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Every space is assumed to be separable and metric. A space is called (strongly)
countably dimensional if it can be written as a countable union of (closed) finite
dimensional subspaces. A space X is called strongly infinite dimensional if the
space admits an essential system (Fn, Gn)∞n=1, i.e. Fn and Gn are disjoint closed
subsets of X such that if Sn is a closed separator of Fn and Gn for each n, then⋂∞
n=1 Sn is nonempty. The sequence of left and right endfaces of the Hilbert cube

is the standard example of an essential system.
A well-known theorem of Engelking [E] states that every autohomeomorphism

h of an n-dimensional space X can be extended to a homeomorphism h̃ : C → C,
where C is an n-dimensional compactification of X (and hence we have a ≤n-
dimensional remainder). We consider the question of whether similar results can
be obtained for infinite dimensional spaces, i.e. is it possible to put a bound on the
dimension of the remainder? The following example shows that the answer is no if
we allow incomplete spaces. Consider the Hilbert cube Q = [0, 1]N and the strongly
countably dimensional pseudoboundary σ = {x ∈ Q : xi = 0 from some index on}.
It was shown by R. D. Anderson that Q \ σ is homeomorphic to Hilbert space (see
[BP, Theorem V.5.1]). The following proposition is a slight improvement of the
known result that the remainder of every compactification of σ contains a copy of
Q.

Proposition 1. The remainder of every completion of σ contains a dense copy of
Hilbert space.

Proof. Let C be a completion of σ. According to [La] there exist a Gδ-set A in C,
a Gδ-set B in Q, and a homeomorphism h : A→ B such that σ ⊂ A, σ ⊂ B, and
h|σ is the identity. Since Q \ B is σ-compact, it is negligible in the Hilbert space
Q \ σ (see [A]). So B \ σ and A \ σ are Hilbert spaces.

We turn to complete spaces. According to [Le] every complete space can be
compactified by adding a strongly countably dimensional remainder. This fact also
follows from the aforementioned result that Hilbert space can be compactified to a
Hilbert cube by using σ as remainder. So the question naturally arises of whether
every autohomeomorphism of a complete space can be “compactified” by adding
a strongly countably dimensional remainder. Let us have a closer look at Hilbert
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space which we now represent by s = RZ =
∏∞
i=−∞R. Let α stand for the “left

shift” on s, i.e. α(x)i = xi+1 for i ∈ Z.

Proposition 2. If α extends over a compactification to a continuous α̃ : C → C,
then C \ s contains strongly infinite dimensional continua.

Proof. Let {A1, A2, . . . } be a partition of N into infinitely many infinite subsets.
We define the following sequence of disjoint pairs of closed subsets of s: for n ∈ N
and ε ∈ {0, 1},

F εn = {(xi) ∈ s : xi = ε if for some k ∈ An we have k2 ≤ i < (k + 1)2}.

Let F̃ εn be the closure in C of F εn. We first show that F̃ 0
n and F̃ 1

n are disjoint. Let U0

and U1 be two disjoint closed neighbourhoods of (. . . , 0, 0, 0, . . . ) and (. . . , 1, 1, 1, . . . )

in C. Then there is an N ∈N such that
⋂N
i=−N π

−1
i (0) ⊂ U0 and

⋂N
i=−N π

−1
i (1) ⊂

U1, where πi : s → R stands for the projection on the ith coordinate. Select
a k ∈ An such that k ≥ N . Put m = k2 + k. If x ∈ F εn, then xi = ε for
k2 ≤ i ≤ k2 + 2k. Since αm is a shift to the left over k2 + k positions we have
αm(x)i = ε for −k ≤ i ≤ k. So αm(F 0

n) ⊂ U0 and αm(F 1
n) ⊂ U1 and since U0 and

U1 are compact and disjoint we have that α̃n(F̃ 0
n) and α̃n(F̃ 1

n) are disjoint. Hence

F̃ 0
n and F̃ 1

n are disjoint.
We define the imbedding β of the space X = [0,∞) × Q into s as follows: for

a ≥ 0, x = (xj) ∈ Q, and i ∈ Z,

β(a, x)i =

{
a, if i ≤ 0,

xj , if k2 ≤ i < (k + 1)2 for some k and j with k ∈ Aj .

Observe that β is a closed imbedding of a locally compact space in s and hence
K = clC(β(X))\β(X) is a compactum in C \s. Since K =

⋂∞
i=1 clC(β([i,∞)×Q)),

it is a continuum. Let βa : Q→ s be defined by βa(x) = β(a, x) for (a, x) ∈ X .
Now we prove that K is strongly infinite dimensional. Assume that Sn is a closed

separator in K of F̃ 0
n ∩K and F̃ 1

n ∩K. Since K is compact, we can find for each n a

closed separator S̃n of F̃ 0
n and F̃ 1

n in C such that S̃n∩K = Sn. Put S̃∞ =
⋂∞
n=1 S̃n.

Observe that for each a ≥ 0 the sets β−1
a (F 0

n) and β−1
a (F 1

n) are precisely the n-
endfaces of the Hilbert cube Q and hence they form an essential system for n ∈ N.
So we may conclude that

⋂∞
n=1 β

−1
a (S̃n) and hence βa(Q)∩S̃∞ are nonempty. Since

π0(β(a, x)) = a we have π0(β(X) ∩ S̃∞) = [0,∞). So β(X) ∩ S̃∞ is not compact.

Since clC(β(X)) ∩ S̃∞ is compact, we may conclude that
⋂∞
n=1 Sn = K ∩ S̃∞ is

nonempty.

Propositions 1 and 2 suggest the following questions. If α extends over a com-
pactification to a homeomorphism α̃ : C → C, does C \ s contain a Hilbert cube?
And if h is an autohomeomorphism of a (strongly) countably dimensional com-

plete space X , can h be extended to a homeomorphism h̃ : C → C, where C is a
compactification of X with (strongly) countably dimensional remainder?
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