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Abstract 

We present two examples of nice normal spaces X having the property that for some fixed- 
point free homeomorphism on X its tech-Stone extension has a fixed point. One of the spaces 
presented here is locally countable, locally compact, separable, normal, countably paracompact and 
weakly zero-dimensional. The other one is hereditarily normal and strongly zero-dimensional. Our 
construction of this example however requires the Continuum Hypothesis. Since for paracompact 
spaces with finite covering dimension every fixed-point free homeomorphism has a fixed-point free 
tech-Stone extension, these results are “best possible”. 0 I998 Elsevier Science B.V. 
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1. Introduction 

Given a (Tychonoff) space X and a fixed-point free homeomorphism f : X --j X it is 

natural to ask whether its Tech-Stone extension Pf : PX -+ j?X is fixed-point free. 

Van Douwen [4] showed (among other things) that a paracompact space X with 

finite covering dimension has the property that every fixed-point free homeomorphism 

f : X + X has a fixed-point free Tech-Stone extension flf. 

This result motivated several authors to construct examples of “nice” and “very nice” 

spaces which do not have this property. One of the important tools in this context is the 

concept of a coloring of a map. 

A coloring of a pair (X, f), where X is a space and f : X -j X is continuous and 

fixed-point free, is a finite closed cover A of X such that f[A] nA = 8 for all A E A. If 
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Pf is fixed-point free, then the compactness of PX easily implies the existence of a 

finite (open) cover of /3X (and so also of X) such that 

f [A] n A = 0 for all A E A. 

Normality allows to shrink the sets to closed sets using a standard technique from Di- 

mension Theory (see, e.g., [l, 13.81). 

Using this van Douwen showed in [4] that on the topological sum 

of n-spheres, the topological sum of the antipodal maps is fixed-point free but its i’ech- 

Stone extension is not. 

Another example is the product space { - 1,O; 1 }“I with the product map L obtained 

from the function L(Z) = --5 (Z E {-l%O, 1)). Put 

x = {-l,O, l}“’ \ (0). 

where 0 is the element in { - 1 ! 0: 1 }“‘I all of whose coordinates are zero. Then L* = L r X 

is fixed-point free, but ,OL* is not because /3X = {- l,O, l}w’ and PL* = L. For more 

details see [2]. 

A space X is called weakly zero-dimensional if it has a basis consisting of open 

and closed sets. In addition, X is called strongly zero-dimensional if its Tech-Stone 

compactification is weakly zero-dimensional. As is well known, this is equivalent to the 

property that every two disjoint zero-sets in X can be separated by an open and closed 

set. (This explains our terminology.) 

Recently Good [5] presented two new examples of spaces whose Tech-Stone exten- 

sions behave bad. Good’s first example is first countable, strongly zero-dimensional and 

subparacompact. Such a space cannot be collectionwise normal, since for collectionwise 

normal spaces subparacompactness coincides with paracompactness. It is, however, not 

normal. Good’s second example is weakly zero-dimensional, normal, countably paracom- 

pact and first countable. It is a combination of van Douwen’s example, that we mentioned 

above, and Dowker’s construction of a normal, weakly zero-dimensional space of positive 

covering dimension. 

Here we present two new examples. The first example is locally countable, locally com- 

pact (hence first countable), weakly zero-dimensional, separable, normal and countably 

paracompact. Since Good’s example is not locally compact and van Douwen’s example 

is not weakly zero-dimensional, it improves both. 

Although the space in the first example has many nice properties, it fails to be strongly 

zero-dimensional. So far, all known examples of strongly zero-dimensional spaces with 

“bad’ tech-stone behaviour are not normal. In the third section we will construct our 

second example, which will be hereditarily normal and strongly zero-dimensional. This 

construction however requires the Continuum Hypothesis. 

In what follows, L will always denote an involution, i.e., a continuous map which is 

its own inverse. 
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2. Refining topologies 

Our first example is based on van Douwen’s technique for constructing locally compact, 

submetrizable spaces from [3, 54,5,7]. We will modify the original construction in such 

a way that an initially given involution L on the space X under consideration remains 

continuous. The idea is not to consider points, but to consider pairs of the form {x, L(Z)} 

(x E X), ‘. ., I e or 1 s under the involution L. b’t 

For every ordinal number < there is a unique limit ordinal 77 and a unique finite ordinal 

n such that < = q + n. If n is even, then < is an even ordinal; otherwise < is an odd 

ordinal. 

Lemma 2.1. Let X be a separable metrizable space with IX/ = c and such that every 

uncountable closed subset has cardinality c. Furthermore let L : X + X be a jixed-point 

free involution. Then there exists a refinement I* of the topology of X, such that (X, I*) 

is locally compact, locally countable, weakly zero-dimensional, separable, normal, count- 

ably parucompact, and WI-compact. We denote the topological space (X, I*) by A(X). 

Moreover A(X) has the following property: 

If (F,: n E w) is a sequence of closed sets in A(X) such that 1 nTLEw F,j < w 

then I nnEw clxF,I < w. C&J) 

Also, L : A(X) + A(X) is an involution. 

Proof. Let (Bi: i E w) enumerate a base for X such that & = X and &+I = L[&] if 

i is even. For every x E X and j < w define 

E(x,j)=n{&: i<2j+landx~Bi}. 

Obviously, for every z E X and j < w we have E(L(x), j) = L[E(x, j)]. The collection 

(E(z,j): j E ) w IS a local base at II: in X and if x E E(y, j) and i 3 j, then 

E(x: 4 c E(Y, j). 
Define 

R= (K,: 

{ 

n E w): K,, is a countable subset of X, and 

We will construct A(X) in such a way that 

If (K,: n E W) E R then I nnEw clACxIKnI = C. 

Since X is hereditarily separable (A,) follows from (*). 

(*I 

Observe that if K = (K,: n E w) E $3 then (L[K,] : n E w) E A. This last sequence 

will for simplicity be denoted by L[K]. 

Enumerate A as ((Ky,n: n E w): y E c) in such a way that every element K E A is 

listed c times and such that K,+I = L[K-,] if y is even. 

Enumerate X in a one-to-one fashion as (xa: cy < c) and such that Q = (5,: LY < w) 

where Q is a fixed countable dense subset of X which is invariant under L. Let this 

enumeration of X be such that x,+1 = L(x~) for all even (Y. 
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Now define for all even o, 

x, = {z/3: p < o} 

If cr < c is odd then we define X, = X,-i. 

Now we want to define an injection p : c + c \ w. We will do this by induction on 

y < C. Let y < c be even and assume that cp is already defined on y and is injective. We 

will define p(y) and cp(y + 1). First, let 

& = min {A 3 w: X is even, and cp(/?) < X for all /3 < r}. 

Next, let 

c = min Q 3 Er: U Ky,n. c X, and 2, E n cl,~K,,, 
{ 1 

! 
nEw nEw 

and let 

p = min a 3 Er: U Ky+~.7L C X, and 5, E n clxK-,+l,, 
{ new TLEW I 

Observe that 0 and p are well-defined because every uncountable closed subset of X 

has cardinality c. 

Since every X, is invariant under l., we obtain 

u Ky+l,n = L u Ky,n c L[X,] = x,. 

nEw [ I ntw 

In addition, 

+,I E L n CIX~y.n L 1 ” = clX~~+l,n. 
n.EU ntw 

Since L(z,) = x0+1 if cr is even, and L(z,) = z,_1 if 0 is odd, we conclude that 

p < o + 1. By a similar argument we obtain cr 6 p + 1. 

Let us first consider the case that (T is odd. Since Er is even, we have 0 - 1 > E,. 

Since 0 is odd, X,-i = X, = /,[X,], as well as 

X,-l = L(G) E n clX&+l.n. 
nEw 

So we conclude that p < (T - 1, and so, 0 = p + 1. It follows similarly that if p is 

odd then p = cr + 1. So the minimum of p and B is even, and if cr # p, say o < p then 

a + 1 = p, and vice versa. 

If g # p then we simply define p(y) = o and cp(y + 1) = p. If 0 = p then we define 

y(y) = cr and cp(y + 1) = g + 1. Clearly, cp t (y + 2) is an injection. 

This completes the definition of cp. 

For each CY E c \ w it is possible to choose a sequence sa : w + X, such that: 

0 sLy(i) E E(zCY,i) for all i E w. 

0 Infinitely many terms of so are in Q. 

l If cy is even, then s,+](i) = L(s,(~‘)). 
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l If there is a y such that p(y) = CY, then each Ky,n contains infinitely many terms 

of soi and all terms of s, lie in Q U UnEw Ky.n. Notice that y is unique since 

cp is injective. If there is no y such that p(y) = a, then there are no additional 

restrictions. 

Since sLy(i) E X, for cy E c\w and i E w, we can construct collections (L(z,,j): 

w) of subsets of X with transfinite recursion on CE as follows 

L(zalj) = { 

1x01 
{zcy} u ui>j L(&(i)>i) 1:: : :‘( w. 

By transfinite induction one can show that L(zp+i, j) = ~[L(zp,j)] for all even /3. 

Since (L(z,j): j E w) is a decreasing family, with the property that if x E L(yy,j) for 

x, y E X and j E w, then L(x, i) 2 L(y, J’) for some i E w, we may define the topology 

for A(X) by declaring (L(x,j): j E w) to be a local base at x E X. 

One easily sees that this topology is finer than the original topology, that it is locally 

compact and locally countable and that Q is a dense subset of A(X); it also follows that 

A(X) is weakly zero-dimensional. 

Straight from [3, 541 we get that (*) holds, and so does (A,), therefore A(X) is 

normal, countably paracompact and WI -compact. 

We observed that L(zo+i,j) = ~[L(xp,j)] (for ,5’ even), and so, since L is its own 

inverse, we get that L is continuous. ii 

Construction 2.2. We start with the spaces T” = S” x [0, 11, the product of Sn, the 

n-dimensional sphere in IF?+‘, and [O: 11, the unit interval. Now let L, : ‘P + TIT” be 

defined by L, ((x, y)) = (-2, y), i.e., th e antipodal map on S” and the identity on [0, 11. 

This map is clearly fixed-point free. 

Using Lemma 2.1 we can construct for each n the “nice” space A, = A(P) corre- 

sponding to ‘P and L, such that L, is continuous in this new topology. 

Let n be the topological sum Bn,__ A,. This A will be our space. In a straightfor- 

ward way the properties of the A, imply that A is locally compact, locally countable, 

separable, normal, countably paracompact, WI -compact, weakly zero-dimensional and 

submetrizable. 

Define a fixed-point free involution j : A + A by 

j(x) = L,(Z) if 5 E A,. 

We show by contradiction that (A, j) is not finitely colorable. Suppose {Al, 1 Ak} 
is a finite closed cover of A such that j[A,,,] n A, = 8 for all 1 < m < lc. Now let 

A; = A, n Ak for every 1 6 m < lc. Then {AT,. . , A;} is a closed coloring of ilk. 

Since for all 1 < m < k the sets Ah and &[A;] are closed and disjoint, we get from 

(X,) that 

1 clp A; n clTk Lk [A;,] 1 < w. 

Hence also 

; (clTr;A; fl +Lk [A;]) 6 w. 
m=l 
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Therefore there is a 1~ E [0, 11 such that (2, y) is not in this set for all z E S”. So with 

B, = cllrkAL f! (S’” x {y}), we find that {B,: 1 < 7n 6 Ic} is a closed cover of a 

Ic-dimensional sphere with k sets such that B,, n L~[E&] = 0 for all 1 < m < Ic. But 

this contradicts the Liusternik-Shnirel’man Theorem. 

We mentioned many times that this example is weakly zero-dimensional. It fails to be 

strongly zero-dimensional as can been seen from Theorem 8.1 of [3]. 

3. An example under CH which is normal and strongly zero-dimensional 

In this section we sketch the construction under the Continuum Hypothesis of an exam- 

ple of a hereditarily separable, hereditarily (collectionwise) normal, countably compact, 

strongly zero-dimensional space H with a fixed-point free involution L : H + H such 

that ,& has a fixed point. The interest in this example comes from its normality and 

its strong zero-dimensionality, since all previous examples failed to be both normal and 

strongly zero-dimensional. 

Construction 3.1. We follow a construction of Hajnal and JuhAsz [6] who constructed 

using the Continuum Hypothesis a hereditarily separable, hereditarily (collectionwise) 

normal, countably compact subgroup of (0, 1)“’ which is not Lindeliif and has no con- 

vergent sequences. The key concept in their construction is the concept of an w-HFD 

(w-hereditarily finally dense) subspace. 

Their construction can be repeated for any prime number p, thus obtaining an example 

of a hereditarily separable, hereditarily normal, countably compact subgroup of @‘I which 

is not Lindeliif. In particular we can construct this Hajnal-JuhBsz-group G in 3”’ = 

{- 1, 0, l}“‘. From the construction it follows that G is G&-dense and so is H = G\ (0). 
By the HemAndez-Sanchis Theorem [7, Corollary 111, the compact topological 

group 3”’ is the Tech-Stone compactification of its Gh-dense subset H. Observe that 

3”’ is zero-dimensional, whence H is strongly zero-dimensional. 

Now if we define pi: {-l>O, 1) ---t (-l,O, I} via D(X) = --IL: and let L: H + H be 

the product map of the (Y’S restricted to H, then L is a fixed-point free involution. Since 

/!3H = 3”’ we can easily see that the tech-Stone extension ,!S’L has a fixed point. This 

completes the example. 
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