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Hyperspaces of Peano continua of euclidean spaces

by

Helma Gladd ine s and Jan van Mi l l (Amsterdam)

Abstract. If X is a space then L(X) denotes the subspace of C(X) consisting of all
Peano (sub)continua. We prove that for n ≥ 3 the space L(Rn) is homeomorphic to B∞,
where B denotes the pseudo-boundary of the Hilbert cube Q.

Introduction. For a space X, C(X) denotes the hyperspace of all
nonempty subcontinua of X. It is known that for a Peano continuum X
without free arcs, C(X) ≈ Q, where Q denotes the Hilbert cube (Curtis and
Schori [7]). L(X) denotes the subspace of C(X) consisting of all nonempty
locally connected continua.

The spaces L(X) were first studied by Kuratowski in [11]. He proved that
L(X) is an Fσδ-subset of C(X), i.e., a countable intersection of σ-compact
subsets. A little later, Mazurkiewicz [12] proved that for n ≥ 3, L(Rn)
belongs to the Borel class Fσδ \ Gδσ . Our main result is that for n ≥ 3 the
spaces L(Rn) are homeomorphic to the countable infinite product of copies
of the pseudo-boundary B of Q. Our methods do not apply to the case
n = 2. We use the theory of absorbing sets in the Hilbert cube and some
ideas from Dijkstra, van Mill and Mogilski [9]. In fact, we prove that for
n ≥ 3, L([−1, 1]n) is an Fσδ-absorber in C([−1, 1]n). Our main result then
follows easily.

We are indebted to R. Cauty for finding an inaccuracy in an earlier
version of this manuscript.
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Terminology. All spaces under discussion are separable and metrizable.

For any space X we let d denote an admissible metric on X, i.e., a metric
that generates the topology. If x ∈ X and ε > 0 then

B(x, ε) = {y ∈ X : d(x, y) < ε} and B̂(x, ε) = {y ∈ X : d(x, y) ≤ ε}

denote the open and closed ball about x of radius ε, respectively.

As usual I denotes the interval [0, 1] and Q the Hilbert cube
∏∞

i=1[−1, 1]i
with metric d(x, y) =

∑∞
i=1 2−(i+1)|xi − yi|. In addition, s is the pseudo-

interior of Q, i.e., s = {x ∈ Q : (∀i ∈ N)(|xi| < 1)}. The complement B of
s in Q is called the pseudo-boundary of Q. Any space that is homeomorphic
to Q is called a Hilbert cube. If X is a set then the identity function on X
will be denoted by 1X .

Let A be a closed subset of a space X. We say that A is a Z-set provided
that every map f : Q → X can be approximated arbitrarily closely by a
map g : Q → X \ A. A countable union of Z-sets is called a σZ-set . A
Z-embedding is an embedding the range of which is a Z-set.

Let M be a class of spaces that is topological and closed hereditary.

2.1. Definition. Let X be a Hilbert cube. A subset A ⊆ X is called
strongly M-universal in X if for every M ∈ M with M ⊆ Q, every embed-
ding f : Q → X that restricts to a Z-embedding on some compact subset K
of Q, can be approximated arbitrarily closely by a Z-embedding g : Q → X
such that g|K = f |K while moreover g−1[A] \ K = M \ K.

2.2. Definition. Let X be a Hilbert cube. A subset A ⊆ X is called an
M-absorber in X if:

(1) A ∈ M;

(2) there is a σZ-set S ⊆ X with A ⊆ S;

(3) A is strongly M-universal in X.

2.3. Theorem ([9]). Let X be a Hilbert cube and let A and B be M-ab-

sorbers for X. Then there is a homeomorphism h : X → X with h[A] = B.

Moreover , h can be chosen arbitrarily close to the identity.

Absorbers for the class Fσ of all σ-compact spaces were first constructed
by Anderson and Bessaga and Pe lczyński. A basic example of such an
absorber in Q is B. For details, see [2] and [14, Chapter 6]. The space B∞

in Q∞ is an absorber for the Borel class Fσδ . This was shown in Bestvina
and Mogilski [3]; see also [9].

2.4. Corollary. Let X be a Hilbert cube and let A be an absorber

in X for the Borel class Fσδ. Then there is a homeomorphism of pairs

(Q∞, B∞) ≈ (X,A). In particular , A is homeomorphic to B∞.
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In Dijkstra, van Mill and Mogilski [9] it was shown that the subspace

c0 = {x ∈ s : lim
n→∞

xn = 0}

is an Fσδ-absorber in Q.
The following result is of crucial importance in the proof of our main

result.

2.5. Theorem. The subspace

ĉ0 = {x ∈ Q : lim
n→∞

xn = 0}

is an Fσδ-absorber in Q.

P r o o f. This follows by a trivial modification of the proof of the above
quoted result in Dijkstra, van Mill and Mogilski [9].

The space B∞ has been studied intensively in infinite-dimensional topol-
ogy during the last years. For more information, see e.g. [3, 4, 10, 9, 8, 1].

If (X, d) is a space then 2X denotes the hyperspace of all nonempty com-
pact subsets of X, topologized by the Hausdorff metric dH. The subspace of
2X consisting of all nonempty subcontinua of X is denoted by C(X). The
subspace of C(X) consisting of all locally connected elements of C(X) is
denoted by L(X). Finally, F(X) = {F ∈ 2X : F is finite}.

We will need the following basic result.

2.6. Theorem (Curtis [6]). Let X be a nondegenerate Peano continuum.

Then there is a homotopy H : 2X × I → 2X such that

(1) H0 = 12X ;
(2) for all t ∈ (0, 1], Ht[2

X ] ⊆ F(X).

For background information on hyperspaces see Nadler [13].

3. The space L(X). Let X be a continuum. As was mentioned in
the introduction, Kuratowski [11] showed that L(X) is an Fσδ-subset of
C(X). For the sake of completeness and also for later use we will reprove
this theorem.

To this end, for a continuum X and n ∈ N define

A(X)m
n = {C ∈ C(X) : C can be covered by ≤ m

subcontinua of diameter ≤ 1/n} .

A routine verification shows that each A(X)m
n is compact, and that

L(X) =

∞⋂

n=1

∞⋃

m=1

A(X)m
n .

So L(X) is an Fσδ-subset of C(X).
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For technical reasons that will be clear later, we need an “Fσδ-approxi-
mation” of L(X) consisting of nowhere dense compacta (in fact of Z-sets).
Since the A(X)m

n have nonempty interior in C(X), we have to redefine them
in order to have a chance to meet this criterion. For a continuum X and
n ∈ N define

B(X)m
n = {C ∈ C(X) : C can be covered by ≤ m

subcontinua of diameter ≤ (1/n) diam(C)} .

A routine verification shows again that each B(X)m
n is compact, and that

L(X) =
∞⋂

n=1

∞⋃

m=1

B(X)m
n .

In §4 we will show that for n ≥ 3 the compacta B([−1, 1]n)m
3 are Z-sets in

C([−1, 1]n).

3.1. Theorem. (1) L(R) is σ-compact.

(2) For n ≥ 2, L(Rn) and L([−1, 1]n) belong to the Borel class Fσδ \Gδσ.

P r o o f. The proof of (1) is left as an exercise to the reader.
For (2), for every x ∈ Q define S(x) ⊆ [−1, 1]2 by

S(x) = ({0} × [−1, 1]) ∪ ([0, 1] × {0}) ∪
∞⋃

n=1

{1/n} ×

{
[0, xn] (xn ≥ 0),
[xn, 0] (xn ≤ 0).

It is clear that the function S : Q → C([−1, 1]2) ⊆ C(R2) defined by
x 7→ S(x) is an embedding. Now if x ∈ Q does not belong to ĉ0 then
there exists an infinite subset E ⊆ N and an ε > 0 such that |xi| ≥ ε for all
i ∈ E. Then S(x) is not locally connected at some point of {0} × {−ε, ε}.
Also, if x does belong to ĉ0 then S(x) is locally connected. Consequently,

S[Q] ∩ L([−1, 1]2) = S[Q] ∩ L(R2) = S[ĉ0] .

So L(R2) and L([−1, 1]2) contain a closed copy of ĉ0, which does not belong
to the Borel class Gδσ because it is an Fσδ-absorber (Theorem 2.5). This
proves that L(R2) and L([−1, 1]2) are not absolute Gδσ ’s. Since L(Rn)
contains a closed copy of L(R2) for every n ≥ 2, this also proves that L(Rn)
is not an absolute Gδσ . Similarly for L([−1, 1]n).

As remarked in the introduction, that L(Rn) for n ≥ 3 belongs to the
Borel class Fσδ \ Gδσ was proved by Mazurkiewicz [12]. For n = 2 this was
first proved by Cauty [5].

4. L([−1, 1]n) is contained in a σZ-set. The aim of this section is
to prove that for n ≥ 3, L([−1, 1]n) is contained in a σZ-set in C([−1, 1]n).
The strategy of the proof is roughly speaking the following. First we push
C([−1, 1]n) by a small movement into C(Γ ) for a certain finite connected
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graph Γ ⊆ [−1, 1]n. Then we carefully “blow up” each subcontinuum of
Γ to a close subcontinuum of [−1, 1]n that has more or less the following
shape:

Fig. 1

Γ

Then we consider the collection

B = {C ∈ C([−1, 1]n) : C can be covered by finitely many

subcontinua of diameter ≤ 1
3

diam(C)}

and note that in §3 it was shown that L([−1, 1]n) ⊆ B and that B is σ-
compact. We then prove that B is a σZ-set by observing that continua
C of the type as shown in Figure 1 cannot be covered by finitely many
subcontinua of diameter ≤ 1

3 diam(C).

As usual, let S1 denote {x ∈ R
2 : ‖x‖ = 1}. We will use the well-known

and easily established fact that there is a homeomorphism ϕ : D = {x ∈
R

2 : ‖x‖ ≤ 1} → C(S1) such that for every x ∈ S1, ϕ(x) = {x}. So if we
identify S1 and the subspace {{x} : x ∈ S1} of C(S1) then ϕ is the identity
on S1. If A is a square then we let ∂A denote its boundary.

Consider the square [0, 1] × [0, 1] and its subspace

G =
∞⋃

n=1

2n⋃

m=1

∂([(m − 1) · 2−n,m · 2−n] × [2−n, 2−(n−1)]) ∪ (I × {0}) .

Fig. 2

1
2

1
4
...

We claim that there is a continuous function ẽ : [0, 1]2 → C(G) such
that for every x ∈ G, ẽ(x) = {x}. This follows easily from the observation
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above that C(S1) ≈ D and from the fact that the diameters of the sets of
type ∂([(m − 1) · 2−n,m · 2−n] × [2−n, 2−(n−1)]) tend to 0 as n → ∞ and
1 ≤ m ≤ 2n.

Observe that if t ∈ I and 2−n ≤ t ≤ 2−(n−1) then
⋃

ẽ [I × {t}] ⊆ I ×
[2−n, 2−(n−1)]. This observation will be used in the proof of Proposition 4.1.

Let Γ be any finite connected graph (with a fixed triangulation) and let
x1, . . . , xN be the vertices of Γ . In addition, let ̺ be an arbitrary admis-
sible convex metric on Γ (not necessarily the path-length metric) and let
0 < δ < 1. We will associate with Γ , with the set {x1, . . . , xN} and with
the number δ a certain space D(Γ ) that will be important in the proof of
Theorem 4.6; (Γ, ̺), x1, . . . , xN and δ will be specified there.

For every n ≤ N let tn denote the point (cos π
n
, sin π

n
) ∈ R

2. For every
n ≤ N let Ln be the straight line segment connecting tn and (0, 0). For
notational simplicity we will denote the point (0, 0) in R

2 by 0 from now
on. By abuse of notation, for n ≤ N and α ∈ [0, 1] we will write [0, αtn] for

{z ∈ Ln : ‖z‖ ≤ α}. The union
⋃N

i=1 Li is denoted by S. Observe that it is
a compact 1-dimensional subspace of R

2.
Fix one of the Li for a moment and let E be an edge of Γ . Then E ×Li

is a square. We think of E as the subspace E × {0} of E × Li. We remove
from E ×Li the “same” open squares that we removed from [0, 1]2 in order
to get G. In that way we obtain a subspace Gi(E) of E × Li and we note
that there is a continuous function ei

E : E × Li → C(Gi(E)) which is the
identity on Gi(E) (singletons and points are again identified here).

The union D(Γ ) of all the sets Gi(E), where i ≤ N and E ⊆ Γ is an
edge, is a 1-dimensional compact subspace of Γ × S which contains Γ . We
will not distinguish between a function g : Γ → Γ and the function ĝ :
Γ ×{0} → Γ ×{0} defined by ĝ(x,0) = (g(x),0). Let e : Γ ×S → C(D(Γ ))
be the union of all the functions ei

E , where E is an edge of Γ and i ≤ N ,
and observe that clearly e is a continuous function which is the identity on
D(Γ ).

4.1. Proposition. Let i ≤ N and α ∈ (0, 1]. For every n let

Cn =
⋃

e[Γ × {2−2nαti}] and C0 =
⋃

j 6=i

Γ × Lj .

Then the collection {Cn : n ≥ 0} is pairwise disjoint. Moreover , if C is a

subcontinuum of
⋃∞

n=0 Cn then there exists n ≥ 0 such that C ⊆ Cn.

P r o o f. Fix n ∈ N. Find p ∈ N such that 2−p ≤ α ≤ 2−(p−1). Then for
every n, by the way e was constructed (see the above remark),

(1) Cn =
⋃

e[Γ × {2−2nαti}] ⊆ Γ × [2−(p+2n)ti, 2−(p−1+2n)ti] .

So (1) implies that the collection {Cn : n ≥ 0} is pairwise disjoint as well
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as the fact that if a continuum is contained in the union of the Cn, n ≥ 0,
then it must be contained in one of them.

For every i ≤ N define the continuous function si : C(Γ ) → [0, δ] as
follows:

si(A) = max{δ − ̺(xi, A), 0} .

In addition, let g : C(Γ ) → C(Γ ) be the continuous function sending each

A ∈ C(Γ ) onto B̂δ(A), the closed ̺-ball about A of radius δ. Moreover,

define the functions Ŝm : C(Γ ) → C(Γ × S) (m ∈ N) by

Ŝm(A) = (g(A) × {0}) ∪
⋃

xi∈g(A)

{xi} × [0, 2−(m−1)si(A)ti] .

4.2. Lemma. The functions Ŝm (m ∈ N) are continuous. Moreover ,

limm→∞ Ŝm = g.

P r o o f. Fix m ∈ N. Let (Ak)k be a sequence in C(Γ ) converging to an
element A ∈ C(Γ ). Put F = {xi : xi ∈ g(A)} and Fk = {xi : xi ∈ g(Ak)}
(k ∈ N), respectively. Since {x1, . . . , xN} is finite, we may assume without
loss of generality that F1 = Fk for every k ∈ N. By continuity of the function
g, it clearly follows that F1 ⊆ F . In addition, by continuity of the functions
si, the only way we can get into trouble with the continuity of Ŝm is if
there exist points in F \ F1. So assume that there exists xi ∈ F \ F1. Then
̺(xi, Ak) > δ for every k, which implies that ̺(xi, A) ≥ δ, i.e., ̺(xi, A) = δ

because xi ∈ g(A). But then si(A) = 0 so that xi adds nothing to Ŝm(A).

That limm→∞ Ŝm = g is clear.

Define Ŝm : C(Γ ) → 2Γ×S (m ∈ N) by

Ŝm(A) = (g(A) × {0}) ∪
N⋃

i=1

∞⋃

n=1

g(A) × {2−2n2−(m−1)si(A)ti} .

4.3. Lemma. The functions Ŝm (m ∈ N) are continuous. Moreover ,

limm→∞ Ŝm = g.

Define T̂m : C(Γ ) → 2Γ×S by

T̂m(A) = Ŝm(A) ∪ Ŝm(A) (A ∈ C(Γ )) .

4.4. Lemma. (1) The functions T̂m (m ∈ N) are continuous;

(2) for every A ∈ C(Γ ), T̂m(A) is connected ;

(3) limm→∞ T̂m = g.

P r o o f. (1) and (3) follow from Lemmas 4.2 and 4.3. In addition, (2) is
clear.
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For every m ∈ N we define Tm : C(Γ ) → C(D(Γ )) by

Tm(A) =
⋃

e[T̂m(A)] (A ∈ C(Γ )) .

4.5. Lemma. (1) The functions Tm (m ∈ N) are continuous;
(2) for every A ∈ C(Γ ), Tm(A) is connected ;
(3) limm→∞ Tm = g.

P r o o f. Since the union operator in hyperspaces is continuous ([14,
Proposition 5.3.6]), this follows immediately from Lemma 4.4.

We now come to the main result in this section.

4.6. Theorem. If n ≥ 3 then L([−1, 1]n) is contained in a σZ-set of

C([−1, 1]n).

P r o o f. Fix n ≥ 3 and let d denote the euclidean metric on [−1, 1]n.
Consider the collection

B = {C ∈ C([−1, 1]n) : C can be covered by finitely many

subcontinua of diameter ≤ 1
3 diam(C)} .

In §3 it was shown that L([−1, 1]n) ⊆ B and that B is σ-compact. We will
show that B is a σZ-set. So let ε > 0. Our task is to produce a continuous
function f : C([−1, 1]n) → C([−1, 1]n) \ B such that d̂H(f, 1C([−1,1]n)) < ε.

By Curtis and Schori [7] there is a finite connected graph Γ ⊆ [−1, 1]n

and a map ξ : C([−1, 1]n) → C(Γ ) such that d̂H(ξ, 1C([−1,1]n)) < 1
4ε. By

pushing Γ into (−1, 1)n if necessary, we may assume that Γ ⊆ (−1, 1)n.
Let ̺ be a convex metric on Γ (for example the path-length metric).

Claim 1. There exists δ > 0 such that if x, y ∈ Γ and ̺(x, y) ≤ δ then

d(x, y) ≤ 1
8ε.

Let {x1, . . . , xN} ⊆ Γ be a 1
2
δ-net with respect to the metric ̺, i.e., for

every x ∈ Γ there exists i ≤ N with ̺(x, xi) ≤ 1
2
δ. Because Γ has finitely

many vertices only, we may assume without loss of generality that every
vertex of Γ belongs to {x1, . . . , xN}. We triangulate Γ in such a way that
{x1, . . . , xN} ⊆ Γ is its new vertex set.

We have now specified Γ , ̺, δ and {x1, . . . , xN}.
Assume that D(Γ ), g and Tm (m ∈ N) are constructed as above. Since

n ≥ 3 and dim(D(Γ )) = 1, we can approximate the projection π : D(Γ ) → Γ
arbitrarily closely by an embedding ([14, Remark 4.4.5]). So we may assume
that D(Γ ) ⊆ [−1, 1]n and that Γ corresponds to the subspace Γ × {0} of
Γ × S.

Claim 2. d̂H(1C(Γ ), g) < 1
4
ε.

Since g sends every A ∈ C(Γ ) onto its closed δ ̺-ball, this follows directly
from Claim 1.
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By Lemma 4.5 we may pick M ∈ N so large that

(2) ∀m ≥ M [d̂H(g, Tm) < 1
4
ε] .

This implies by Claim 2 that for all m ≥ M we have d̂H(1C([−1,1]n), Tm ◦ ξ)
< ε. The approximation of 1C([−1,1]n) that we are looking for will be Tm ◦ ξ
for some large m ≥ M . So at this stage we already know that our map is
ε-close to the identity. Since its image must also miss B, all there remains
to prove is that for some large m the image of Tm misses B.

Claim 3. Fix η > 0. There exists γ ∈ (0, 1] such that for all γ0, γ1 ∈
[0, γ], all i ≤ N and all x, y ∈ Γ with d(x, y) ≥ η and x̂ ∈ e((x, γ0ti)) and

ŷ ∈ e((y, γ1ti)) we have

d(x̂, ŷ) ≥ 7
8d(x, y) .

Suppose that such a γ does not exist. Then there exist sequences (pn)n

and (qn)n in (0, 1] with pn, qn ≤ 1/n for every n, an i(n) ≤ N and a pair
an, bn in Γ such that

(1) ∀n ∈ N [d(an, bn) ≥ η];

(2) for some ân ∈ e((an, pnti(n))) and b̂n ∈ e((bn, qnti(n))),

d(ân, b̂n) < 7
8d(an, bn) .

We may assume without loss of generality that i(n) = i(1) for every n and
that ({an, bn})n converges to {a, b}. Observe that d(a, b) ≥ η. We easily

arrive at a contradiction because the sequence ({ân, b̂n})n converges to {a, b}
(here we use the continuity of e and the fact that e is the identity on Γ ),
which implies that

d(a, b) = lim
n→∞

d(ân, b̂n) ≤ 7
8 lim

n→∞
d(an, bn) = 7

8d(a, b) .

But this contradicts d(a, b) ≥ η > 0.

Claim 4. There exists µ > 0 such that for all A ∈ C(Γ ), diam(g(A)) ≥ µ.

For every A ∈ C(Γ ), g(A) has nonempty interior in Γ and consequently
contains more than one point because Γ is connected. By compactness of
C(Γ ) and continuity of g this yields 0 < min{diam(g(A)) : A ∈ C(Γ )}.

Let µ be such as in Claim 4, and let γ be such as in Claim 3 for η = 1
2µ.

Pick m0 ≥ M so large that 2−m0 < γ. Since diam(g(A)) ≥ µ > 0 for every
A ∈ C(Γ ), by Lemma 4.5 we may pick m ≥ m0 so large that

(3) ∀A ∈ C(Γ ) [diam(Tm(A)) ≤ 8
7

diam(g(A))] .

Now consider the function Tm.

Claim 5. If A ∈ C(Γ ) then Tm(A) cannot be covered by finitely many

subcontinua of diameter at most 1
3 diam(Tm(A)).
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Fix A ∈ C(Γ ). We first claim that there exists i ≤ N such that si(A) > 0
and xi ∈ g(A). Since x1, . . . , xN is a 1

2δ-net there exists i ≤ N such that
̺(xi, A) ≤ 1

2δ. For this i clearly si(A) > 0 and xi ∈ g(A).
Take a point x ∈ g(A) such that d(x, xi) = max{d(y, xi) : y ∈ g(A)}.

Observe that d(x, xi) ≥
1
2

diam(g(A)) ≥ η. For every n let

p̂n = (x, 2−2n2−(m−1)si(A)ti) .

Put K = {xi} × [0, 2−(m−1)si(A)ti]. We claim that for every n

d
(
e(p̂n),

⋃
e[K]

)
> 1

3 diam(Tm(A)) .

To see this, pick arbitrary pn ∈ e(p̂n) and q ∈
⋃

e[K]. Then by Claim 3 and
(3) we have

d(pn, q) ≥ 7
8d(xi, x) ≥ 7

8 · 1
2 diam(g(A))

≥ 7
8
· 1

2
· 7

8
diam(Tm(A)) > 1

3
diam(Tm(A)) .

So a subcontinuum of Tm(A) of diameter ≤ 1
3 diam(Tm(A)) that intersects

e(p̂n) misses
⋃

e[K].
Put α = 2−(m−1)si(A). Observe that

Tm(A) \
⋃

e[K] ⊆
∞⋃

n=1

⋃
e[Γ × {2−2nαti}] ∪

⋃

j 6=i

Γ × Lj .

So by Proposition 4.1, if C is a subcontinuum of Tm(A)\
⋃

e[K] then either
C ⊆ Γ or for some unique n, C ⊆

⋃
e[Γ × {2−2nαti}]. Now simply observe

that there are infinitely many p̂n so that there are infinitely many subcon-
tinua of Tm(A) of diameter at most 1

3 diam(Tm(A)) needed to cover Tm(A).

5. L([−1, 1]n) is strongly Fσδ-universal. The aim of this section is to
prove that L([−1, 1]n) is strongly Fσδ-universal in C([−1, 1]n), provided that
n ≥ 2. The strategy of the proof is roughly speaking the following. First
we use Theorem 2.6 to approximate a continuum C ⊆ [−1, 1]n arbitrarily
closely by a finite set F . Then we add straight line segments to F to make
it connected. Moreover, to each point of F we add small sets of the form
used in the proof of Theorem 3.1. These sets are needed to make sure
that some but not all of the approximations that we construct are locally
connected. Then we add to each point of F a closed half-ball. This ball is
added for technical reasons: it allows us later to establish rather easily that
our approximation is an embedding.

5.1. Theorem. If n ≥ 2 then L([−1, 1]n) is strongly Fσδ-universal in

C([−1, 1]n).

P r o o f. Let A ⊆ Q be an Fσδ-subset, let f : Q → C([−1, 1]n) be an
embedding that restricts to a Z-embedding of some compact subset K ⊆ Q
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Fig. 3

and let ε > 0. Define µ : Q → [0, 1
9ε] by

µ(x) = 1
9

min{ε, dH(f(x), f [K])} .

By Theorem 2.6 there is a homotopy H : 2[−1,1]n × I → 2[−1,1]n such that

(1) H0 = 12[−1,1]n ;
(2) for every t ∈ (0, 1], Ht[2

[−1,1]n ] ⊆ F([−1, 1]n).

It is clear that we may additionally assume that

(3) for every t ∈ I, d̂H(Ht, 12[−1,1]n ) ≤ 2t;
(4) for every t ∈ (0, 1],

H[2[−1,1]n × [t, 1]] ⊆ F([−1 + t, 1 − t]n) .

Let g : Q → Q be an embedding such that g−1[ĉ0] = A (Theorem 2.5).
For every x ∈ Q let x̂ ∈ Q be defined as follows:

x̂ = (x1, x1, x2︸ ︷︷ ︸ , x1, x2, x3︸ ︷︷ ︸ , x1, x2, x3, x4︸ ︷︷ ︸ , . . .) .

Define T : Q → C([−1, 1]2) by the formula

T (x) = ({0} × [−1, 1]) ∪ ([0, 1] × {0})

∪
∞⋃

n=1

{ 1
2n

} ×

{
[0, g(x)n] (g(x)n ≥ 0),
[g(x)n, 0] (g(x)n ≤ 0),

∪
∞⋃

n=1

{1 − 1
3n

} ×

{
[0, 1

n
x̂n] (x̂n ≥ 0),

[ 1
n
x̂n, 0] (x̂n ≤ 0).
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Just as in the proof of Theorem 3.1 it follows that T (x) ∈ L([−1, 1]2) iff
x ∈ A. Observe that (0, 0) ∈ T (x) for all x ∈ Q.

For all x, y ∈ [−1, 1]n let xy denote the straight line segment in [−1, 1]n

connecting x and y. In addition, for x, y ∈ [−1, 1]n and r ∈ [0,∞) let

ℓ(x, y, r) = {p ∈ xy : d(p, {x, y}) ≤ r} .

If x ∈ [−1, 1]n and δ ≥ 0 then

B̂l(x, δ) = {p ∈ [−1, 1]n : ‖x − p‖ ≤ δ and p1 ≤ x1} .

For every x ∈ Q let F (x) = H(f(x), 2µ(x)). Then if µ(x) > 0, F (x) is a
finite approximation of the continuum f(x). Now define h : Q → C([−1, 1]n)
as follows:

h(x) =
⋃

a,b∈F (x)

ℓ(a, b, 4µ(x))

∪
⋃

a∈F (x)

a + µ(x)(T (x) × {0} × . . . × {0}︸ ︷︷ ︸
n−2 times

)

∪
⋃

a∈F (x)

B̂l(a, µ(x)) .

Claim 1. h is well-defined , continuous and h|K = f |K. Moreover , for

every x ∈ Q, dH(f(x), h(x)) ≤ 8
9

min{ε, d(f(x), f [K])}.

• Let x ∈ Q. Then by (4), F (x) ⊆ [−1+2µ(x), 1−2µ(x)]n , which implies
that ⋃

a,b∈F (x)

ℓ(a, b, 4µ(x)) ⊆ [−1 + 2µ(x), 1 − 2µ(x)]n ,

⋃

a∈F (x)

B̂l(a, µ(x)) ⊆ [−1 + µ(x), 1 − µ(x)]n .

Since

µ(x)(T (x) × {0} × . . . × {0}︸ ︷︷ ︸
n−2 times

) ⊆ [0, µ(x)] × [−µ(x), µ(x)] × {0} × . . . × {0}︸ ︷︷ ︸
n−2 times

we therefore conclude that h(x) ⊆ [−1 + µ(x), 1 − µ(x)]n.

• If µ(x) > 0 then h(x) is compact and nonempty, being a finite union
of compact nonempty sets. If µ(x) = 0 then h(x) = f(x), which is also
compact and nonempty. So for every x ∈ Q, h(x) ∈ 2[−1,1]n .

• We claim that h(x) is connected. Observe that it suffices to show that

P =
⋃

a,b∈F (x)

ℓ(a, b, 4µ(x))



Hyperspaces of Peano continua 185

is connected. Suppose that P is not connected. Then we can write P as
U ∪ V , where U and V are disjoint nonempty open subsets of P . Put
F = U ∩ F (x) and G = V ∩ F (x), respectively. Then both F and G are
nonempty. Since by (3) we have dH(f(x), F ∪ G) ≤ 4µ(x), it follows that

f(x) ⊆ B̂(F, 4µ(x)) ∪ B̂(G, 4µ(x)). The connectedness of f(x) and the fact
that both F and G are nonempty now imply that

B̂(F, 4µ(x)) ∩ B̂(G, 4µ(x)) 6= ∅ .

So there exist a ∈ F and b ∈ G such that d(a, b) ≤ 8µ(x). But then 1
2 (a+ b)

is contained in U as well as in V , which is a contradiction.

• It is clear that h is continuous.

• Fix x ∈ Q. It is clear that dH(f(x), h(x)) ≤ 8µ(x) from which it
follows that dH(f(x), h(x)) ≤ 8

9 min{ε, dH(f(x), f [K])}. So we are done
because this inequality implies that h|K = f |K.

Claim 2. h is injective.

First observe that from Claim 1 and the fact that f is an embedding it
follows that

(5) h[Q \ K] ∩ h[K] = ∅ .

Now fix x, y ∈ Q such that h(x) = h(y). Our task is to show that x = y. If
both x and y belong to K then since h|K = f |K and f is an embedding, it
is trivial that x = y. If e.g. x 6∈ K and y ∈ K then from (5) it follows that
h(x) 6= h(y). So without loss of generality we may assume that x, y ∈ Q\K.
So both µ(x) and µ(y) are positive.

We will first prove that µ(x) = µ(y). Assume the contrary, e.g. that
µ(x) < µ(y). There exists a point m = (m1, . . . ,mn) ∈ h(x) such that

∀p ∈ h(x) [p1 ≤ m1] .

Then for every p ∈ F (x) we have p1 ≤ m1 − µ(x). Moreover, the point

q = (m1 − µ(x),m2, . . . ,mn) ∈ F (x) .

Since B̂l(q, µ(x)) ⊆ h(x) and µ(y) > µ(x) > 0, this implies that

dim(h(x) ∩ ((m1 − µ(y), 1] × [−1, 1]n−1)) = n ≥ 2 .

On the other hand, we have

∀p ∈ F (y) [p1 ≤ m1 − µ(y)].

This implies that

h(y) ∩ ((m1 − µ(y), 1] × [−1, 1]n−1)
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is a countable union of 1-dimensional compact sets, and therefore is 1-di-
mensional ([14, Theorem 4.3.7]). This contradiction establishes that µ(x)
= µ(y).

Again consider the point m ∈ h(x). Since µ(x) = µ(y),

m∗ = (m1 − µ(x),m2, . . . ,mn) ∈ F (x) ∩ F (y) .

Since F (x) and F (y) are finite, m1 is maximal, and the intervals [0, 1
n
x̂n]

have length at most 1/n (n ∈ N) there are a neighborhood U of m and a
ξ ∈ (0, 1] such that

U ∩ h(x) = m∗ + µ(x)((T (x) ∩ ([ξ, 1] × [−1, 1]) × {0} × . . . × {0}︸ ︷︷ ︸
n−2 times

))

= m∗ + µ(y)((T (y) ∩ ([ξ, 1] × [−1, 1]) × {0} × . . . × {0}︸ ︷︷ ︸
n−2 times

)) .

Since the coordinates of x appear infinitely often in the coordinates of x̂ (at
pregiven places), and the same is true for y, it now easily follows that x = y.

Claim 3. h−1[L([−1, 1]n)] \ K = A \ K = h−1[L((−1, 1)n)] \ K.

Observe that by construction h[Q\K] ⊆ 2(−1,1)n

. It is clear that a finite
union of locally connected continua is locally connected. Also, recall that T
was constructed such that T (x) ∈ L([−1, 1]2) iff x ∈ A. So if x ∈ A\K then
h(x) is locally connected. Now assume that x 6∈ A∪K. Then µ(x) > 0. We
first assume that there exists s > 0 such that T (x) is not locally connected
at any point of the segment {0} × (0, s).

Let m̂ = (m1, . . . ,mn) be a point in F (x) such that

∀p ∈ F (x) [p1 ≤ m1] .

Without loss of generality assume that

∀p ∈ F (x) [p1 = m1 ⇒ p2 ≤ m2] .

Then clearly h(x) is not locally connected at some point of the segment

Z = {m1} × (m2,m2 + µ(x)s) × {m3} × . . . × {mn} .

To see this, use the fact that F (x) is finite and that the only possibility for
a point of Z to be a point of local connectedness of h(x) is if it lies on a
horizontal segment in h(x) with left endpoint in F (x).

In case there exists s < 0 such that T (x) is not locally connected at any
point of the segment {0} × (0, s), proceed analogously.

Claim 4. h is a Z-embedding.

Since h[K] = f [K] is a Z-set, it suffices to show that if Y ⊆ Q \ K is
compact, then h[Y ] is a Z-set. But this is clear because each continuum in
h[Y ] contains a free arc, so the expansion homotopy A 7→ Bs(A) = {p ∈
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[−1, 1]n : d(p,A) ≤ s} maps C([−1, 1]n) into the complement of h[Y ], for
every positive s.

This completes the proof of the theorem.

6. The main result and comments. A combination of Theorems 3.1,
4.6 and 5.1 gives a proof of the following:

6.1. Theorem. If n ≥ 3 then L([−1, 1]n) is an Fσδ-absorber in

C([−1, 1]n).

Fix n ≥ 3. It is clear that {A ∈ C([−1, 1]n) : A ∩ ∂[−1, 1]n 6= ∅} is a
Z-set in C([−1, 1]n). Since an Fσδ-absorber in Q minus a Z-set in Q is an
Fσδ-absorber (Baars, Gladdines and van Mill [1, Theorem 9.3]), it follows
that the set of all Peano continua in [−1, 1]n that miss the boundary also
forms an Fσδ-absorber in C([−1, 1]n). An application of Corollary 2.4 yields
our main result.

6.2. Theorem. If n ≥ 3 then L(Rn) is homeomorphic to B∞.

6.3. R e m a r k. As is clear from Theorem 3.1(1), our main result is false
for n = 1. This leaves open the question whether it can be proved for n = 2.
We do not know the answer to this question. Observe that by Theorems 3.1
and 5.1, the only thing left to prove is that L([−1, 1]2) is contained in a
σZ-set of C([−1, 1]2). An inspection of our proof of Theorem 4.6 will show
that our methods essentially do not apply to this case. It is known, however,
as was brought to our attention recently by Cauty, that the space of all arcs

in the plane is homeomorphic to B∞ (see Cauty [5]).

It is natural to ask whether L(Q) and L(s) are homeomorphic to B∞.
Observe that we nowhere used the fact that we were dealing with a finite-

dimensional cube. So in fact we also proved that L(Q) is an Fσδ-absorber
in Q. The question remains what can be said about L(s). Note that the
above trick for R

n does not apply here because B is not compact. But in
Theorem 5.1 we made our approximations in such a way that they miss
the boundary of the cube under consideration; see Claim 3 in the proof of
Theorem 5.1. So our proof also shows that L(s) is an Fσδ-absorber in C(Q)
and consequently that L(s) and B∞ are homeomorphic.
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