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I. INTRODUCTION 

As far as projections of Cantor sets in the plane are concerned there are two 

types of interest: ‘large’ sets with ‘small’ projections and ‘small’ sets with ‘large’ 

projections. In Monterie [7] an example of each type is given related to loga- 

rithmic capacity: 

Example 1. [7, §C.S] There exists a planar Cantor set K of positive capacity and 

a countable dense set of directions A such that the capacity of the projection of 

K is zero for every direction from A. 

Example 2. [7, 4C.61 There exists a Cantor set K in R with zero capacity such 

that every projection of K x K except those on the x and y-axes has positive 

capacity. 

We will present a topological theorem about fairly arbitrary functions from 

K(R’) into [0, ce) that will include these two examples as special cases. Partic- 

ularly interesting is that the construction of our examples uses only a few 

topological properties of capacity whereas Monterie’s constructions require 

detailed knowledge of the capacity function in the form of a rather technical 

criterion for deciding which sets have capacity zero. 

*The author is pleased to thank the Vrije Universiteit in Amsterdam for its hospitality and support. 
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Our results give us a lot of freedom in specifying which projections are ‘large’ 
and which are ‘small’. For instance, Corollaries 5 and 7 imply: 

Example 3. There exists, given any two countable disjoint sets of directions A 
and B, a planar Cantor set such that the capacity of the projection is zero for 
any direction from A and nonzero for any direction from B. 

Example 4. There exists, given any countable compact set of directions A, a 
planar Cantor set such that the capacity of the projection in the direction 0 is 
zero if and only if 19 E A. 

These results are not just valid for logarithmic capacity but for a wide range of 
capacities and measures. We employ the ‘turning parallelogram’ construction 
of Besicovitch [l] that has been used by several authors to obtain sets with 
projections of prescribed measure (see e.g. [S, 2, 5, and 61). Our contribution is 
to show that such constructions can work even if no particular measure or ca- 
pacity is specified. It suffices to know that the set function is upper semicon- 
tinuous and that it vanishes on finite sets. 

2. PRELIMINARIES 

We denote the space of compacta in the plane equipped with the usual Haus- 
dorff metric by Ic(R2). The space of projection directions in the plane is the 
circle S = R/nZ. If 8 E S then pi is the projection of the plane onto the line 
through the origin that is perpendicular to t? In other words, 

Ps(X, Y) = ; (x - xcos219-ysin20,y+ycos28-xsin28). 

Obviously, the function p : S x R2 + R2 defined by ~(0, x, y) = p~(x, y) is a 
continuous mapping and hence it generates a continuous map from S x Ic(R2) 
to K(R2). By an interval in the plane we mean a nondegenerate line segment. 

We now recall the definition of logarithmic capacity. If A E K(R2) and I_L E 
P(A) is a probability measure on A then the potential energy of p is 

I(P) = s s 1% &q &u(w) 44z). 
AA 

The capacity is a function from K(R2) into [0, 00) defined by 

We will use only the following well-known properties of capacity (see Landkof 
[4] and Tsuji [9]): 

1. Capacity is an upper semicontinuous function, i.e. the preimage of every 
interval (--00, t) is open. 

2. The capacity of finite sets is zero. 
3. The capacity of a space that contains a nontrivial continuum is positive. 
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4. IfAcBthencapA<capB. 

5. IfcapA=capB=OthencapAUB=O. 

6. capps(A) < capA. 

3. CANTOR SETS 

Before giving our main results we would like to present an example of a ‘small’ 

Cantor set which projects onto ‘large’ sets. 

Proposition 1. There exists a planar Cantor set of vanishing Lebesgue measure 

with theproperty that every projection is an interval. 

Figure 1 

Proof. Consider figure 1. Let us denote the large L-shaped region by Ao. We 

construct a decreasing sequence of compacta A, as follows. The set Ai consists 

of the union of the four shaded subregions in figure 1. Observe that every 

component of Al is similar in shape to A0 with scale factor at most i. This 

means we can apply the same procedure that produced A1 from A0 to each of 

the components of Al to produce AZ. Continue this process indefinitely. It is 

obvious that A = nrzO A,, is a planar Cantor set. Since X(A,,.l)/X(A,) = 

X( Al )/X(Ao) < 1 for every n we have X(A) = 0, where X stands for the 2-di- 

mensional Lebesgue measure. 

Observe that each straight line that intersects A0 also intersects AI. By in- 

duction we may conclude that each straight line that intersects A0 also inter- 

sects every A, and, hence, the intersection A (by compactness). Consequently, 

we have in each direction PO(A) = pi, which are all intervals because A0 is a 

continuum. cl 

Let y : K(R2) + [0, cm) b e a function. We say that A E Ic(R2) has vanishing 3 in 

almost all directions if there is a B c S of category I (i.e. a countable union of 

nowhere dense sets) such that y(po(A)) = 0 for each 0 E S\B. Recall that the 
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complement of a category I set in S contains a dense copy of the irrationals and 

hence every nonempty open subset has cardinality c. 

In connection with Example 1 Monterie raises the question whether it is 

possible to obtain vanishing capacity in uncountably many directions for such 

an example. The following proposition shows that this is automatic. 

Proposition 2. If-y : K(R*) + [0, co) is upper semicontinuous, C E K(R*), and if 

A is a dense subset of S such that ~(pe(C)) = 0 for every B E A then C has van- 

ishing y in almost all directions. 

Proof. Since y is upper semicontinuous and p is continuous we have that 

f(o) = Y(P&)) is UPP er semicontinuous as a function of 0. So f -’ ((0)) is a 

Go-set that is dense in S. q 

We now present our main result. Let us call an upper semicontinuous y : 

K(R’) -+ [0, m) that vanishes on finite sets a pseudo-capacity. 

Theorem 3. Zf y is a pseudo-capacity and if A and B are disjoint u-compacta in S 

such that A is countable then there is a planar Cantor set C such that p~( C) is a 
finite union of intervals for every 8 E B and y(pe( C)) = 0 for every 19 E A. In ad- 

dition, it can be arranged thatpe( C) is connectedfor 0 in any given compact subset 

ofB. 

Proof. If A is empty then we apply Proposition 1. 

Let A # 0. Write B as the union of an increasing sequence of compacta 

Bo, B1, . . . . We may assume without loss of generality that 0 E Bo. We select a 

sequence k&,81,. . in S such that every element of A is listed infinitely many 

times, 13, # On + 1 and 6, 9 B, for every n. If A consists of more than one point 

then we can use an enumeration of A. If A has only one element, say 0, then we 

put 9, = 0 for n even and we select some other angle from the complement of B,, 
for n odd. Note that no 0, equals 0. 

We need some notation: if A’ E K(R*) and E > 0 then 

DE(X) = xs ([-&El x (0)) = ( ,r.]Ex [x-6X+4 x {Y>. 
x, 

We shall construct spaces whose components are of the form D,(L) where L is a 

nonhorizontal interval, and the following definition will extract the intervals 

that generate such spaces. 

C(X) = 
A4 is a closed interval such that 

M: 
D,(M) is a component of X for some E 

We construct a decreasing sequence of compacta C, and a sequence of positive 

numbers E, such that: 
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(In) C, has finitely many components. 

(2,) Every component of C,, has the form DEn (L) where L is an interval par- 

allel to f&. 

(3,) Every closed subset of pe, ( Cn) has y < 1 /n. 

(4,) ffK = &(L) is a component of C, and 0 < i < n thenpe(lJ C(K n C,?)) 

is an interval that contains p@(L) for each 0 E Bi. 

As basis step for the induction, we select an ~0 > 0, a line segment L in the di- 

rection of 00, and we put Co = DEO(L). 
We first verify that C = nrzO C, meets the requirements. Let B E A and find 

ann2 lsuchthatB=8,.Thenwehavepe(C)cps,(C,)andhencey(p~(C))< 

1 /n. Since n can be chosen arbitrarily large we have y( p~( C)) = 0. 
Now let Q be an element of some Bj and let K = D,,(L) be a component of C,. 

According to (4,) the projection pe(U L(K n C”,)) is an interval that contains 

PO(L) for each n > i. This statement implies that 

pe(K n G) = pe(U .C(K n G) + ([-G. 4 x (0))) 

is an interval for IZ > i. So pe(K n C) = nrci ps(K n Cn) is an interval that is 

nondegenerate because it contains PO(L) and L is parallel to Bi which is not 

equal to 8 E B,. Since Ci has only finitely many components K we have that 

PO(C) is a finite union of intervals. Observe that if 0 E & then K = Co, and 

hence pe( C) consists of a single interval. 

What remains is to perform the induction. Assume that C,_ 1 has been con- 

structed. Since 8, @ B, we can find an angle 6 > 0 such that [& - S! 0, + 61 is 

disjoint from B,,. 

Figure 2 

Let D,_ , (L) be a component of C, _ 1 (represented by the large parallelogram 

in fig. 2). Find in DE_ ,,I (L) a finite pairwise disjoint collection ML of closed 

intervals parallel to 0, as indicated in figure 2. We choose the line segments in 

ML so close together that adjacent ones will overlap if we project along an 

angle outside the interval [& - 6,6$, + 61. Consequently, for each 19 E B,, 

177 



p~( U ML) is an interval that obviously contains PO(L). It is easily seen that we 
can always arrange that ML has more than one element each of which is at 
most half as long as L. This will guarantee that C will be a Cantor set. Since 
6, _ 1 # 0, figure 2 is a faithful representation of the situation. 

Let M be the union of the ML’s. Then F = ~0. (U M) is a finite set and hence 
y = 0 for all subsets of F. Using the fact that y is upper semicontinuous we se- 
lect for each subset G of F an &G > 0 such that every element of K(R*) that is 
&o-close in the Hausdorff metric to G has y < l/n. If we let E,, be less than the 
minimum of the &G’s then we have that every element of K(R*) that is contained 
in the closed &,-ball around F has y < l/n. In addition, we may assume that 
cn < i en _ 1 and that cn is less than half the distance between the closest points 
of F. We put C, = DEn (IJ M). Figure 3 shows the components of C, inside a 
component of C, _ 1. 

Figure 3. 

Since M is finite, condition (In) is satisfied. Since Em < ien_ i we have C, c 

C,, _ 1. Obviously, pe, ( Cn) is a subset of the &,-ball around F and hence condi- 
tion (311) is satisfied. Since the &,-balls around the points of F are pairwise dis- 
joint, condition (2,) is satisfied, If we combine condition (4,-i) with the fact 
that pe(IJ ML) is an interval that contains p@(L) for each 0 E B,, then we find 
(4,). The proof is now complete. 0 

Note that the only property of y we really need for the proof of the theorem and 
its corollaries is that finite collinear sets are interior points of sets of the form 

Y-W, t)). 
In Example 1, it is not clear what the capacity is in the other directions. One 

might conjecture that if the capacity vanishes in almost all directions then it 
will be zero in all directions. The following corollaries give counterexamples. 

Corollary 4. Zf y is apseudo-capacity and ifA is a countable dense subset of (0,~) 

then there is aplanar Cantor set Csuch thatpo( C) isanintervalandy(pe(C)) = 0 

for every 6 E A. This implies that C has vanishing y in almost all directions. 

Corollary 5. Zf y is a pseudo-capacity and ifA and B are disjoint coutable dense 

subsets of S then there is a planar Cantor set C such that pe( C) is aJinite union of 

intervals for every 0 E B and y( p~( C)) = 0 for every 8 E A. 
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If we substitute y = cap in these corollaries then we find cap C > 0 because 
projection cannot increase capacity and intervals have positive capacity - re- 
producing Example 1. Our results show in addition that the function cappe(A) 

can be severely discontinuous in 0. 
A natural question (raised also in [7, §C.l]) is whether a set with positive ca- 

pacity can have projections of capacity zero in all directions. This question was 
answered by Kaufman [3] for capacities associated with potentials of the form 
l/lx\ a. We include the straightforward adaptation of Kaufman’s proof to the 
logarithmic case. 

Proposition 6. If cap C > 0 then the Lebesgue measure of (6’ E S : cap p~( C) = 0) 
is zero. 

Proof. Let cap C > 0. This statement is equivalent with the existence of a 
p E P(C) with finite energy, i.e. 

Define Co = PO(C) and ~0 E P(Ce) by ,ue(B) = p(p;‘(B) n C) for B a Bore1 set 
in Co and 0 E S. Consider the energy of ~0: 

Since the integrand is bounded below by - log(diam(C)) we have by Fubini 
that I( ~0) is a measurable function of 0 and that 

where 0 stands for the Lebesgue measure on S. If we parametrize S in such a 
way that 0 = 0 corresponds with the direction of the vector x - y then we find 

S log Ipo(xl_ y)( da(e) = a log Ix _ :, sin e de 
s 

= 7r10g lxlp, o - + i log(csc t9) d%. 

Consequently 

JZ(pO)da(B) =TZ(~) +s” log(cscQ)dB < 03. 
s 0 

This result implies that Z(~Q) < 00 for all B’s outside some set of measure zero 
and the proposition is proved. q 

Corollary 7. Zf y is apseudo-capacity and if A is a countable G&-set (in particular 
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a countable compactum) in S then there is a planar Cantor set C such that 

Y(PB(C)) = 0 f or every d E A and pe( C) is aJinite union of intervals for every 
other direction 0. 

If we substitute A = {0,7r/2} and y = cap into this corollary then the resulting 
C projects onto capacity zero sets on the x and y-axes and onto finite unions of 
intervals in all other directions. If we define K as the union of the horizontal 
and vertical projections of C seen as subsets of R then cap K = 0. Since K x K 
contains C its projections in every direction other than horizontal or vertical 
contain intervals. This result implies Example 2. 

Observe that Theorem 3 applies to for instance Hausdorff measures just as 
well as it applies to capacities. In fact, since a set with vanishing logarithmic 
capacity has Hausdorff dimension zero (see [4, Theorem 3.131) Theorem 3 im- 
plies: 

Corollary 8. If A and B are disjoint g-compacta in S such that A is countable then 
there is a planar Cantor set C such that the Hausdorff dimension of p~( C) is one 
for every 8 E B and zero for every 0 in some Gs-set that contains A. 
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