k + 1.

Observe that 5.6 follows from 5.2 and 5.3. Conjecture 5.5 follows from 5.4 and
Dijkstra et al. [19∞].

It was observed by R. D. Anderson that Nk+1
k and sk+1

k are not homeomorphic
if k > 0. This suggests the following:

5.7. Conjecture. Nn
k and sn

k are not homeomorphic if n ≤ 2k.

The spaces introduced above are considered k-dimensional analogues of the pseu-
dointerior and the pseudoboundary of the Hilbert cube. Let us recall that according
to Toruńczyk [1981, 1985] the topological Hilbert space s is characterised by the
following:

(1) topological completeness,
(2) the absolute retract property,
(3) the strong discrete approximation property (SDAP).

If n ≥ 2k + 1 then the spaces Nn
k , sn

k and νn
k satisfy property (1) and the following

k-dimensional versions of (2) and (3):

(2k) they are k-dimensional and have the absolute extension property for ≤ k-
dimensional spaces,

(3k) the discrete k-cells property.
A space X has the discrete k-cells property if every sequence (fi: Ik → X)∞i=1 can be
approximated by a sequence (gi: Ik → X)∞i=1 such that the images of the gi’s form
a discrete collection in X. The main unsolved problem in this area is expressed by
the following:

5.8. Conjecture. There is only one space (up to topological equivalence) that
satisfies the properties (1), (2k) and (3k).

Note that this conjecture implies 5.2 and 5.3 through 5.6. Other spaces that sat-
isfy these three conditions have been constructed – for instance the spaces νk(Rω)
obtained by Chigogidze [19??] and Chigogidze and Valov [1990] in analogy
to Dranǐsnikov’s [1986] construction of certain Menger compacta.

Let us now turn to the pseudoboundaries. According to Mogilski [1984] the
space B is characterised by the following properties:

(1′) σ-compactness,
(2) the absolute retract property,
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(3) the SDAP,
(4) strong universality for compacta.

If n ≥ 2k + 1 then the spaces Bω
k , Bn

k and βn
k satisfy the properties (1′), (2k), (3k)

and

(4k) strong universality for ≤k-dimensional compacta.

We have the following:

5.9. Conjecture. There is only one space (up to topological equivalence) that
satisfies the properties (1′), (2k), (3k) and (4k).

References

Anderson, R. D.
[1966] Hilbert space is homeomorphic to the countable infinite product of lines.

Bull. Amer. Math. Soc., 72, 515–519.
[1967] Topological properties of the Hilbert cube and the infinite product of open

intervals. Trans. Amer. Math. Soc., 126, 200–216.
[19??] On sigma-compact subsets of infinite-dimensional manifolds. unpublished

manuscript.

Anderson, R. D. and R. H. Bing.
[1968] A complete elementary proof that Hilbert space is homeomorphic to the

countable product of lines. Bull. Amer. Math. Soc., 74, 771–792.

Arkhangel’skĭı, A. V.
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