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Abstract

A iopological space is said to be w-bounded if each of its countable subsets has compact closure.
It has been shown recently by Itzkowitz and Shakhmatov that for every compact Abelian group G
of uncountable weight, and for every compact connected group G of uncountable weight, the set
£2{G) of dense w-bounded subgroups of G satisfies |$2(G)| > |G|. These authors asked whether
their estimate |§2(G)| > |G| may be improved to [2(G)] = 2'“! for some or all such G. In the
present paper we answer this question affirmatively for all compact groups G which are either
Abelian or connected and which satisfy in addition the condition w(G) = (w(G))“. We show
also that every compact group G with w(G) > log((2°)™) satisfies |22(G)| > 2°. © 1997 Elsevier
Science B.V.
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1. Intreduction and notation

The least infinite cardina! is denoted w, and ¢ = 2%, For a cardinal « and a set X, we
write
Xl*={AC X: |Al=c} and [X]**={ACX: |4|<a}.

By a Tychonoff space we mean a completely regular, Hausdorff space. We say that a

(Hausdorff) space is zero-di ional if its topology admits a base of open-and-closed
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subsets. We say that a space X is w-bounded if the closure (in X) of each countably
infinite subset of X is compact.

The topological groups we consider are assumed to satisfy the Hausdorff separation
axiom; as is well known (cf. [8, 8.4]), this guarantees that they are Tychonoff spaces.

Given a group G and A = G, we denote by (A) ihe smallest subgroup of G contain-
ing A.

The set of dense, w-bounded subgroups of a topological group G is denoted 2(G).

The Abstract contains the statement of our principal result. In Section 2 we show for
certain cardinals « the existence of weak-P-spaces X such that w(X) = a < 2® = |X],
and we apply these considerations to prove in Section 3 our principal result; we give
some related results in Section 4 and some unsolved problems in Section 3.

2. Weak- P-spaces of small weight

Definition 2.1. Let X be a Hausdorff space. Then

(a) X is a P-space if every union of countably many closed subsets of X is closed
in X; and

(b) X is a weak-P-space if each of its countably infinite subsets is closed.

Lemma 2.2. For infinite cardinals o and v, the following conditions are equivalent:

(a) There is a Hausdorff, zero-dimensional, weak- P-space of cardinality v and weight
Lo

(b) the compact space {0, 1} contains a subspace X such that | X| =~y and X is a
weak- P-space (in the inherited topology); and

(c) the set {0,1}* contains a set X with these properties: |X| =y, and if C € [X]|¥
and p € X\C then there is § < a such that m¢(p) = pe = | and 7¢|C = 0.

Proof. A set X as in (c) evidently has the property that each C € [X]* is closed in the
topology on X inherited from {0, 1}, so (c) = (b). That (b) = (a) is clear. To see that
(a) = {c) let B be a base of open-and-closed subsets of a weak-P-space X with | X| =«
and |B] < a, and let e be the topological embedding e: X < {0, 1}% defined by

i ifzeB,
e(x)p =
(x) {0 if e € X\B.
Given C and p as in (c), since C is closed in X thereis B € Bsuchthatp € B C X\C
and it is then clear (identifying X with its homeomorph ¢[X]) that pp = 1 and wg|C =0,
as required. O

Notation 2.3. Let 4 and « be infinite cardinals. Then

(a) condition (7, a) holds if there is a Tychonoff P-space of cardinality -y and weight
< o and

(b) condition w-P(%, a) holds if the conditions of Lemma 2.2 are satisfied.
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Remark 2.4.
(a) Condition (c) of Lemma 2.2 differs formally from the statement that some family
of a-many open-and-closed sut of X distingunishes points and countable subsets of

X in the obvious sense. It is imporzant for our application in Theorem 3.2 below that
explicitly pe = 1, while 7¢|C = 0. When condition w-P(2%, a) holds then according
t0 (a) the set {0,1}" admits a weak-P-spacc topology of weight «, and according to
(c) the set {0, 1}* contains a set X with the indicated separation-by-projection property.
It is nowhere asserted, of course, that in this latter case one may choose for X the set
{0, 1} itself.

(b) As is noted in [7, Problem 4J], a cozero subset of a P-space is open-and-closed.
Thus every Tychonoff P-space is zero-dimensional, so condition P(y, ) implies condi-
tion w-P(v, a).

Theorem 2.5. If | < o = o then condition P(2%,c) holds.

Proof. Let X = {0, 1}* with its usual product topology and base B (of cardinality ),
let PB={N.A: Ac [B]“}, and let PX denote the set X with the topology generated
by PB. Then w(PX) < |PB| = o = a. Since the base PB is closed under countable
intersections, every Gs-subset of PX is open in PX and hence PX is a P-space. O

Remark 2.6.

(a) We do not know if the condition o = a* is necessary for either or both of the
conditions P(2%, &) and w-P(2%, ) to hold. It should be noted in any event that these
conditions both fail for & = w. Indeed a Tychonoff weak-P-space X “of weight w is
a metrizable space without nontrivial convergent sequences, hence is discrete, hence
satisfies | X| = w(X) = w.

(b) The Singular Cardinals Hypothesis (hereafter: SCH), a well-known consequence of
GCH, asserts that if a > ¢ and cf(a) > w, then & = o Assuming SCH it is immediate
from Theorem 2.5 that cf(a) = w for every cardinal o > ¢ for which condition w-
P(2%, ) fails. Let us notice now a weaker statement, proved however in ZFC alone
without assuming SCH.

Theorem 2.7. Let o be the least cardinal such that o > ¢ and condition w-P(2*, )
Jails. Then cf(a) = w (and hence a < a®).

Proof. We assume otherwise, and for ¢ < £ < & we choose a base S¢ for a Hausdorff
weak-P-space topology on {0, 1}¢ such that |S¢] < [¢] < a; then for C € [{0,1}4¥
and p € {0, 1}5\C there is § € S¢ such that p € S C {0, 1}¥\C. Departing temporarily
from standard notation let ¢ be the natural projection from {0, 1}* onto {0, 1}%, and
set S = {WE‘(S): ¢ < § < a §e 8} Then |§| < a, and we claim that the smallest
topology on {0, 1}* in which the elements of S are declared open-and-closed is a weak-
P-space topology. Indeed if D € [{0,1}]* and ¢ € {0,1}*\D then since cf(a) > w
there is £ < a such that 7¢(q) ¢ me[D): then with p = m¢(q) and C = wg[D] and
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choosing § € 8¢ such that p € § C {0, 1}8\C, we have ;7 '(S) € Sand g € n; '(S) €
{0, 1}*\D, as required. O

3. Counting the number of w-bounded subgroups

Following Itzkowitz and Shakhmatov [14], we say that a compact group G is product-
like if there is a continuous surjective homomorphism ¢: G — HE <o K¢ witha = w(G)
and with each K a nontrivial, metrizable (compact) group. While it is known (see the
references cited below) that every compact group of uncountable weight which is either
Abelian or connected is product-like, not every compact group of uncountable weight
is product-like: one finds in [3, 4.10(d)] for each o > w examples of compact groups
G = G(a) of weight @, which may be chosen to be totally disconnected or to satisfy
IG/C| = 2 (with C the component of the identity in G}, which admit no homomorphism
onto any group Kp x K with [K;| > 1.

Lemma 3.1, Ler X be a compact space and A C X, and set
w(d) = J{D*: DelA]}.
Then

(a) w(A) is the smallest w-bounded subset of X containing A; and
(b} if X is a topological group and A a subgroup, then w(A) is a subgroup of X.

Proof. (a) The existence of a smallest w-bounded subspace of X containing A is im-
mediate from the fact that the intersection of any family of w-bounded subsets of X is
again w-bounded. Evidently any w-bounded superset of A contains w(A), so it is enough
to show that w(A) is w-bounded. This is clear: if E € [w(A)]* and for each z € E
we choose D(z) € [A]* such that z € D(z)*, then with D = |J,. D(z) we have
D e [A]* and EX C DX C w(A).

(b) Since clearly every x € w(A) satisfies z~' € w(A), it is enough to show that w(A)
is closed under multiplication. For every topological group G and subsets £ and ' of
G we have E® - FG C EFC. Thus ia the present case, taking z; € D, C w(A) with
D; € [A]” (i = 0,1) and setting D = Dy - Dy, we have D € [A]“ and xoz, € DX C
w(A), as required. O

Theorem 3.2. Ler o and = satisfy condition w-P(y,a) with o« > w and let K =
He<a K¢ with each K¢ a nondegenerate compact group. Then

(a) K admits 27-many w-bounded subgroups; and

(b) if there is a (fixed) group F such that each K¢ = F (§ < a), then the subgroups
of (a) may be chosen dense in K—that is, |${K)| 2 27,

Proof. (a) Let O; denote the identity of K, let O¢ # k¢ € K, and (slightly abusing
notation) find

X c{0,1}* = [] {0 ke} C K
£<a
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such that | X| = v and X has the property of Lemma 2.2(c): if C € [X]“ and p € X\C
then there is £ < « such that p¢ = k¢ and x¢ = O¢ foreach 2 € C. For A C X let

K(A) =w((@) = J{D*: D [)]"}

then by Lemma 3.1 each K(A) is an w-bounded subgroup of K, so to complete the
proof of (a) it is enough to show for A C X that K(A)N X = A. We will show that
if p € X satisfies p € DX C K(A) with D € [(4)]“, then p € A. Since eachz € D
satisfies & € (Cy) for some finite C;; C A, there is a countable subset C = |, ., C=
of A such that p € (C). If p ¢ C then there is £ < « such that pg = ke and z¢ = 0
for each x € C, and for such £ we have x; = 0 for each z € {C) and hence for each
z & {C). so Og # ke = pe = O¢. This contradiction shows p € C C A.

(b) The groups K = F* and K“ = (F*)* are isomorphic and homeomorphic as
topological groups. Let A denoate the diagonal copy of K = F inside the group K©.
Since A and F* are isomorphic and homeomorphic as topological groups there is by part
(a) applied to A a faithfully indexed family {A(n): 1 < 27} of w-bounded subgroups

of A. Let X' denote the X-product of K*—ihat is, let
T={zc K™ |{t<a: z¢ #0} S w}

—note that X is a normal subgroup of K, and for n < 27 let D() = (£ + A(n)} =
X+ A(n). Since X and A(n) are w-bounded the product space X x A(n) is w-bounded;
hence its continuous image D(n) is an w-bounded subgroup of K.

Itis clear from & > w that if p and g are distinct points of A then (p+X)N(g+X) = 6.
It follows that the family {D(n): n < 27} is faithfully indexed: if # and ¢ are different
ordinals less than 27 and (say) that there is p € A(7)\A(C), then p € D(zn) but p ¢
S+ AQ)=D(). D

Remark 3.3. Every compact group G of weight a > w which is either Abelian or con-
nected is product-like in the sense of Itzkowitz and Shakhmatov [14] given above; see
for example {6, 5.5] or [14, L.11] for the Abelian case, {6, Proof of 6.5] or [13] for
the connected case. In the present instance, in order that we can apply Theorem 3.2 to
find 2*"-many w-bounded dense subgroups of G, we need not only a continuous epi-
morphism ¢: G - [, F; with |F;| > 1 and || = o but a stronger condition, namely
P:G - F* with |F| > 1. The above-cited results from [6] give several instances in
which this can be achieved, among them cf(a) > w. Since the condition a = o, a
hypothesis of Thearem 2.5 above, yields cf(a) > w, we have from [6] (or from [13,14])
the following statement.

Lemma 34. Let G be an infinite compact group such that w(G) = a = o* and either
G is Abelian or G is connected. Then there are a (metrizable) group F with |[F| > 1
and a continuous surjective homomorphism ¢ :G -» F®,

Theorem 3.5. Let 1| < o = o and let G be a compact group, either Abelian or
connected, such that w(G) = o Then |Q(G)| = 22°.
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Preof. With 1 and F' as in Lemma 3.4, from Theorems 2.5 and 3.2(b) we have that
|£2(F)| > 22", Since v is an open map [8, 5.29] and each D € 2(F*) is dense in
F*, each group ¢~}(D) is dense in G since G is compact and each D € 2(F*) is
w-bounded in F'*, each group ¥~'(D) is w-bounded in G. This shows [2(G)| > 27",
The inequality [2(G)] < 227 is clear, since 2(G) C P(G) and |G| = 2"(6) = 22
(cf. [9, 28.58(c))). DO

Remark 3.6, In earlier works [1,4] we have considered (in a fixed topological group G)
the concept of a family {H;: i € I'} of dense subgroups which is almost disjoint in the
sense that H; N H; = {0} for distinct ¢, € I, or even independent in the sense that

Hm< U H,»> = {0}

J€l, j#i

This notion is pursued vigorously in [13] in the context of dense pseudocompact sub-
groups. It is worth noting that in the present context the dense w-bounded subgroups de-
fined in Corollary 3.3 cannot satisfy such disjointness conditions. Our next theorem, aris-
ing from [13, 1.13] and generalizing it, makes this statement specific; see also Hodel 10,
3.3] for an earlier, related argument.

Theorem 3.7. Let a 2 w, let X be a Tychonoff space with w(X) < o, and let {Dy: 5 <
v} be a faithfully indexed fumily of dense subsets of X with cf(v) > 2°. Then there is
A € [7]" such that (Ve 4 Dy is dense in X.

Proof. Each D, meets each nonempty (basic) open set so for 5 < -y there is B, C Dy
such that E, is dense in X and |E,| < w{X) < a—that is, E, € [X]S°. Since
[[X]52| € (2%)* = 2 and cf{y) > 27, there are E € [X|$* and A € [y]” such that
E,=Eforalpec A 0O

Since in any space X the intersection of (any family of) w-bounded subsets is again
w-bounded, we can amalgamate Theorems 3.5 and 3.7 as follows.

Theorem 3.8. Ler a 2 w and let G be a compact group, either Abelian or connected,
such that w(G) = o, Then

@ |92(6)] = 22°7; and

() if D C SNG) satisfies D} = v with cf(y) > 2(°7) (for example, if v = (29))*
or v =2""), then there is £ C D such that El=~vand NE€ € A(G). O

4. Concerning compact groups of large weight

It is known that
(a) every pseudocompact group of uncountable weight contains a proper dense sub-
group [5);
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(b) every Abelian, zero-dimensional pseudocompact group of uncountable weight con-
tains a proper, dense, pseudocompact subgroup [3]; and

(c) every pseudocompact Abelian group G such that |G| > ¢ or w; € w(G) € ¢ has
a proper, dense, psendocompact subgroup [2].

Since the general question—does every pseudocompact group G of uncountable weight
contain a proper, dense, pseudocompact subgroup?—remains unanswered, even when G
is assurned compact and Abelian, the following theorems of lizkowitz and Shakhma-
tov [14] assume particular interest. It will be noted that their hypothesized compact
groups are not assumed to enjoy any product-like structure.

Theorem 4.1 [14].

(a) Every compact group G with |G} > ¢ has a proper, dense, countably compact
subgroup; and

(b) if 21 > ¢ then every compact group with uncountable weight has a proper, dense,
countably compact subgroup.

Informally, then, every sufficiently large compact group has a proper, dense countably
compact subgroup. In what follows, using techniques suggested in part by an argument
in [14], we give similar results concerning the existence of dense w-bounded subgroups.
For our stronger conclusions we need a stronger version of “sufficiently large”; thus
our results do not imply Theorem 4.1. We note explicitly that in Theorem 4.2 and
Corollary 4.3 below no algebraic or topological properties are imposed on the groups
considered; in particular, a product-like structure is not assumed.

Theorem 4.2, Let &, X and a satisfr logr < A, & € a, and XY - 2° < 2%, and let G be
a compact group with w(G) 2 o. Then §2(G) contains a set W which is isomorphic as
an ordered set to the cardinal number (A - 2¢)%.

Proof. It is enough to find a continuous homomorphism ¢ : G — F onto a group F such
that £2(F) contains such a well-ordered set W; for then, just as in the proof of Theorem
3.5, the family {p~!(W): W € W} is as required in G.

According to [14] it is a “part of folklore™, which first came to our attention explicitly in
work of Shakhmatov {15], that for every compact group K and w < v < w(K) there is a
closed, normal subgroup H of K such that w(K/H) = . Takinghere K = Gandy = &
and choosing such H with w(G/H) = «, and using d(G/H) = log(w(G/H)) = logx
(cf. [11]) and |G/H| = 2%(G/H) = 2% (cf. [9, 28.58(c)]), we have trom logk < A < 2%
a dense subgroup A of G/H such that |A] = X Referring to Lemma 3.1 and writing
Wo = w(A) we have Wy € 2(G/H) and |Wp| € A¥ . 2° < |G/H|. We continue
recussively, supposing that £ < (A“-2°)* and that for 7 < £ groups W), € 2(G/H) have
been defined so that the map  — W, is an order-isomorphism from £ into £2(G/H), and
with each [Wp| < X -2°. If € is a limit ordinal, set W = |J, ., Was if £ = (+1 choose
T € (G/H\W; and set W; = w({W, U {z})). This definition of W; € §A(G/H)
extends the order-isomorphism and satisfies |W| < A« . 2% It is then clear, taking
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F = G/H and ¢:G —-» G/H = F the canonical homomorphism, that the family
W= {We: £ < (A¥-2°)"} is as required in 2(F). O

Corollary 4.3. Let @ > log((2°)") and let G be a compact group with w(G) = o Then
@) |2(G)] > 2% and
(b) if every A < 22 satisfies A < 2% then |2(G)| 2 |G

Proof. (a) Take k = A = log((2°)*) in Theorem 4.2.

(b) It is enough to show that every A such that 2° < A < 2% and o € A < 2 satisfies
12(G)| = X*, for then |§X(G)] 2 2* = |G|. Given such A this follows from Theorem 4.2
upon taking k = . O

5. Some remaining questions

We have shown that conditions P(2%,a) and w-P(2%,«) hold when | < a = o,
that they fail for @ = w, and that the least cardinal o > ¢ where w-P(2%, o) fails satisfies
cf(e) > w. This exhausts our knowledge about these properties. In particular, we did not
settle the following questions.

Question 5.1. Do conditions P(2%,a) and w-P(2%, a) hold for all cardinals o > w?
For all cardinals o > ¢? For all cardinals o such that cf(a) > w?

Question 5.2. Are conditions P(2%, ) and w-P(2%, o) equivalent?

We showed [£2(G)| = 22" for certain compact groups G with w(G) = o for which w-
P(22, o) holds, but we are not convinced of the necessity of our hypotheses. Accordingly,
we ask these questions.

Question 5.3. Does |2(G)| = 22" hold for every compact, product-like group G with
w(G) = a > w? What if cf(a) > w?

Question 5.4. Does |2(G)| = 2" hold for every compact (not necessarily product-like)
group G with w(G) = a > w?

Remark 5.5 (Added 1 November 1996). After reading a preliminary version of this
manuscript, Alan Dow of York University (Canada) informed us in April 1996, that
he can show: there are models of ZFC in which 2 > Ry and condition w-P(Rs, &)
fails. This result gives a consistent negative answer to Question 5.1. He has also noted that
(in ZFC) every cardinal o such that cf(a) > w satisfies condition w-P(a™, @). (Indeed,
there is a set X = {fe: £ < a™} C a® such that for £ < 7 < « there is { = ((£,7)
satisfying fe((’) < f,(¢’) whenever ( < ¢’ < a; not only is X a weak-P-space of
cardinality ot and weight o, but also every countable subset of X is discrete and C-
embedded in X.) We are grateful to Alan Dow for permission to cite these statements
here.
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