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EVERY KUNEN-LIKE L-SPACE HAS A
NON-MONOLITHIC HYPERSPACE

Henno Brandsma and Jan van Mill*

Abstract

We show that every space defined like Kunen’s
example of a compact L-space has a non-
monolithic hyperspace. This answers a question
of Bell’s. This result is also relevant to a question
of Arhangel’skii’s.

1. Introduction and Notations

The results in this paper were initiated by questions by
Arhangel’skii and Bell. The former asked the question when
the hyperspace of a topological space is monolithic, and the
latter gave a partial answer to this question. Let us first define
our terms: by the hyperspace of a topological space X we will
mean the space of all closed non-empty subsets of X (denoted
by H(X)), endowed with the Vietoris topology. A base for this
topology is given by the sets

(U, ... .Uy ={F e HX): Fc|JU;, Vie{l,... ,n}:
=1
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where the U; are open subsets of X and n is a natural number.

A space X is called monolithic if for every subset A of X we
have that nw(ClA) < |A|. Here nw denotes the net weight,
a cardinal invariant which coincides with weight for compact
spaces. A space is called Ny-monolithic if the above holds for
countable subsets A.

In [1] Arhangel’skii asked the question when H(X) is mono-
lithic. In [2] Bell proved that in order for a 7} space X to
have a monolithic hyperspace it must be compact, monolithic
and hereditarily Lindelof (HL). He also proved that these con-
ditions are sufficient if moreover X is a linearly ordered topo-
logical space, thereby showing that a compact and monolithic
Suslin line is a non-metrisable example of a space with a mono-
lithic hyperspace. Such examples can only exist if there are
compact L-spaces (i.e. HL spaces that are not separable), so it
was a natural question for him to ask whether Kunen’s com-
pact L-space, constructed under CH ([6]), has a monolithic
hyperspace. The authors of this paper showed in [3] that one
can modify the Kunen construction to obtain a compact mono-
lithic L-space with a non-monolithic hyperspace. This showed
that the necessary conditions obtained by Bell are not in gen-
eral sufficient for X to have a monolithic hyperspace. How-
ever, the question whether a modification of this construction
could yield a compact L-space with a monolithic hyperspace, or
whether every such construction would have a non-monolithic
hyperspace was left open. In this paper we will show that
the latter holds: every “Kunen-like” compact space has a non-
monolithic hyperspace. Of course all this still leaves open the
original question by Arhangel’skii to exactly characterise the
X’s that will have a monolithic hyperspace.

Also, the authors have recently shown ([5]) that under &+
there are 2“' non-homeomorphic spaces that are constructed
like Kunen’s compact L-space from [6]. Under CH there will
be at least w; many non-homeomorphic ones. This shows that
the result of this paper is an improvement of that from [3]. One
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question from this last paper is still open, and we repeat it here:

Question. If there is a compact L-space with a monolithic hy-
perspace, does it follow that there is a Souslin line?

An affirmative answer to this question would imply that CH
is not strong enough to produce a non-metrisable space with a
monolithic hyperspace. For all undefined notions we refer the
reader to [4] for definitions and further information.

Our arguments will work for inverse limits of compacta of a
certain type, which we will call “Kunen systems” for short.
(Xo, 7§, w < a < w;) will be called a “Kunen system” if it
has the following properties:

i: X, is an infinite compact zero-dimensional metric space.

ii: For all @ < w; there is a non-empty (closed) subset S, of
X, such that X,.; is homeomorphic to the topological
sum of X, and S,, and the projection 727! is the obvious
one.

iii: If  is a limit ordinal less than wy, then X, is homeomorhic
to the inverse limit of the Xjz’s with 3 smaller then «, and
the corresponding 77’s are the inverse limit projections
from the limit to its components.

iv: For every countable set D of X, there is a (non-empty)
closed nowhere dense set B C X, \ D, and a # < w; such
that Sg C (72)71(B).

It is easy to see that Kunen’s L-space from [6] is an example
of a limit of a Kunen system. There X, = 2¥, with the usual
product measure. Conditions ii and iii are automatic from the
construction, while the B and the § from iv can be explicitly
computed from the chosen enumeration of the closed subsets
of X, and the chosen function g from w; onto w; x wy: If D is
a countable subset of X, let B be any closed nowhere dense
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set of positive measure (the measure is the standard product
measure on 2¢) in the complement of D. This can be done by
regularity of the measure, and by enlarging D to a countable
dense subset of X, if necessary. This B equals some F¢’ of the
chosen enumeration of the closed subsets of X,,. Now S can be
chosen to be g7 (w, £). Tt is obvious that condition (3) from [6]
gives our condition iv. The condition that all S, must be non-
empty can be met by passing to a subsequence of the original
inverse sequence. This gives a cofinal subsequence (having the
same limit), because the resulting space is not metrisable.

Another way of seeing this is the following: for all x in X,
we have that (7,)7!(z) C X is a metrisable compact set in the
limit (because it has measure 0), and hence:

Vre X, :Jda<w:V8>a: (rP) Ha)nS; =10

w

If now D C X, is given, we can w.l.o.g. assume it is dense
in X,. As D is a countable, by the above we find a level
such that all fibres from D miss Sg. Now we can take B to be
™5 (Sp)-

It is easy to verify the following standard

Fact. All spaces in a Kunen system are zero-dimensional,
compact and metrisable. All the projections are closed, con-
tinuous and onto. (Only conditions i—iii are needed for this).

Note that not all limits of Kunen systems are L-spaces, e.g.
2“ is also such a space. As being an L-space is necessary for
a non-metrisable space to have a monolithic hyperspace, our
theorem is only interesting in the case that it is.

We will use the following notations for inverse systems
(Xa, m§, w < @ < w;) satisfying the first three properties of a
Kunen system: B, will denote the (countable) set of all clopen
subsets of X,. By X or X, we will mean the limit of the

inverse system, and wgl will denote the canonical projections
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from the limit onto its factors. For every subset A of X,
and for every § € [w,w], we will use the notation Ag for
(m2)~1(A) C Xp. Finally, by Bs (8 € |w,w;]) we will denote
the set {Bﬂ : B € B,}, considered as a subset of the hyperspace
of Xg.

2. Preliminaries

In this section we will prove a few lemmas that will be needed
for the proof of our main result.

Lemma 1. Let X and Y be topological spaces, and let f be a
closed and continuous map from X onto Y. Let B be a closed
subset of Y. Then f(Fr f~'(B)) = Fr B.

Proof. We will first prove the inclusion from right to left by
contradiction. Let b € Fr B be such that f~'(b) N Fr f~Y(B) =
0. So f~*(b) C Int f~'(B). By the closedness of f, there is
an open subset U of Y, containing b, such that f~1(U) C
Int f~(B). Using the surjectivity of f, it is obvious that U C
B. But this contradicts the fact that b is a boundary point
of B. As for the other inclusion: Let x be a boundary point
of f~Y(B) and suppose that f(z) € Int B. Then f~!(Int B)
contains x and is contained in Int f~!(B), which is impossible.
O

In fact, we will only need the following simple corollary to
this lemma:

Corollary 1. Let X, Y and f be as in Lemma 2. Let BCY
be closed and nowhere dense. Then f(Fr f~1(B)) = B. In par-
ticular: If B is non-empty, Fr f~Y(B) # 0.

In the proof of our theorem, we will be interested in B, the
countable set of all clopen subsets of X, in a Kunen system.
This is a dense subset of H(X,). What happens if we consider
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the set Bo(= {(7®)""(B) : B € B})? We would like to have
some elements of the closure of this set in the hyperspace of
X4. The next lemma will give a few sets in this closure that

are relevant to our problem:

Lemma 2.! Let X andY be a compact Hausdorff spaces, and
let Y be zero-dimensional. Denote by B the set of all clopen
subsets of Y, and let f be a continuous mapping from X onto
Y. Denote by B' the set {f~'(B) : B € B}. Let A CY be
closed and non-empty. Then f~'(A) € Clyx)B'. If moreover
Fr f~1(A) # 0, we have Fr f~1(A) € CIH(X) B

Proof. As for the first part, let (Uy,...,U,) be an arbitrary
open neighbourhood of f~1(A). Take elements z; € f~*(A4) N
U;, fori =1,...,n. We then have that f~! f(z;) C U;U---UU,,
for all 7. Because the mapping f is closed we can find clopen
subsets B; containing f(z;) and such that for all ¢ we have
f4B;) C UyU---UU,. So: f~Y(ByU---UB,) € (Uy,...,U,)N
B', as the x; witness the necessary non-empty intersections.

Suppose now that Fr f=1(A) # (). Let’s call this boundary
C for short. We will now approximate C' “from the outside”:
Let (Uy, ... ,Uy) be an arbitrary hyperspace neighbourhood of
C. SoC CU =U;U...UUy. This implies that U U f~!(A)
is open, and hence the set

V={yeY:f'lyycUuftAa}

is an open subset of Y (by closedness of f), which contains
A. We have that U; N f~1(V) N C # O for every i, and we
see that U; N f~1(V) ¢ f~1(A). So pick, for every 4, points
x; witnessing this. As a consequence f(z;) € V' \ A, and by
zero-dimensionality of Y we can pick clopen sets C; such that
eC,CV \ A. So f‘l(C,) Cc U, and z; € f_l(CZ) NU;. So
fHCLU...uCy) € BN(Ui,...,U), as required. 0

1 'We thank the referee for simplifying our original proof of this lemma
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The last lemma of this section concerns an elementary fact
about nowhere dense subsets in an inverse system:

Lemma 3. Let the inverse system (Xo, 752, w < a < wy),
satisfying conditions it of a Kunen system, be given. Let
A C X, be closed and nowhere dense. If 5 < wy, and if
(72)~Y(A)N S, is nowhere dense in S, for allw < a < 3, then

(m2)~1(A) is nowhere dense in Xp.

Proof. We will prove by induction that for all w < v < 3 we
have that (7)) ~*(A) is nowhere dense in X.,. This is obvious if
v = w, so assume that v = 7'+1 and that (7)) ~!(A) is nowhere
dense in X.,. We have that (77)7'(A) = (xJ,)~"(x) "' (A),
so this set is, by ii of the definition of a Kunen system, a
disjoint sum of two nowhere dense sets: X, is homeomorphic
to a disjoint sum of copies of X., and S.; (72 )~*(A) hits this
last set in a nowhere dense set by assumption, and it is nowhere
dense in X as well (by the induction hypothesis). This implies
that the disjoint sum is nowhere dense in X,.

Now assume that 7 is a limit ordinal less than or equal to
3, and that for all 4/ < v we have that (72)~'(A) is nowhere
dense in X,. By iii of the definition of a Kunen system, we
have that X, is the inverse limit of the X/, so if there were
a non-empty clopen set C' contained in (7)~'(A) there would
be an index 7o < such that C' = (77,)~!(C") for some clopen
' c X,,. So:

(7)) H(A) = (77,) " (@) (A4) © (7,)H(C)

0
and hence, by surjectivity of 77 : C' C (7°)~'(A), contradict-
ing this set being nowhere dense. This finishes the induction.
g

3. The Proof of the Main Result

Now we have everything needed to prove the following theorem:
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Theorem. Let (X,, 72, w < a < w;) be a Kunen system. Let
X denote its limit. Then H(X) is not Ry-monolithic.

Proof.  Let us start the proof by noting that H(X) is the inverse
limit of the system (H(X,), 72, w < a < w;), where 77 is the
map between H(Xj3) and H(X,) that sends a subset A of Xj
to m2(A) (See [4, 3.12.27(f)]). It is clear that #2(Bs) = B, for
allw < a < f < w; (using the notation from the introduction),
and by closedness of all mappings involved we will also have
that: #2(C1Bsz) = CIB, for all such a and 3. By [4, 2.5.6]
ClB,, is the inverse limit of the system (ClB,, 72| ClBs, w <
a < wi).

Let us call a pair («, ), where w < a < f < w;, “bad”
if the map 77| C1 Bs is not one-to-one. The following claim is
essential to our proof:

Claim. For every a € [w,w) there is a § < wy such that («, 0)
1S a bad pair.

To prove this, let a be an arbitrary ordinal in |[w,w;). For
every 7 € [w,a) let D, be a countable dense subset of S,.
Consider the set D = c(, o) T (D). Then D is a countable
subset of X, (D = 0 if v happens to be w), so we can find a
closed nowhere dense set B C X, \ D and a § < w; such that
Sg C Bg. Note that, by the definition of Xz, the interior of
Bg+1 will be non-empty, as it will contain a clopen copy of Sp.
Now we have for all v € [w, @):

S,NB, C (1) (X\D)NS, C () M X \7(D,))NS, =
=X\ D,nS5, =5\ D,

From this we may conclude that S, N BW is nowhere dense in
S,, for all v € [w, ). Hence by Lemma 2 we may conclude
that B, is nowhere dense in X,. This implies, by the previous
remark, that a < 8+ 1. We will now show that («, 5+ 1) is
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bad: First, applying Lemma 2 to X,,, Xs.1, B and 727!, we
see that Bgyy € ClBs, and also Fr Bg,; € ClBg,. Also note
that these are different sets, as Int BB-I-I # (). Second, we apply
Corollary 2 to X4, Xg41, B, and 72+ From this we obtain
that

m(Fr Bﬁ+1) = B, = WgH(BﬂH)

the second equality being obvious. So this shows that #7+! is
not one-to-one on ClBg,, as required.

To conclude the proof we show that the closure in H(X)
of the countable set B,, is not metrisable: to the contrary,
suppose that ClB,, were metrisable. Then by [4, 3.2.H(e)],
and the above inverse limit decomposition of B,,, there exists
an index « € [w,w;) and a continuous mapping f, from Cl B,
to ClB,,, such that f,7%' equals the identity on ClB,,. So in
particular we will have that 7&* will be injective. But by the
claim we can find a § such that (a,d) is bad. But we have that
7@ = 707 and this is not one-to-one as a composition of
a surjective and a non-injective mapping. This contradiction
concludes the proof of the theorem. O

We'd like to conclude with a few remarks. It is well-known
that Kunen’s space is Corson compact. In fact it must be,
as follows from [7, Thm. 6]: If the limit of a Kunen system
has countable tightness, then it is Corson compact. It is also
well-known that Suslin lines are not Corson compact (recall
that a compact and monolithic Suslin line has a monolithic
hyperspace). So one might be tempted to think that this is the
“real” reason for the hyperspace of a Kunen space to be non-
monolithic. But in fact there is a consistent counterexample
to this: Let L be a monolithic compact Suslin line. By [7]
L can be mapped irreducibly onto a Corson compact space
X. By irreducibility, X is also an L-space, and it is easy to see
that having a monolithic hyperspace is preserved by continuous
maps between compacta. So under —SH there is a Corson
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compact space with a monolithic hyperspace. (Of course MA
and ~CH will imply that there are no such spaces.)
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