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ABSTRACT 

We provide a simpler proof of Gouweleeuw’s theorem about the convexity of the range of an 

R-valued vector measure Fin terms of $. We also discuss possible extensions of Gouweleeuw’s re- 

sults to vector measures with values in infinite-dimensional vector spaces and to unbounded vector 

measures. 

1. INTRODUCTION 

Let L be a (real) topological vector space, let (0, F) be a measurable space 
and let @ : T -+ L be a countably additive measure’. The range R(,Z) of ji is the 
set 

{a(F) : F E 3.‘). 

We say that ji is bounded provided that the closure of R(P) in L is compact. If 
A c 0 is measurable then ii t A denotes the restriction of the measure ji to A. 
Let 0 denote the closed unit interval [0, 11. 

By Halmos [6, Lemma 111, if L is finite dimensional (hence L = R” for some 
FZ) then the boundedness of ,C implies that R(z) is in fact a compact subset of L. 

This is not trivial. This result cannot be generalized to infinite-dimensional 
vector spaces, as was shown by Lyapounov [8]*. The counterexample of 
Lyapounov is based on the existence of an orthogonal basis for L*( [-T, ~1) 

If L = R then $ is not necessarily positive. 

2 We are indebted to Henno Brandsma for translating Lyapounov’s article for us. 
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consisting of functions that only assume the values +l and - 1. We will present 
a simpler description of it in $3. 

A ii-atom is an element F E F such that c(F) # 0 while moreover for every 
measurable E C F either z(E) = 0 or ,G(E) = ,2(F). The measure ji is non- 
atomic if 3 contains no /i-atoms. 

Lyapounov’s famous convexity theorem in [7] asserts that if L = R” then 
R(,!Z) is a convex subset of L provided that all the coordinate measures of ,!i 
(self-explanatory) are nonatomic (this is not trivial as well; see also Dubins and 
Spanier [3, Theorem 51, and Halmos [6, p. 4211). It was shown by Dubins and 
Spanier [3, Lemma 4.11 that ji is nonatomic if and only if all of its coordinate 
measures are nonatomic. As a consequence Lyapounov’s theorem can also be 
formulated as follows: if ji is nonatomic then R(z) is convex. 

It is not clear at all how this result should be generalized. One would like to 
obtain a characterization of the convexity of R(G) in terms of I;. A natural ap- 
proach for solving this problem is the following one. Let A be the union of all 
the $-atoms and let B = 0 \ A. Then ji 1 A is purely atomic and ji 1 B is non- 
atomic. It is easy to see that R(g) = R(@ 1 A) + R(jZ 1 B). Since ‘R(c 1 B) is 
convex by Lyapounov’s theorem, a sufficient condition for the convexity of 
R(s) is that R(p 1 A) is convex. (It is easy to detect when R@ 1 A) is convex, 
see RCnyi [9, p. 80 (exercise 48)].) But this sufficient condition is not necessary, 
as the following (trivial) example shows. Let R = 0 u (2) and let 3 be the col- 
lection of Bore1 subsets of &?. Let the measure g on 0 be defined by (T r 0 = 

Lebesgue measure and a((2)) = 1. Then, adopting the above notation, 
A = {2}, B = 0, R(a) = 0 is convex but R(a t A) = (0, i} is not convex. So we 
see that this natural approach does not work. Interestingly, a slightly different 
approach does work under the additional assumption that $ is [W”-valued for 
some n and is nonnegative in the sense that all of its coordinate measures are 
nonnegative. Gouweleeuw [4] (see also [5]) decomposed 0 into measurable sets 
&,Ai )...) A, )... such that @ 7 A0 is nonatomic (hence R(,Z 1 Ao) is convex) 
and for every i > 1, ii t Ai is in essence a l-dimensional measure. For those 
l-dimensional pieces it is easy to detect when their ranges are convex, and, in- 
terestingly, R(c) is convex if and only if ‘R(c t Ai) is convex for every i 2 1 
(Gouweleeuw [4] (see also [5])). 

The aim of this paper is to present a simpler proof of Gouweleeuw’s theorem. 
Our method, unlike Gouweleeuw’s, also applies to measures that are not 
necessarily nonnegative. We will also discuss possible extensions of our results. 
For example, to vector measures with values in infinite-dimensional vector 
spaces and to unbounded vector measures. We will also discuss the convexity of 
matrix-k-ranges. 

It should be mentioned that in case L is an infinite-dimensional Banach space 
an analytical condition is available describing the convexity and weak com- 
pactness of the range of c (see Diestel and Uhl[2, $1X.1]). This description runs 
as follows. If F; is a countably additive bounded measure with values in a 
Banach space L then there is a bounded nonnegative measure v such that 
v(E) = 0 if and only if ,Z(E f~ 8’) = 0 for all F E 3. (For the case L = R” and 
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i;= (Pl,..., bin) one can take V(E) = Cy= 1 lpil(E).) In terms of v convexity 
and weak compactness of the range of ,!I can now be described as follows. 
R(z 1 A) is weakly compact and convex if and only if for each E E F with 
v(E) > 0 the operatorf + J, f dji on L,(v) is not one-to-one on the subspace 
of functions in Lm(v) vanishing off E. This result is due to Knowles (see [2, 
Theorem 1X.1.41). In [2] it is shown how Lyapounov’s theorem can be deduced 
easily from this result. In addition, it is shown in [2, Theorem 1X.1.10] that if L 
is a Banach space with the Radon-Nikodym property, and ji : 3 + L is a 
nonatomic countably additive measure of bounded variation, then the norm 
closure of R(G) is convex and norm compact. 

Our main theorem (Theorem 3.3 below) gives a necessary condition for 
convexity of the range which is totally in terms of the measure ii itself. This 
condition is in general not sufficient; however, in the case of a finite dimen- 
sional measure it is also sufficient. 

2. ONE-DIMENSIONAL SETS 

Our interest is in vector measures the ranges of which are bounded convex 
subsets of arbitrary locally convex metrizable vector spaces. It follows by 
Bessaga and PeIczynski [l, $5111.2 and III.31 that for every bounded convex 
subset C of such a vector space L there exists a linear functionf : L + R” such 
thatf[C] C e2 and f / c : c -f[C] is a homeomorphism (here C denotes the 
(compact) closure of C in L). This shows that in most interesting cases we can 
assume without loss of generality that the ranges of the vector measures under 
consideration are subsets of e 2. 

Let (Q, F) be a measurable space, let L be a vector space and let ,!i : F -+ L 
be a bounded countably additive measure. An arbitrary measurable set A C f2 
is said to be a ji-negligible if for every measurable B C A we have F(B) = 0. 
(So if L = [w then a F-negligible set is precisely a nullset of the total variation 
of ,Z) An arbitrary measurable set A C 0 is said to be l-dimensional provided 
that ,G(A) # 0 and there exists a l-dimensional linear subspace LA of L such 
that 

R($ t A) G LA. 

In other words, for every measurable B C A we have iI(B) E LA. Observe that if 
LA exists then it is unique and is equal to the linear span of the vector F(A). 

The concept of a l-dimensional set is implicit in Gouweleeuw [5, Theorem 
1.81. 

A g-atom E is l-dimensional because R($ 1 E) = (0, a(E)}. 
Let A C f2 be l-dimensional. Then ii 1 A can be identified with a single 

R-valued measure. In case L = e2, the measure ji can also be identified with one 
of its coordinate measures. (For every i 1 1, the i-th coordinate measure pi of fi 
is defined as follows: if A C R is measurable and J(A) = (XI,. . . , Xi_ 1, xi, 

Xi+l,. . . ) then pi(A) = Xi.) To see this, let Jt = (xi, x2,. . .) be an element of LA 
different from 0. Let j > 1 be the minimal index for which xj # 0. It is easy to 
see that for every measurable B C A and i E N we have 
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i.e., the measure ,~i is a multiple of /+. This remark explains the terminology and 
will also be used in the proof of Lemma 3.7. 

A l-dimensional set A is called maximal provided that for every measurable 
set B C f2 \ A with G(B) # 0 the set A U B is not l-dimensional. 

Lemma 2.1. If A and B are l-dimensional and ii(A fl B) # 0 then A U B is 
1 -dimensional and LA = LB = LA u B. 

Proof. Since $(A fl B) # 0 and $(A n B) E LA n LB it follows that LA = Lg. It 
now easily follows that the range of the measure I; 1 (A u B) is contained in LA, 
i.e. A U B is l-dimensional. Cl 

Lemma 2.2. Every l-dimensional set is contained in a maximally l-dimensional 

set. 

Proof. Let A be l-dimensional. Let B be the collection of all l-dimensional sets 
BG R\Asuchthat 

(3aB > 0)($(B) = Qefi(A)). 

By induction on n > 0 we will construct an increasing sequence of l-dimen- 
sional sets A,, c f2 with R(p /A,) C LA, as follows. Put A0 = A. Suppose that 
A,hasbeendefined.Puta,={BEB:BCR\A,}.Lets,=Oifa,=0and 

(1) s,, = sup{ae : B E &} 

otherwise. Observe that s,, < 00 because i; is bounded. If s, = 0 then put 
A n+ 1 = A,. If s,, # 0 then pick an arbitrary element B,, E &, with (YE. > 
s, - (l/n) and put A,+ 1 = A, U B,,. Observe that A, + 1 is l-dimensional and 
that R(,G / A, + 1) z LA. This completes the inductive construction. 

Let A+, = U,“. A,. Then A+, is measurable and we claim that it is 
l-dimensional. Indeed, let S G A+, be measurable and let A-1 = 0. Then since 
LA is closed in L (being l-dimensional), 

fi(S) = Jim 5 Z(S n (A\ A, - 1)) E LA. 
n=O 

This implies that A+t, is l-dimensional and also that LA+, = LA. 
We now claim that fi \ A+, does not contain any element of a. Striving for a 

contradiction, assume that there exists an element B E B with B c f2 \ A+,. 
Pick n > 1 such that aB > (l/n). Observe that Bn U B E f?, that (B,, U B) rl A, = 8 
and that 

aBnuB=aBn+~B>~n -;++. 

But this contradicts (1). 
It follows similarly that there exists a l-dimensional set A-, 2 A with the 
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property that R \ A_, contains no l-dimensional set B having the following 
property: 

(3oe < O)@(B) = c~iQ)). 

We claim that A^ = A+, U A-, is maximally l-dimensional. Clearly, A^ is 
l-dimensional and La = LA (Lemma 2.1). Now let E G f2\a be measurable 
such that 2 U E is l-dimensional. There exists a E R such that F(E) = q?(A). 

Now o 3 0 because E fl A+, = 0 and (Y # 0 because E rl A_, = 0. We con- 
clude that a = 0, as required. q 

If A and B are maximally l-dimensional sets and if c(A n B) # 0 then by 
Lemma 2.1, A n B is $-negligible. Such sets are considered to be the same 
maximally l-dimensional sets. As a consequence, different maximally 
l-dimensional sets intersect in a c-negligible set. This implies that there are at 
most a countable number of maximally l-dimensional sets, say AI, AZ,. . . . By 
removing c-negligible sets if necessary, we may and will additionally assume 
that Ai f~ Aj = 8 if i # j. 

Put A0 = f2 \ U,” 1 A,. The collection {Ao, A,, . . .} partitions 0. Since every 
@-atom is l-dimensional and hence is contained in one of the A,%, it follows 
that A0 contains no &atoms and hence is nonatomic. As a consequence, 
R($ 1 Ao) is convex by Lyapounov’s theorem. 

The decomposition {Ao, AI,. . .} of fl constructed here is similar to a de- 
composition of fl considered by Gouweleeuw [5]. There is an unimportant 
difference however. Our A0 contains no l-dimensional sets, in contrast to the 
nonatomic part of Gouweleeuw’s partition that can contain l-dimensional 
sets. 

3. CONVEXITY OF RANGES OF MEASURES 

We are interested in the question: When is R(z) convex? Let Ao, Al,. . . be the 
partition of R constructed in 52. 

We are interested in the following two statements: 
(*) for every i 2 0, R(,G 1 Ai) is convex; and 

(**) for every i 2 1, R(JL’ 1 Ai) is convex. 
Clearly, (*) + (**). A straightforward verification show that (*) implies that 
R(G) is convex. So (*) is a sufhcient condition for the convexity of R(c). But it 
is in general not necessary. To show this, we first present a simpler description 
of Lyapounov’s counterexample from [8]. 

Example 3.1. Lyupounov’s counterexample. Let (n,3) be (0, Bore1 sets) and let 
L = t2. As usual, X denotes Lebesgue measure on 0. Finally, let {R, : n E IV} be 
an enumeration of all finite unions of closed subintervals of 0 with rational 
endpoints. Define ,!i : 3 + C2 as follows: 

g(B) = (2-l . X(B n RI), . . . ,2-” . X(B n R,), . . .). 

Then @is clearly a countably additive e2-valued measure on the Bore1 subsets of 
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0. In addition, ji is bounded since R(z) is contained in the compact Hilbert 
cube 

Q = {x E e2: (Vn)(]x,J 5 2-7). 

We show that R(G) is not convex. To this end, let 

x’ = $0) = (2-l . X(Rt), . . . ,2-“. X(R”), . . .). 

We claim that there is no Bore1 set E C 0 such that ,G(E) = ix. Striving for a 
contradiction, assume that such E exists. Then 

G(E) = (2-l . A(& n E), . . . ,2-“. A(& n E), . . .) 

= (2-2. X(R,), . . . ,2-c”+‘) . X(R,), . . .). 

We conclude that for every n, 

(2) X(E n Rn) = 1 . X(R,). 

This is impossible, as the following argument shows. There exists N E N such 
that RN = 0. So by (2), X(E) = 1. S ince X is inner regular, there is a compact 
K C E such that X(E \ K) < i. Observe that X(K) > 1 - i = i. Since K is 
compact, there exists n E N such that K G R,, and J+(R,,\ K) < i. Observe that 
X(E n R,) 2 X(K) > 2. By (2) we therefore conclude that X(R,) > 2. i = 8. 

On the other hand, X(R,) < { + X(K) < f + X(E) = g. This is a contradiction. 
We will now show that R(P) is not compact. For every k E N let 

so Bi = [0, 41, B2 = [0, {] u [f , $1, Bs = [0, Q] U [f , 31 u [i, i] u [g , i], etc. We 
claim that ,G(Bn) + i x. It follows from this and from the above that R(,Z) is not 
compact. Choose Ri, and let Ri = UJ’=, Ai with Aj = [oj, /!I,], Ak n Ai = 8 for 
k #j. For n large enough, in fact for n > NO, where NO is the first integer such 
that 2-N~ < mini <j<n(Pj - oj), we have X(Ri n B,) M iX(Ri). More precisely 
X(Ri n B,) -+ $X(Ri) as n --+ co. But from this we have 

ii = (2-l . X(B,, n Ri), 2-* . X(B2 n R2), . . .) 

+ (2-2 . X(Ri), 2-3 . X(R2), . . .) = $ x, 

as required. 
We next use this example to show that (*) is not a necessary condition for the 

convexity of R(P). 

Example 3.2. Let R = [0, cc) and F = Bore1 sets. We adopt the notation in 
Example 3.1 and let X denote Lebesgue measure on Iw. Define Z : F --f t2 by the 
following formula: 

{ 

a’ TO = I;, 

a’t[n,n+l]=(~,0,_..,~,2-“.X 

n- 1 times 

It is clear that R(Z) is the subspace {x E e2 : 
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convex. We claim that for every n the interval [n, n + l] is maximally l-dimen- 
sional. Fix n E N. From the description of 5 it is clear that all we need to show is 
that if E C 0 is Bore1 and X(E) > 0 then [n,n + l] U E is not l-dimensional. To 
this end, fix an arbitrary Bore1 set E C 0 with positive Lebesgue measure. There 
clearly exist infinitely many m E N for which X(E fl R,) > 0. But this implies 
that c(E) is a vector with infinitely many nonzero coordinates, and therefore 
does not belong to the linear span of {a([n, n + 11)). So the sets A0 = 0 and 
A,, = (n, n + l] for n 2 1 correspond to the partition of 0 considered in $2. 

From this we see that the compactness and/or the convexity of R(8) need not 
imply the corresponding properties for R(Z 1 Ao). Notice however that the sets 
R(Z r Aj) are convex for every i 2 1. That this is no accident will be shown in 
Theorem 3.3. 

Put A = A1 and B = R \ Al. For later use, observe that R(Z) is compact, that 
R(Z 1 A) is compact but that R(a’ r B) is not compact (see Example 3.1). That 
this can happen will complicate our life later on. 

This example is nonatomic. It is easy however to modify the example so that 
it has infinitely many atoms. Simply give {n} measure 2~” for every n 2 2. 

Observe that from Diestel and Uhl [2, Theorem 1X.1.10] it follows that the 
norm closure of R(G) is convex and norm compact. 

We now formulate our main result. 

Theorem 3.3. Let (0, J=) b e a measurable space, let L be a metrizable locally 

convex vector space and let ji : 9 + L a countably additive bounded measure. 

Finally, let Al, AZ, . . . be the maximally 1-dimensionalsets of 0. IfKQi) is convex 

then R(,!i r Ai) is compact and convex for every i 2 1. 

Corollary 3.4. Let (Q, 3) be a measurable space and let ji : 3 + R” be a count- 

ably additive bounded measure and let Al, AZ, . . . be the maximally I-dimensional 

sets of 0. Then thefollowing statements are equivalent: 

(a) R(P) is convex. 

(b) R(fi) is compact and convex. 

(c) For every i 2 1, R(,Z 1 Ai) is convex. 

Proof. Since R(G) is compact by Halmos [6, Lemma 111, the equivalence 
(a) I is trivial. Put A0 = 0\ Ur”=, Ai. Then ,!i r A0 is nonatomic. Hence 
R($ 1 Ao) is convex by Lyapounov’s theorem. From this, the implication 
(c) + (a) is trivial. Finally, that (a) + (c) follows from Theorem 3.3. •I 

Remark 3.5. Corollary 3.4 was first proved by Gouweleeuw [5, 41 under the 
additional assumption that $ is nonnegative (in the sense that its coordinate 
measures are all nonnegative). 

Remark 3.6. From Corollary 3.4 we see that (* *) (and hence also (*)) is a nec- 
essary and sufficient condition for the convexity of R(F) in the finite dimen- 
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sional case. It was shown earlier in this section that (*) is not a necessary con- 
dition for the convexity of R(@) in the infinite-dimensional case. 

We now turn to the proof of Theorem 3.3. For symmetry reasons it suffices to 
show that R(z 1 Ai) is compact and convex. To simplify our notation, put 
A = AI and B = R \ A, respectively. Then R(G) = R(,J t A) + R(a 1 B). 

Lemma 3.7. R(,Z r A) is compact. 

Proof. Since ,ii f A is in fact a bounded l-dimensional measure, this follows 
from RCnyi [9, p. 83 (exercise 50)]. 0 

We now turn to the more interesting part of the proof. To begin with, we first 
prove a special case of our main result. 

We prove Theorem 3.3 in the special case L = R”. 

Assume that for some n, R(F) is a bounded and convex subset of I?. We will 
prove that S = R($ 1 A) is convex by applying the following lemma which is 
Gouweleeuw [5, Lemma 1.311. 

Lemma 3.0. Let E be a vector space. Let S, T, L C E, where L is a linear subspace 

of E and S C L. Suppose that there is a pointp E T such that the hyperplanep + L 

intersects Tin the point p only. Then if S + T is convex, S is convex. 

Proof. Pick arbitrary xi, x2 E S and cx E (0,l). Our aim is to show that the 
vector oxi + (1 - (Y)x~ belongs to S. 

Since p + x1 ,p + x2 E S + T and S + T is convex, the vector 

u=a(p+xl)+(l-a)(p+xz)=p+axl+(l-a)xz~S+T. 

Pick s E S and t E T such that u = s + t and observe that 

t=u-s=p+(ax~+(l-CY)X2-s)Ep+L. 

Since p + L intersects T in the point p only, we conclude that t = p which im- 
plies that 

s = ax1 + (1 - o)x*. 

Since s E S, we are done. q 

Let Li denote the orthogonal complement of LA in R” and let r : R” -+ Li 

denote the orthogonal projection. (Then LA is the kernel of 7r.) For everyp E Iw” 
writep = r(p). Since T = R(c t B) is compact by Halmos [6, Lemma 1 l] (here 
we use that ,!i is IV-valued), there is a vector m E T with the property that for 
every b E T we have JlfiiJI 1 @Il. 

In the proofs of the following lemmas we will make use of the following 
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triviality: if x,y E R”, [Ix - yl( I [[XII and IIx +yIJ L (Ix)J then y = 0. Indeed, 
simply observe that 

w1* 1 lb - Al2 + lb + Yl12 = 211412 + w1*. 

Lemma 3.9. Let E C B be measurable such that ii(E) E m + LA. Zf F & B \ E is 

measurable and ,!i(F) E LA then ii(F) = 0. 

Proof. Striving for a contradiction, assume that P(F) # 0. Since A is maxi- 
mally l-dimensional, A U F is not l-dimensional. There consequently exists a 
subset H C F such that a = ,G(H) $ LA. Since c(F) E LA it follows that 
b = ,G(F \ H) $’ LA. Observe that a # 0 and that 6 = -a because a + b E LA. 

Since ti is maximal, ,G(E U H) E T and $E U If) E a + m + LA, we get 
lItill 2 Ilti + all. It follows similarly that [Ifill 2 [Ifi + 611 = I(fi - all. We con- 
clude that a = 0, which is a contradiction. q 

Lemma 3.10. Let E C B be measurable such that ,Ci(E) = m. Zf F C B is measur- 

able and ,G(F) E m + LA then ii(E A F) = 0. 

Proof. Write p = ,G(E \ F), q = ,G(E n F) and r = ,!Yl(F \ E), respectively. Ob- 
serve that p + a = 4 + F from which it follows that p = F. Since rir is maximal 
and E(E U F) = p + q + r E T it follows that 

[Ifill L Ilfi+rll. 

It follows similarly that 

lldl 2 11~11 = II@ + 3 - rll = Ilfi - 41. 

This implies that F = 0, i.e., r E LA. As a consequence, 4 = HZ. So r = 0 by 
Lemma 3.9. Since p = F we also have p E LA. So another application of Lemma 
3.9 gives p = 0. 0 

If m E S then R(z r B) C LA and so ,G(B) = 0 since A is maximal. As a con- 
sequence, R(z 1 A) = R(E) is convex. If m # S then the hyperplane m + LA 

intersects T in the point m only (Lemma 3.10). So the convexity of R(c 1 A) 

then follows from Lemma 3.8. 
Observe that the just proved special case of Theorem 3.3 is all we need for the 

proof of Corollary 3.4. 
At this point of the proof, let us explain why the above arguments do not 

work in the infinite-dimensional case. The reason is that R(@ 1 B) need not be 
compact in general (Example 3.2). So it is not clear how to construct a vector 
such as the vector m above. We overcome this difficulty by constructing suitable 
approximations of ,ii by lR”-valued measures. As we remarked at the beginning 
of $2, we may assume without loss of generality that L = e*. 

We now use the just proved special case of Theorem 3.3 to prove the general case. 
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Let {a: n E N} be the standard orthonormal basis for e2. By performing a 
rotation if necessary, we may assume without loss of generality that LA corre- 
sponds to the first coordinate axis of e2, i.e., the set 

{x E e2: (Vn 2 2)(xn = 0)). 

For every n let R,, denote the linear span of 

(67 * ..,&}. 

So LA = RI. Finally, for every n let pn : l2 + R,, denote the orthogonal projec- 
tion; pn is defined as follows: 

pn(x) = (Xi )..‘) x,,o,o )...) (XE12). 

Define the measures i;, : 3 --+ e2 by 

&n(B) = P&Q)) (n E N). 

Observe that Z,, can be identified with an R”-valued measure. 
Let n E N. Observe that A is a l-dimensional &-set since R(ZR 1 A) is con- 

tained in LA. But it is presumably not maximally l-dimensional. By Lemma 2.2, 
there is a maximally l-dimensional &-set that contains A. 

Lemma 3.11. Let n E N and let A,, be a maximally l-dimensional &-set that 
contains A. Then there is a maximally i-dimensional $‘,,,,I-set A,+ 1 with A 5 
A n+l c A,. 

Proof. By the above there exists a maximally l-dimensional 8n+ l-set C that 
contains A. Observe that R(&+ 1 t C) U R(i& r A,) C LA. Put F = C \ A,. 
Assume first that F is not ZE-negligible. Then there exists a measurable subset 
G c F with &n(G) # 0. Since A,, is maximally l-dimensional with respect to & 
A, U G is not l-dimensional and there consequently exists a measurable set 
H C G such that &(H) $ LA. In other words, &n(H) is a vector having a non- 
zero coordinate in one of the dimensions 2 through n. But the vector consisting 
of the first n coordinates of Z,, + 1 (H) is &n(H). As a consequence, 5’,, + 1 (H) $ LA 
as well. But this is impossible since H C C and R(&+ 1 1 C) C LA. So F is 5’,,,- 
negligible. We claim that F is also 8” + 1 -negligible. To this end, let G c F be an 
arbitrary measurable set. Since Z,,+ I (G) E LA it is a vector of the form 

(P,O,..*, 0). But Zn(G) is equal to the vector &+1(G) with its n + I-th co- 
ordinate deleted. As a consequence, &n(G) = 0 implies that Z,,+ 1 (G) = 0. So 
A ,,+ 1 = C \ F = C f~ A,, is as required (recall that maximally l-dimensional sets 
are determined up to a negligible set). •I 

By Lemma 3.11 there exists for every n a maximally l-dimensional &-set A,, 
such that 

let B,, = 0\ A,. 
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Now put Y? = n,“= , A,. Then a is measurable and we claim that E = 2 \ A 

is a ,Z-nullset. Assume the contrary. Then, since A is maximally l-dimen- 
sional, there is a measurable subset F C E such that p = ii(F) $! LA. Since 
limn,, p,(p) =p, there exists n E N such that Zn(F) = p,,(,G(F)) 6 LA. This 
contradicts the fact that A, is a l-dimensional &-set. We next claim that 

R($ t A) = f-jRP=, R(& t&J, h h w ic is as required since for every n, R(Zn 1 A,) 

is convex (here we use the just proved special case of Theorem 3.3), and the 
intersection of an arbitrary family of convex sets is again convex. First ob- 
serve that R(JL’ 1 A) C: nT=, R(& I A,). Next, fix an arbitrary vector p E 

f-j,“, R(h !A,). F or every n, pick a measurable set En & A, with iTn(En) =p. 

For every n, put F,, = E,, n A and S,, = E,,\ A, respectively. Since R(,Z 1 A) is 
compact (Lemma 3.7), we may assume without loss of generality that the se- 
quence (ii(F converges, say to G(F), where F C A. Since 

00 ,. 
A1>AZ>.-.>A,>...> n A,=A>A 

n=l 

and ,!I(2 \ A) = 0 it follows that 

lim ,?(A,\ A) = 0. 
n-+m 

Since S,, s A,\ A for every n, we conclude that lim,,, g(Sn) = 0. As a con- 
sequence, 

i.e., p E R($ 1 A), as desired. 
We finish this section by showing that the assumption of boundedness of the 

measures under consideration is essential (in Theorem 3.3 as well as Corollary 
3.4). This is shown by the following example. 

Example 3.12. Consider on Z_ U 5!+ with the c-algebra of the Bore1 sets the 
following two measures: 

~1 is counting measure on H-, Lebesgue measure on R+; 

~2 is counting measure on Z_, Cantor measure on Iw+ (see below). 

Construct ~2 r R’+ as follows. Let Kc, be the standard Cantor middle third set on 
0, and let Fo : 0 + 0 be the standard Cantor function, defined by Fo(x) = 4 if 
4 < x < 3, Fo(x) = $ if $ < x < $, etcetera, and by continuous extension on 
the points in Ko. Now define F : US+ --+ [w+ by I;(x) = i + FO(X - i) if x E 
[i, i + 11. Then F is continuous, and we define ~2 as the measure on the Bore1 
sets obtained by extension from ~LZ((U, b]) = F(b) - F(a). Clearly & 1 [w+I 
p2 t R+. Now put 

P= (Pl,P2)* 

Then obviously, R(G) = tR+ x R+. We claim that E- is a maximally l-dimen- 
sional set. Clearly 

R(G t Z_) = {(n,n): II E Iv} c L := {(x,x): x 2 0). 
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Arguing by contradiction, assume A 2 Z_ is a measurable set such that 
@(A \ Z-) # 0 and ‘R($ t B) C L for every measurable B C A. Let us denote the 
Cantor set on lR+ by K. (I.e., K is the union of the standard Cantor middle third 
sets on each interval [i, i + I], i = 0, 1,2, . . . .) The set [w+ \ K will be denoted by 
KC. Now let Z = (0, x) and consider 

,?(AnZ) =~(AnZnK)+~(AflZIKc). 

As AnZ, AnZnK and AfIZnKC are measurable subsets of A, we should 
have that 

,!i(AnZ) f L, ,G(AnZnK) EL and ji(AnZnKC) EL. 

However, ~(AnZnK)=(0,p2(AnZnK)),@(AnZnKc)= (pLI(AnZnKc),O), 
which are in L if and only if ZQ(A n Z n K) = 0 and pl(A n Z n KC) = 0, and, 

moreover, 

$AnZ) = (PI(A~Z),P~(A~Z)) = (~I(A~Z~K”),~~(A~Z~K)). 

So $(A n Z) = 0. This holds for each x > 0. So $(A n R') = 0, which is a con- 
tradiction. 

Note that R(G) is convex, while R@ t Z-) = {(n, n) : n E N} is not convex. 
As H- is a maximally l-dimensional set we see that our main results fail if ~1 
and ~2 are not finite measures. 

4. A CRITERION FOR CONVEXITY OF THE ONE-DIMENSIONAL PIECES 

As we remarked in $2, the measure /I’ on one of the pieces {Al, At,. . .) is in 
essence R-valued. 

For nonnegative measures it is easy to detect when their ranges are convex. 
Let 0 be an arbitrary nonnegative countably additive finite measure on (0, F). 
Then 0 contains at most a countable number of a-atoms, say Ft, F2,. . . . We 
choose the ordering of the atoms in such a way that o(Fl) 2 LT(F~) > . . . . Then 
R(u) is convex if and only if for every n E N: 

This result is essentially RCnyi [9, p. 80, exercise 481. For a proof containing all 
details, see Gouweleeuw [5, Theorem 1.251. 

The case of an R-valued measure will be reduced to the case of a nonnegative 
measure, as follows. 

Lemma 4.1. Ifp is an R-valued measure then R(p) is convex ifand only ijX( IpI) 

is convex. 

Proof. Let p = II+ - CL_ be the Jordan decomposition of the measure p. Then 
its total variation 1~1 satisfies I,Q( = p+ + z_-. Let C+ and C- be measurable sets 
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such that C+ n C- = 0, C+ u C- = R, C+ is the support of p+, and C- is the 
support of p_. 

Suppose that R(\,u[) is convex, and assume that R(p) is not convex. Then 
there are numbers a $ R(b) and ,L? E ‘R(p) such that 0 < (Y < p or ,D < a < 0. 
Without loss of generality assume the former takes place. We can take for /3 the 
number p+(C+), as p(A) 5 p+(C+) for any measurable A. Consider y := 
a! + p_(C). As 0 < y < p+(C+) + I_ = IPI and R(l~l) is convex we 
have y E R(l,~l). So there are sets C G C+ and D & C- such that 

y = /J+(C) + p-(D) = (Y +/L(C). 

Therefore, 

a = P+(C) + P-(D) - CL-(C-) = cl+(C) - CL-(C-\D) 

= P(CU (C-\D)) E R(P), 

which is a contradiction. So R(p) is convex. 
Conversely, assume R(p) is convex and R( 1~1) is not convex. Then there is a 

number (Y $R(lpl) such that 0 < a < IpI = p+(C+) + p_(C). Consider 
y := (Y - p_(C_). Ob viously --CL_ (C_) < y < p+( C+). As R(p) is convex, we 
have R(U) = [-p-(C-), p+(C+)]. So there is a measurable set A such that 
p(A) = y. But then 

7 = p+(A n c+) -p-p n C_) = a-p_(c). 
so 

a = CL+@ n c+) + P-(c-\A) = M((A n c+) u (c-\A)). 

This is a contradiction, so R( 1~1) is convex. q 

Next, we consider the relation between the atoms of p and 1~1. 

Lemma 4.2. A measurable set F C G is an atom of p ifand only ifit is an atom of 

Ip). Moreover, in that case lpi(F) = Ip(F 

Proof. Recall that for measurable sets A 

I~l(4 = max E IPWI: {A.)? I I _ 1 is a measurable partition of A . 
i=l 

Suppose F is an atom of ~1. As F is an atom of p, for any partition {Ai}: 1 of F 

we have CE 1 I,dAi)I = W’)I, as all but one of the numbers p(Ai) are zero, 
and the non-zero number is p(F). So, for an atom of p we have lpi(F) = Ip(F 

Now the same argument shows that for any measurable set E G F we have 

IcLIW = bL(E>I. As P(E) is either zero or p(F) we obtain that lpi(E) is either 
zero or Ip(F So F is indeed an atom of 1~1. 

Conversely, suppose F is an atom of 1~1, and again take E g F measurable. 
Then without loss of generality we may take 1~1 (E) = IpI (F) and 1~1 (F \ E) = 0. 

As I/-@\~)I I l/-dP’\E) = 0 we have ,u(F \ E) = 0. This gives p(E) = p(F), 

so F is an atom of p. 0 
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Combining the above results with the condition of RCnyi mentioned earlier, 
we obtain the following. 

Proposition 4.3. Let cr, be an R-valued measure on (0, F). Then Q contains at 

most a countable number of atoms FI, Fz, . . . . We choose the ordering of the atoms 

in such a way that Ip( 2 [~Fz)[ 2 ... . Then ‘R(p) is convex ifand only iffor 

every n E N : 

So it is rather trivial to verify in concrete situations whether condition (*) is 
met. One has to check whether countably many [W-valued measures have convex 
ranges and that can be done by looking at their atoms. 

5. CONVEXITY OF MATRIX-k-RANGES 

In this section we only consider W-valued measures. Let V C Q be measur- 
able and let k 2 2. An ordered measurable k-partition of V is an ordered col- 
lection VI, . . . , V, of measurable subsets of V with 6 rl c = 0 if i # j and 
lJf=, vi = V. Let IIk(V) d enote the collection of all ordered measurable 
k-partitions of V and let nk = nk(fl). In this section we are interested in the 
question when the matrix-k-range 

M%(g) = {(@(PI), . . . , z(pk)) E (Rn)k : (PI >. . . , pk) E nk) 

is convex. (MR(,G) is called the matrix-k-range of @because each element of 
(rW”)k can be identified with an n x k-matrix.) Our results provide simpler 
proofs of results due to Gouweleeuw [5]. It is clear that without loss of gen- 
erality we may assume that k > 2. 

The results presented here generalize those in $3 (in the special case that 
L = R”) because MRz(ji) is convex if and only if R(z) is convex. 

Our pattern of reasoning is similar to the one in $3. Let As, Ai, . . . be the 
partition of R constructed in $2. Dubins and Spanier [3] proved that the com- 
pactness and convexity of MRk(c) follow from Lyapounov’s theorem, pro- 
vided that the measures ,ui , . . . , pn are nonatomic. So we have no problems with 
MR,@ 1 AC,). That set is always compact and convex. 
Assume that 

(**I for every i 1 1, MRk(jl rAi) is convex. 

A straightforward verification shows that M%&(F) is convex. So (**) is a suf- 
ficient condition for the convexity of MRk(@). Interestingly, this condition is 
also necessary. 

As we remarked in $2, the measure ,Z on one of the pieces {Ai, AZ, . . .} is in 
essence R&valued. For R-valued measures it is easy to detect when their matrix- 
k-ranges are convex. 

Let 0 be an arbitrary countably additive finite measure on (R, 3). Then fi 
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contains at most a countable number of a-atoms, say FI, F2,. . . . Again we 
choose the ordering of the atoms in such a way that lc(F~)j L lu(F2)1 L . -. . 

Then M&((T) is convex if and only if for every n E N: 

See Renyi [9, p. 80, exercise 481 and Gouweleeuw [5, Theorem 1.251 for the case 
that cr is nonnegative. The general case is treated as in $4. 

We now come to the interesting part of our considerations. Condition (* *) is 
also necessary for the convexity of MR&Z). So assume that M%&(,G) is con- 
vex. For symmetry reasons it suffices to show that MR&!i 1 Al) is convex. We 
again put A = At and B = f2\ A, respectively. Then MRk(fi) = MR&? t A) + 

hf&(ii t B). We argue as in $3. 
Observe that Sk = M%&(c t A) is contained in the linear subspace 

. 
LA = {(xl,. . . , xk) E ([Wn)k : (vi 5 k) (xi E LA)} 

of (RF8”)k. Put Tk = MRk($ t B). Then Sk + Tk is convex and, as in $3, we prove 
Sk convex by applying Lemma 3.8. 
We adopt the notation of 43. Let b = ,Z(B) and put 

p= (m,b-m,?,O,._..$) E (W”)k. 

k - 2 times 

We claim that the hyperplane p + itA intersects Tk in the point p only. Observe 
that p E M77&) because if E C B is such that ,G(E) = m then E, B \ E, 0,. . . ,0 

is in nk and 

(rt(E),i;(B\E),~(S),...,~(S)) =P. 

Assume that Fl, . . .,Fkisinflk(B)andthat 

(ii(Ft) ,z(Fk)) Ep+‘fA- 

Pick an element ([I, . . . , &) E iA such that 

(JL’(Fl),... , li(Fk)) = h b - m, 0,. . . ,O) + (cl, . . . , tkk) 

=(m+Sl,b_m+E2,G,...,5k). 

Then I = m + <I and hence ji(E A FI) = 0 by Lemma 3.10. So without loss 
of generality we may assume that E = Fl. Observe that the sets E, F3, . . . , Fk are 
pairwise disjoint and that /?(Fi) E LA for every i 2 3. So Lemma 3.9 implies 
that @(I;;:) = 0 for every i 2 3. We conclude that c(F2) = jl(B \ E) = b - m, be- 
causeFr,... , Fk iS in nk. we conclude that the hyperplane p -I- LA interSeCtS Tk 

in the point p only. So we are done by another application of Lemma 3.8. 
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