Is $\omega^* - \{u\}$ Absolutely Countably Compact?

JAN VAN MILLa AND JERRY E. VAUGHANb

aDepartment of Mathematics
Vrije Universiteit Amsterdam
Amsterdam, The Netherlands
and
bDepartment of Mathematical Sciences
University of North Carolina at Greensboro
Greensboro, North Carolina 27412

ABSTRACT: We construct an ultrafilter $u \in \omega^* = \beta \omega - \omega$ such that the subspace $\omega^* - \{u\}$ is not absolutely countably compact, and we show that under the continuum hypothesis, for every $u \in \beta \omega - \omega$, the subspace $\omega^* - \{u\}$ is not absolutely countably compact.

INTRODUCTION

We consider the following concept.

DEFINITION 1.1: (M.V. Matveev [3]) A space X is called absolutely countably compact (acc) provided for every open cover \mathcal{U} of X and every dense $D \subseteq X$, there exists a finite set $F \subseteq D$ such that

$$\operatorname{St}(F, \mathcal{U}) = \bigcup \{ U \in \mathcal{U} : U \cap F = \emptyset \} = X.$$

Matveev proved (among other things) that

$$\text{compact} \implies \text{acc} \implies \text{countably compact}$$

and that neither arrow can be reversed. It is well-known that removing one point from ω^*, the remainder of the Čech-Stone compactification of the integers, results in a countably compact subspace. Thus it is natural to ask the question: Are the spaces $\omega^* - \{u\}$ acc for all $u \in \omega^*$? In this paper we prove the following two results:

THEOREM 1.2: There exists $u \in \omega^*$ such that the subspace $\omega^* - \{u\}$ is not acc.

THEOREM 1.3: [CH] For every $u \in \omega^*$, the subspace $\omega^* - \{u\}$ is not acc.

Mathematics Subject Classification: 54D20, 54A35, 54G05.
Keywords and phrases: countably compact, absolutely countably compact, ultrafilters, $\beta \omega - \omega$, ω by ω independent matrix of clopen sets, irreducible maps.
Still open is the question of whether the statement in Theorem 1.3 is a theorem of ZFC.

2. SOME LEMMAS

We begin with deriving a few general lemmas that will be important later. Let X be a space with dense subset D. We say that a closed subset $T \subseteq X$ avoids D if there is a family \mathcal{U} of open subsets of X such that the following conditions are satisfied:

1. $\bigcap \mathcal{U} = T$,
2. $|\mathcal{U}| = |D|$, and
3. for every $d \in D$ we have $|\{U \in \mathcal{U}: d \in U\}| < |\mathcal{U}|$.

Observe that if $T \subseteq X$ avoids D, then $T \cap D = \emptyset$.

Let κ be an infinite cardinal. A subset P of a space X is called a P_κ-set if the intersection of fewer than κ neighborhoods of P is again a neighborhood of P. A P-set is a P_{ω_1}-set and a P-point is a P-set singleton. We omit the simple proof of the following lemma.

Lemma 2.1: Suppose that X is a compact space with weight κ. If $D \subseteq X$ is a dense subset of cardinality κ and if $T \subseteq X - D$ is a closed P_κ-set then T avoids D.

We now formulate and prove our main tool for recognizing spaces that are not acc. Recall that if X is a space and if $p \in X$ then $\chi(p, X)$ is the character of p in X, i.e., the smallest cardinality of a neighborhood base of p.

Lemma 2.2: Let X be a compact T_2-space. If $D \subseteq X$ is dense, $T \subseteq X$ avoids D and $p \in T$ is such that $\chi(p, T) = |D|$, then $X - \{p\}$ is not acc.

Proof: Let U be a family of open neighborhoods of T that witnesses the fact that T avoids D. Let \mathcal{V} be a neighborhood base for p with $|\mathcal{V}| = |D|$. List \mathcal{V} as $\mathcal{V} = \{V_U: U \in \mathcal{U}\}$ and put

$$\mathcal{W} = (X - T) \cup \{U - V_U: U \in \mathcal{U}\}.$$

Then \mathcal{W} is clearly an open cover of $X - \{p\}$. Pick an arbitrary finite $F \subseteq D$. The family

$$\mathcal{U}_F = \{U \in \mathcal{U}: F \cap U \neq \emptyset\}$$

has cardinality less than $|D|$. Pick an arbitrary point

$$x \in \bigcap \{V_U \cap T: U \in \mathcal{U}_F\} - \{p\}.$$

Observe that such a point exists because T is compact and character and pseudocharacter agree in compact spaces. We claim that $x \notin \operatorname{St}(F, \mathcal{W})$. To this end, pick an arbitrary element $W \in \mathcal{W}$ that intersects F. Since $x \in T$, we may clearly assume that W is of the form $U - V_U$ for certain $U \in \mathcal{U}$. Then $U \in \mathcal{U}_F$ since W meets F. But since $x \in V_U$, we have $x \notin W = U - V_U$. □

Let X be compact, $D \subseteq X$ be dense and $p \in X - D$. Lemma 2.2 suggests the natural question of whether $X - \{p\}$ is not acc provided that $\{p\}$ avoids D. But this
is not true. Because countably compact spaces of countable tightness are acc, Matveev [3, Theorem 1.8], it follows that the ordinal space \(\omega_1 \) is acc. (Alternatively, use the Pressing Down Lemma.) Now simply observe that by Lemma 2.1, \(\{\omega_1\} \) avoids \(\omega_1 \) in the compact space \(\omega_1 + 1 \).

Definition 2.3: A continuous function \(f : X \to Y \) of \(X \) onto \(Y \) is called **irreducible** provided \(f(A) \neq Y \) for every proper closed subset \(A \subseteq X \).

The next lemma is well known (see [1, Exercise 3.1C(a)]).

Lemma 2.4: If \(f : X \to Y \) of \(X \) onto \(Y \) is continuous and \(X \) is compact, then there exists a closed set \(X_0 \subseteq X \) such that \(f(X_0) = Y \) and \(f|X_0 : X_0 \to Y \) is irreducible.

Recall that the \(\pi \)-character of a point \(x \) in a space \(X \) (denoted \(\pi x(x, X) \)) is the smallest cardinality of a family \(\mathcal{U} \) of open subset of \(X \) such that every neighborhood of \(x \) contains a member of \(\mathcal{U} \).

The next lemma is also well known; see, e.g., Juhász [2, p.64].

Lemma 2.5: If \(f : X \to Y \) is irreducible, and \(X \) is compact, then for all \(x \in X \), \(\pi x(x, X) = \pi x(f(x), Y) \).

Definition 2.6: An indexed family \(\{A^i_j : i \in I, j \in J\} \) of clopen subsets of \(\omega^* \) is called a \(J \) by \(I \) independent matrix if:

1. The rows of the matrix are pairwise disjoint, i.e., for all distinct \(j_0, j_1 \in J \) and \(i \in I \) we have that \(A^i_{j_0} \cap A^i_{j_1} = \emptyset \).
2. If \(F \) is a finite subset of \(I \) and \(f \in J^F \) then
 \[\bigcap \{A^i_{f(i)} : i \in F\} \neq \emptyset. \]

K. Kunen proved that there exists a \(c \) by \(c \) independent matrix of clopen subsets of \(\omega^* \) (see [4, Lemma 3.3.2]).

Proof of Theorem 1.2

Let \(D \) be a dense subset of \(\omega^* \) having cardinality \(c \), and put \(D = \{d_\alpha : \alpha < c\} \). Let \(\{A^\alpha_\beta : \alpha , \beta \in c\} \) be a \(c \) by \(c \) independent matrix of clopen subsets of \(\omega^* \). For each row \(\alpha < c \), pick two sets \(A^\alpha_{\beta_0} , A^\alpha_{\beta_1} \), so that

\[(A^\alpha_{\beta_0} \cup A^\alpha_{\beta_1}) \cap \{d_\beta : \beta < \alpha\} = \emptyset, \]

and define \(B^\alpha_0 = A^\alpha_{\beta_0} \) and \(B^\alpha_1 = A^\alpha_{\beta_1} \). Thus \(\{B^\alpha_i : \alpha \in c, i \in 2\} \) is a \(c \) by 2 independent matrix. Let

\[S = \bigcap \{B^\alpha_0 \cup B^\alpha_1 : \alpha < c\}. \]

Then \(S \) avoids \(D \). By compactness, for every \(x \in 2^c \), we have \(\bigcap \{B^\alpha_x(0) : \alpha < c\} = \emptyset \), hence there is a natural mapping \(f : T \to 2^c \) which is easily seen to be continuous and onto. By Lemma 2.4, there exists \(S \subseteq T \) such that \(f|S : S \to 2^c \) is onto and irreducible. By Lemma 2.5 every point in \(S \) has character \(c \) in \(S \) and hence in
T. An application of Lemma 2.2 now shows that for \(u \in S \) we have \(\omega^* - \{u\} \) is not acc.

PROOF OF THEOREM 1.3

Assume CH, and let \(u \in \omega^* \).

We first prove the theorem in the special case that \(u \) is a \(P \)-point. Since all \(P \)-points in \(\omega^* \) are topologically equivalent [5, p.171], and since the density of \(\omega^* \) is \(\omega_1 \), by Lemma 2.2 it suffices to construct a \(P \)-point \(p \in \omega^* \) which is a nonisolated point in some nowhere dense closed \(P \)-set \(P \subseteq \omega^* \). By [4, Lemma 1.4.3] there is a nowhere dense closed \(P \)-set \(P \) in \(\omega^* \) which is homeomorphic to \(\omega^* \). We can therefore let \(p \) be any \(P \)-point of \(P \).

We now use the special case to prove the general case. By [5, p.79], it follows that we can write \(\omega^* - \{u\} \) as the disjoint union of two nonempty open sets \(U \) and \(V \) each having \(u \) in their closure. Since \(\omega^* \) has no \((\omega, \omega) \)-gaps, we may without loss of generality assume that \(u \) is a \(P \)-point in \(U \cup \{u\} \). By Parovičenko’s characterization of \(\omega^* \) [4, Corollary 1.2.4], it easily follows that \(U \cup \{u\} \) is homeomorphic to \(\omega^* \). By the previous case it now follows that \(U \) is not acc. But then clearly \(\omega^* - \{u\} = U \cup V \) is not acc as well.

REFERENCES