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DISJOINT EMBEDDINGS OF COMPACTA

HOWARD BECKER, FONS van ENGELEN anp JAN van MILL

Abstract. Let X be a separable and metrizable space containing un-
countably many pairwise disjoint copies of the compactum K. We discuss the
question whether X must contain K x 2%,

§1. Introduction. All spaces are separable and metrizable. Notation and
terminology generally follows Moschovakis [9] on descriptive set theory,
games, efc., and Kuratowski [4] on matters of general topology. It is an old
and well-known result of Suslin [12] that if X is analytic (i.e., a continuous
image of the irrationals ™) and uncountable, then X contains a copy of the
Cantor set 2°. In other words: if X is analytic and contains uncountably many
pairwise disjoint copies of the space K= { p}, then X contains a copy of K x 2.
This rephrasing leads naturally to the question whether a similar result holds
for other compact spaces. Obviously, we can take for K any compact zero-
dimensional space, since K x 2 is homeomorphic to 2% for such K. In [1], van
Douwen shows that if X is completely metrizable, then the result holds for an
arbitrary compact K.

In this paper, we first give a short and easy proof of van Douwen’s theorem,
using function spaces. These function spaces are subsequently used to define
a game which is used to extend van Douwen’s result to spaces X in certain
more general classes I', assuming the determinacy of games with payoff set in
I'. As a particular case, we obtain the following: if Det (I1]) then every co-
analytic space containing uncountably many pairwise disjoint copies of the
compactum K contains a copy of Kx2” In fact, Det (IT}) is too strong
a hypothesis here: it suffices to assume the existence of a Cantor set in
every uncountable IT]-set. Finally, we give an example of a o-compact space
containing uncountably many pairwise disjoint copies of the circle S’ but not
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S' x 2%, granting the existence of an uncountable coanalytic space without per-
fect subsets.

§2. Embeddings in complete spaces. In [1], van Douwen showed that if X
is completely metrizable and contains uncountably many pairwise disjoint
copies of the compactum K, then X contains K x2°. His proof is a rather
technical direct approximation of K x 2 by the given embeddings of K in X.
The idea of our proof is basically to reduce everything to the well-known case
K={p} by considering the space I(K, X) of embeddings of K in X.

Let K now be a fixed compact space, and (X, d) an arbitrary space. Put

C(K, X)={f: fis a continuous mapping K—X},

and for f, g: K—X define d( f, g)=maxycx d(f(x), g(x)). Then (C(K, X) d)
is a separable metric space; furthermore, if d is a complete metric then so is d
Let C.(K, X) be the open subspace

{feC(K, X): for all xeX, diam f~'(x) <&}
of C(K, X); clearly, [ Mg Cim(K, X)={feC(K, X): fis an embedding}, so
I(K, X)={/eC(K, X): fis an embedding}

is a G; in C(K, X). As a consequence, /(K, X) is complete if X is complete.
(For details on these matters see van Mill [8, Chapter 1.3]).

2.1. LEMMA. Let Y be an analytic subspace of I(K, X) containing an un-
countable subset F of mappings with pairwise disjoint images. Then X contains
a copy of Kx2°%,

Proof. First note that if f, ge F' then we can find &(f, g) >0 such that if

aif, H< S(f g) and d(g, §) < &(f, £) then K] g[K]=.
Let ¢:@”—Y be onto, and put

G=0"—|J{U: Uis open in ®®, p[U] n Fis countable}.

Since F is uncountable G is non-empty, and G is complete since it is a G; in
m

@®. It is easy to verify that if V' is open and non-empty in G then @[V ] Fis
uncountable. Fix a complete metric on G.

Inductively, we construct for each s€2~? a non-empty open subset U, of G

such that
(i) if sct then U,20,;

(ii) diam (U) <27,

(iii) if |s| =[], s#1, fe@[U], g p[U] then f[K] ng[K]=
Here |s)=n if s=(so,...,5.,—1). Take U,=G. If U, has been constructed
then @[U,] n F is uncountable, so we can choose f#g in g[U] N F, say f=
o(x0), g= @(x,) with x;e U,. Now let U,-; be an open neighbourhood of x; of
diameter less than 27" ™', such that U,~ < U,, and such that furthermore @[ U,-]
has diameter less that &( f, g) in Y. This completes the induction.
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For each z£2%, let w(z) be the unique point in ﬂ,,q,U:F,, (by (i), (ii) and
completeness of the metric on G). We claim that ¢ - y[2”]=C is a copy of 2¢
in Y consisting of mappings with pairwise disjoint images. Indeed, oy is
clearly continuous, and if z and w are distinct elements of 2° then for some
|s| =1, s#t we have y(z)e U,, w(w)e U, whence ¢ o y(z)[K]1n @ y(w)[K]=
¢J by (iii). Finally, define j: K x C—X by j(x, f)=f(x). Then jis continuous,
and if (x, 1) #(», g) then f(x) #g(y) either because f[K] ng[K]= (if f#g)
or because f is an embedding (if f=g and x#y). Thus, j is the required
embedding.

Remark. The construction of the Cantor set in the above proof could be
replaced by an application of the boundedness principle (see Mauldin and
Schlee [7]).

Van Douwen’s result follows immediately.

2.2. THEOREM. Let X be completely metrizable, and suppose that X con-
tains uncountably many pairwise disjoint copies of the compact space K. Then
X contains a copy of Kx2°.

Proof. Apply Lemma 2.1 to Y=I(K, X).

§3. Embeddings in more general spaces. Throughout this section, I' will
denote a class of subspaces of various complete spaces, with the following two
properties:

(1) T is closed under continuous preimages, and

(2) T is closed under universal quantification.

Examples are the classes IT, and the class of all projective sets. More precisely,
(1) says that if X and Y are complete spaces, f:X— ¥ is continuous, and Zc ¥
is in I', then f'[Z]el; in particular if I'# @ then I' contains all complete
spaces. Note that (2) is equivalent to saying that the point class I censisting
of all complements of spaces in I" is closed under projection.

We also continue to use the terminology of function spaces that was intro-
duced in Section 2.

3.1. Lemma. If XeT then I(K, X)eT for each compact space K.

Proof. let Y be a complete space containing X, and define
¢: KxI(K, Y)=Y by o(p,f)=f(p). Then ¢ is continuous and

fel(K, X) < (peK)(p, fleo 'XD).

Thus, by properties (1) and (2) of I', I(K,X)eI (noting that I(K, X)=
I(K, Y)— 0 '[Y—X] we could have used the equivalent form of (2)).
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The main result of this section is the following theorem.

3.2. THEOREM. If Det (I"), and Xel contains uncountably many pairwise
disjoint copies of the compact space K, then X contains a copy of Kx2°.

Proof. Fix a complete space Y containing X, and a countable basis 4 for
C(K, Y). In basically the same way as in Section 2 we will construct a Cantor
set in I(K, ¥) of mappings with pairwise disjoint images. However, here we
will in addition use a winning strategy in a certain game to get the mappings
to have images that are in fact inside X.

We define the infinite two-person game G as follows. Two players alternate
moves in the usual way. On move n, Player I plays a pair (U,, U,) of elements
of # and Player II plays i,e2= {0, 1}.

(G s, u)  WluhH o (e )
II f{) i] 1.2

Player I must play U;"s satisfying the following conditions (otherwise he loses):
(@) 1) I} =g, where I'=J{fIK]: fe Uy'};

(b) diam (U;") <1;
n

(c) (UA) €Uy
Assume Player I has played so that (a)-(c) hold. Then ﬂ,,q, =
- (Ui)~ contains exactly one point fe C(K, Y); call f the outcome of the
game. Player I wins the round of the game, if, and only if, the outcome is in
i 4]

CrLamMm 1. G is determined.

Indeed, fix an enumeration {V;:iew} of the basis #. This enumeration
makes G equivalent to a game G in which, on each move, Player I plays two
elements of @ and Player I plays one element of 2 (equivalent meaning that
if either player has a winning strategy in the one game, that same player has
a winning strategy in the other).

(C I (x0, yo) (x1, y1) (x2,¥2) .- )
II io i [

After @ moves in a round of G, the two players have played
(x,y,2)e@” x @ x2° Let W= w” x @ x 2 be the subspace consisting of all
rounds of the game G in which Player I wins. We are assuming Det (I'), so
to complete the proof of the claim all that must be shown is that W is in .
Let F be the subspace of ®” x @ x 2% consisting of all rounds of G correspond-
ing to rounds in G where Player I has played following (a)-(c); then F'is closed.
Define y:F—C(K, Y) to be the function which sends a round of the game G
to the outcome of the corresponding game G. That is,

{w(x,y,2)}= ﬂ{ Veey: nE®, z(R) =0} N ﬂ{ Viny:neo, z(n)=1}.
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Clearly, y is continuous, and both F and C(X, Y) are complete. By Lemma
3.1, I(K,X)el', so since I' is closed under continuous preimages, W=
w'[I(K, X)]eTl.

CLAIM 2. Player 11 does not have a winning strategy for G.

Indeed, let us assume, towards a contradiction, that Player II has a winning
strategy 7 for G. Consider a position

p=C(U8, U, by o oo (U5 T, B

in the game in which it is Player I’s turn to play (or p=< ), and the game is
about to begin). For any such position p and any fe C(K, Y), we say that 7
rejects [ at p if the following three conditions hold:
(i) p is consistent with the strategy 7;
(i) fe Uy
(iii) for every move (UL.,, U, ,) for Player I at position p which is legal
(i.e., satisfies (a)-(c)), 7 calls for Player II to respond with an i,+,€2
such that f¢ Ui} .
First note that for any fel(K, X'), there exists some position p such that
rejects f at p. For if not, Player I could play against 7 in such a way that the
outcome of the game is f. That means that there is a round of the game played
according to 7 in which Player I wins, contrary to the assumption that 7 is a
winning strategy. Second, note that for any f, ge C(K, Y), if f and g have
disjoint images, then they cannot both be rejected by 7 at the same position.
For suppose they are both rejected at p=((Us, Uy), iy, . . ., (U3, Uy), b,>. By
(i), f, ge Uj. Since fand g have disjoint images, there exist U2, and U, in
A, satisfying (a)-(c), and such that fe Uys, and ge U,+,. If Player I plays this
(UL, Uly)) at p, then 7 calls for Player II to respond with either i,.,=0 or
i,+1=1. In the former case f is not rejected by 7 at p, and in the latter case g
is not. By hypothesis, however, there is an uncountable subset F of (K, X)
consisting of mappings with pairwise digjoint images. Any member of F is
rejected by 7 at some position. There are only countably many positions.
Hence two distinct members of F must be rejected by t at the same position,
and we have a contradiction.

By the two claims, Player I has a winning strategy o for the game G. For
ze2?, let f; denote the outcome of the game when Player 1l plays so that z=
(io, &1, B2, . . .) and Player I follows ¢. Since o is a winning strategy, f.e (K, X),
and by (a), if z#w then fJ[Z]nf[K]=¢. Clearly the function z+f; is
continuous. Thus, J(K, X') contains a copy of 2 consisting of mappings with
pairwise disjoint images. This implies as in Lemma 2.1 that X contains a copy
of Kx2%.

Remark. Although the class of complete spaces does not satisfy condition
(2) imposed upon I' in this section, van Douwen’s theorem can nonetheless be
seen as a special case of Theorem 3.2. Indeed, in this case the game in the
proof is closed, so since closed games are determined, the above proof is in
ZFC,
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§4. Embeddings in coanalytic spaces. In this section we will show that in
the special case where I =T1; (the class of all coanalytic spaces) the assumption
Det (T") in Theorem 3.2 can be weakened to the following hypothesis.

() For any a<  there are only countably many subsets of @ in L(a).
L(a) is the smallest (class) model of ZFC containing all ordinals and containing
a. ZFC+ (%) is equiconsistent with ZFC + there exists an inaccessible cardinal,
see Solovay [11]. The hypothesis (*) is a consequence of Det (IT}) but is known
to be much weaker. For information on the connections between the models
L(a) and descriptive set theory, see Jech [2], Mansfield and Weitkamp [6], and
Moschovakis [9].

We start out by stating two lemmas.

4.1. LEMMA (Shoenfield; see Moschovakis [9, 8F.8]). Let P<®® be any
I1,-set. There exists a tree T on @ % @, such that the following conditions hold.
(a) P={wew®: there exists pe(w)” such that (w, @) is an infinite branch
through T} ;
(b) There exists b= @ such that T is in the model L(b).

The next lemma we will state concerns closed games. Let A be any discrete
space. If X is closed in A" then we can put

A2 —x=J{[s]: se &}

for some set & of finite sequences from A, where [s] is the basic open subset
of A® determined by s; conversely, every such & determines a closed subset
of A®. Since Player 1I wins a round of the closed game G,(X), if, and only
if, after some finite number of moves the sequence produced (by both players)
is in ., we can identify closed games with pairs (4, &) of a set 4 and a set
& of finite sequences from 4. Furthermore, let us remark that closed games
are determined.

42, LeMMmA. If M is a transitive model of ZFC and (A, & )e M is a closed
game, then one of the players has a winning strategy teM for this game.

For a proof of Lemma 4.2 we refer to Kechris and Moschovakis [3, p. 40].
We are now ready to prove our theorem.

4.3, THEOREM. If (%) holds, and X €X1| contains uncountably many pair-
wise disjoint copies of the compact space K, then X contains a copy of K x 2°.

Proof. Fix a complete space Y containing X, and a countable basis
{Viiiew} for C(K, Y). Let y: ®”—C(K, Y) be a continuous surjection and
let P=y '[I(K, X)]. Since I'=1I1| satisfies the conditions of Section 3 we have
I(K, X)el| by Lemma 3.1, and hence P is also I{; let the tree T on @ X @,
and b= be obtained from Lemma 4.1 applied to this particular P.

We now define yet another game, G'. On move #n, Player I plays a countable
ordinal @(n) and three integers w(n), x(n) and y(n), and Player II plays z(n)e2.
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Let U2= Viwm. Us = Vi, and i,=z(n). Player I wins the round of G/, if, and
only if, the following five conditions are satisfied: firstly, the conditions of the
game G (or G),

(@) I 1I)'= @, where I'=J{fIK]: feUy},

1
(b) diam (U")<-, and
H

(c) (Uiv) <Ur,
which imply the existence of an outcome of the game, but also

(d) (w, p)e®” x (w,)” is an infinite branch through T’

(e) w(w) is the outcome of the game.
Note that G’ has the same plays as G, x, y and z, plus additional plays y and
w for Player I; conditions (d) and (e) imply that the outcome of the game is
in I(K, X). So what the above definition really means is that Player I wins G/,
if, and only if, he wins G and, in addition, plays a @ and w that witness his
winning G. Also, note that if Player I has a winning strategy o for G, he
clearly also has a winning strategy for G: play according to o just ignoring ¢
and w. In this case, we can complete the proof of the theorem as in Theorem
3.2. So all that remains to be proved is that G’ is determined and that Player
11 does not have a winning strategy.

Cram 1. G is a closed game and is therefore determined.

Indeed, let (¢*, w", x*, ¥, 2). be a sequence of winning rounds for Player
1, and suppose the sequence converges to (@, w, X, y, z). Since (a)-(d) clearly
only depend on initial segments, it suffices to prove (¢). We will show that if
z(n) =0 then w(w)e Vym; the proof that w(w)e ¥y, if z(n)=1 is similar. So
assume that z(n) =0, and choose an integer N such that if k>N then 2*(n) =
0 and x*(n) =x(n). Then w(W*)e V= Vi for all k= N. Since the sequence
w(w") converges to w(w), we get w(w)e V., as required.

CLaM 2. Player 11 does not have a winning strategy for G'.

As in the proof of Theorem 3.2, we assume that Player Il does have a
winning strategy and derive a contradiction. Note that only condition (d) of
this closed game involves ordinals. Conditions (a)-(c) and (e) of this closed
game are defined by four sets of finite sequences of integers, so we can clearly
find an ac® such that these four sets, plus b, are all in L(a). Then
TeL(b)< L(a), so the closed game G’ is in L(a). By Lemma 4.2, there is a
winning strategy 7 for Player II such that 7 is in L(a). Consider a position

p=<(9(0), w(0), x(0), ¥(0)), z(0), . . .,
(p(n), w(n), x(n), p(n)), z(n), (p(n+1), w(n+1)))

in the game G’ in which Player I is half-way through his (n+ 1)st move, that
is, Player I has played @(rn+ 1) and w(n+ 1) but has not yet played x(n+1) or
y(n+1), and such that p satisfies conditions (a)-(c) (but not necessarily (d) or
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(e)). For any such position p and any fe C(K, Y), we say that t rejects f at p
if the following three conditions hold:
(1) p is consistent with the strategy t;
(i) fe U
(ii1) for every play (x(n+1), y(n+1)) for Player I which completes his
(n+1)st move and which satisfies (a)-(c), t calls for Player II to
respond with a z(n+ 1)€2 such that f¢ U;7' V.

As in Theorem 3.2, for any fel(K, X), there exists some position p such
that 7 rejects f at p. To see this, choose a ¢ and w such that w(w)=f and
(w, @) is a branch through 7. If no such position p existed, Player I could play
against 7, always playing this fixed ¢ and w, and playing in such a way that
the outcome of the game is f. That means that Player I can win G’ playing
against . Also asin Theorem 3.2, for any f, ge C(K, Y), if fand g have disjoint
images, then they cannot both be rejected by 7 at the same position p. But in
this game G/, there are uncountably many positions. For p a position, define

R(p)={feC(K, Y): T rejects fat p}.

We claim that {R(p): p is a position] is countable. Assuming this claim we
get a contradiction as in Theorem 3.2.

We say that a position p hﬁs type k if Vi is the last open set of p; formally,
p=<(9(0), w(0), x(0), p(0)), z(0), .. .,
(@(n), w(n), x(n), y(n)), z(n), (p(n+1), wn+1))>

and either z(#) =0 and x(n)=k or z(r)=1 and y(n)=k. Fix k. It will suffice
to show that {R(p): p is a position of type k} is countable. For any position
p of type k, define ¥(p) S @ as follows:

r(p)={icew: there exists jew such that (i, j) [or (j, {)] is a play for Player I
at p which completes Player I's move and which satisfies (a)-(c), and if
Player I plays (i, j) [resp. (j, /)] at p then 7 calls for Player Ii to respond
by playing 0 [resp. 1]}.

For p a position of type k, R(p) = Vi—(Uicrim Vi). So it will suffice to show
that R={r(p):p is a position of type k} is countable. Since 7 is in L(a) and
(a)-(c) are defined by sets in L(a), r(p) can be defined, as above, inside the
model L(a), and this definition is absolute. Hence r(p) is in L(a). That is, R
is a collection of subsets of @, and R= L(a). By (*), there are only countably
many subsets of @ in L(a), so R is countable.

§5. Embeddings in c-compact spaces. The assumption (x) used in Section
4 is also a necessary condition for the truth of “for each compact K and each
Xell, if X contains uncountably many pairwise disjoint copies of K, then X
contains a copy of K x2%”:

5.1. LEMMA (Solovay [10, Theorem 1]). The hypothesis () is equivalent
to the hypothesis that every uncountable coanalytic space contains a copy of 2°.
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Thus, if (*) fails, the lemma gives us for K= { p} a coanalytic space contain-
ing uncountably many pairwise disjoint copies of K but no copy of K x 2, and
we cannot hope for a full extension of van Douwen’s theorem to Il in ZFC.
We do however have the following partial extension.

5.2. THEOREM. Let X be coanalytic, and assume that X contains more than
@, pairwise disjoint copies of the compact space K. Then X contains a copy of
Kx2".

Proof. Since X is coanalytic so is /(K, X) by Lemma 3.1. By Luzin and
Sierpinski [5] we can write I(K, X)= an‘ B, for some family {B,: @ <@}
of absolute Borel sets, and some B, must contain an uncountable subset F of
mappings with pairwise disjoint images. Now apply Lemma 2.1.

Theorem 5.2 can be generalized to other classes; for example, using a result
of Martin (see Moschovakis [9, 8H.13]): if X is I1] (in particular if X is analytic)
and X contains more than @, pairwise disjoint copies of K, then X contains a
copy of Kx 2% if Det (I1}). Note that in Theorem 3.2 we used Det (I13) for
Il.-sets X.

We will now show that failure of () even precludes an extension of the
full van Douwen’s theorem to the class of o-compact spaces.

5.3. TueoreM. Let K be a compact connected space having more than one
point, and containing no proper copies of itself. If (x} does not hold then there
exists a o-compact space X containing uncountably many pairwise disjoint copies
of K but no copies of Kx2°.

Proof. Let ¢:K—®” be a bijection such that if 4 is closed in @ then
@ '[4] is a G5 in K (in fact, we can take ¢ a so-called (1, 1)-homeomorphism,
see Kuratowski [4, §37]). Fix an uncountable coanalytic subset E of 2° contain-
ing no Cantor sets. Then ¥Y=2%— FE is analytic, so there exists a continuous
surjection y:w“—Y. Let j:Y—2“ be the embedding, and put f=
Jjewo p:K—2% Nowif A is closed in 2%, then f'[A]=¢ 'y '[4 n Y]. Since
A Yisclosed in ¥ and w is continuous, v~ '[4 n Y] is closed in @” whence
¢ 'w'[An Y]is a Gs in K. By Kuratowski [4, §31] the graph G of fis a Gs
in Kx2° We claim that X=(Kx2”)—G is as required.

Clearly, X is o-compact. Furthermore, note that since K x {e} =X for each
ee E, we have that X contains uncountably many pairwise disjoint copies of K.
Now suppose that X contains a copy of Kx2%, and let i:Kx2”—X be an
embedding. Since K is connected, each i/[Kx {p}] is contained in some
X N (Kx{y,}), and because K does not contain any proper copies of itself, we
actually have i[Kx {p}]=Kx {y,} =<X. Note that y,¢Y: indeed, / maps K
onto Y, and if f(x)=1y,, then (x, y,)e(K* {y,})—X. Thus, y,€E. Also note
that if p#g¢ then y,+y, since the sets i[Kx {p}) are pairwise disjoint. Thus,
C={y,:pe2”} is uncountable, and since it is the projection of i/[K * {2”} ] onto
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the second coordinate, it is compact. We conclude that C< E contains a copy
of 2“, a contradiction.

5.4. CoROLLARY. If (%) does not hold, then there exists a o-compact space
containing uncountably many pairwise disjoint copies of the circle S " but no copies
of 8'%2°,

Theorem 5.3 does not give an example for as simple a space as the unit
interval; in fact we cannot get a o-compact example for [0, 1] or any n-cube,
as was noted by K. Kunen (use a Baire category argument and Theorem 2.2).
However, we can get an absolute Fs-example in these cases, as the following
theorem shows.

5.5. THEOREM. Let K be a compact connected space having more than one
point and containing no nowhere dense copies of itself. If (%) does not hold then
there exists an absolute F z5-space X containing uncountably many pairwise dis-
Jjoint copies of K but no copies of Kx 2%, if K in fact contains no proper copies
of itself, then X can be taken to be o-compact.

Proof. Let # be a countable basis for K. Then for each Be, B is un-
countable and complete, so there exist bijections ¢z: B—>@® such that if 4 is
closed in @® then ¢ '[A4] is a G; in B (again we use Kuratowski [4, §37]). Fix
an uncountable coanalytic subset £ of 2 containing no Cantor sets, and a
continuous surjection y:@®— Y=27—E. Let j: Y—2 be the embedding, and
put fz=jo o @z: B—2”. As before, the graph Gp of fz is a Gs in Kx2°
whence Xp=(Kx2°)—Gpg is o-compact. We claim that X= mgggg Xpg is as
required.

Clearly, X is an absolute F,s. Furthermore, note that since K x {e} =X for
each ec E, we have that X contains uncountably many pairwise disjoint copies
of K. Now suppose that X contains a copy of Kx 2%, and let i: Kx2”—.X be
an embedding. First note that for each ye ¥, Bx {y} #X: indeed, f; maps B
onto Y, and if fz(x) =y, then (x, y)e(Bx {y})—X. Now since K is connected,
each i[Kx {p}] is contained in some X n (KX {y,}), and because i[Kx {p} ]
is not nowhere dense in K x {y,} it must contain some Bx {y,}. By the above
remark, y,¢ Y, whence y,e E. Let C={y,: pe2”}. Since C is the projection of
i[Kx {2}] onto the second coordinate, it is compact. Also, C is uncountable:
the copies i[K x {p}] are pairwise disjoint and have non-empty interior, so for
each ecE, the set { pe2”:y,=e} is countable. Thus, C<E contains a copy of
2%, a contradiction,

The following further generalization is possible: let K be connected, not
containing uncountably many pairwise disjoint copies of itself, and admitting
a continuous mapping g onto the unit interval such that no fibre contains a
copy of K; then we obtain an example which again is an absolute F,s-space.
In fact, the example is just (g xid) '[X], where X is the example for the unit
interval constructed as in the proof of the theorem.



DISJOINT EMBEDDINGS OF COMPACTA 231

It would be interesting to know more precisely for what compacta K we
can build examples as above, and also what descriptive complexity can be
achieved. Minimal restrictions on K are that K is not zero-dimensional (as
noted in Section 1), and that K does not contain uncountably many pairwise
disjoint copies of itself (apply van Douwen’s theorem to just one copy of X in
X). As far as descriptive complexity of examples is concerned, note that if K
is connected and does not contain uncountably many pairwise disjoint copies
of itself, and E is an uncountable subset of 2% which does not contain any
copy of 2%, then X = K x E does not contain a copy of K x27; thus, if () does
not hold we can find a coanalytic X for such K.

We formulate one more corollary.

COROLLARY 5.6. The following are equivalent.

(a) Every o-compact space X containing uncountably many pairwise disjoint
copies of 8! contains a copy of S' x2°.

(b) For every coanalytic space X and every compact space K, if X contains
uncountably many pairwise disjoint copies of K then X contains a copy
of Kx2°.

(c) Every uncountable coanalytic space contains a copy of 2°.

(d) For any a< o there are only countably many subsets of @ in L(a).

Proof. The implication from (b) to (a) is trivial, and the equivalence of
(c) and (d) is Lemma 5.1. That (b) follows from (d) is Theorem 4.3, and (a)
implies (c) is Corollary 5.4.

For the class of analytic spaces there does not seem to be any statement
similar to Corollary 5.6; it would be particularly interesting to know the exact
strength of part (b) for “analytic”.
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