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THERE ARE MANY KUNEN COMPACT L-SPACES

HENNO BRANDSMA AND JAN VAN MILL

(Communicated by Alan Dow)

Abstract. We prove that under CH there are ω1 non-homeomorphic Kunen
compact L-spaces. Moreover there exist models of ZFC that have 2ω1 many
non-homeomorphic Kunen spaces.

1. Introduction

In [5], Kunen constructed a compact L-space from CH. (For a similar construc-
tion under a somewhat weaker axiom, see [6].) His construction leaves a lot of
freedom and the question naturally arises whether different constructions can yield
topologically distinct spaces.

A different type of compact L-space is a Suslin continuum. Bell [1] proved that
the hyperspace H(X) of a monolithic Suslin continuum X is monolithic. He asked
whether for a compact monolithic hereditarily Lindelöf (HL) space X it follows that
H(X) is monolithic. This question was answered by Brandsma and van Mill [2] in
the negative by a modification of the Kunen construction from [5]. This result was
subsequently improved by the authors of that paper in [3]: every space defined like
Kunen’s example of a compact L-space has a non-monolithic hyperspace. It was
left open whether there are non-homeomorphic Kunen compact L-spaces. The aim
of this note is to prove that this is the case.

2. Kunen’s construction

In this section we briefly review the elements of Kunen’s construction from [5]
that are necessary for us.

Kunen’s compact L-space is the limit Xω1 of an inverse system (Xα, π
α
β , ω ≤ β ≤

α < ω1), such that for ω ≤ β ≤ α, Xα is a closed subspace of 2α and παβ : Xα → Xβ

is the restriction to Xα of the natural projection 2α → 2β. In order to force the
inverse limit Xω1 of the system to be an L-space, some special conditions have to
be met.

The first one is that for ω ≤ α < ω1, Xα carries a Radon probability measure
µα such that
(K1) If β ≤ α, then µβ = µα(παβ )−1.
(K2) If p ∈ Xα, then µα({p}) = 0.
(K3) If K ⊆ Xα is non-empty and clopen, then µα(K) > 0.
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If ω ≤ γ < ω1 is a limit ordinal, then Xγ is the inverse limit of the previous
Xα’s, and by (K1) the measure µγ is determined by the previous measures µα in
the obvious way.
Xω is 2ω with the usual product measure µω.
If α = β + 1, then there is a closed subset Sβ ⊆ Xβ such that

Xα = (Xβ × {0}) ∪ (Sβ × {1}).
(Here, we are making the obvious identification of 2α with 2β × 2.) The measure
µα is obtained from µβ by splitting Sβ in half; thus, if A ⊆ Sβ is Borel, then

µα(A× {0}) = µα(A× {1}) =
1
2
µβ(B)

and if A ⊆ Xβ \ Sβ is Borel, then µα(A) = µβ(A).
The set Sβ is called the splitter at stage β.
Observe that Sβ is not arbitrary since (K3) forces it to be of positive measure

everywhere. But this is not enough. If one puts Sβ = Xβ for every ω ≤ β < ω1,
then the inverse limit is homeomorphic to 2ω1, which is not an L-space. So the
set Sβ must meet several other conditions. But an inspection of the construction
in [5] yields that once Sβ has been identified meeting the desired demands, any non-
empty closed set T ⊆ Sβ which is of positive measure everywhere will do equally
well. This is the freedom in the construction that we mentioned in the introduction.
So we will not concentrate on how to pick Sβ in order to get an L-space at the end:
for this we refer to the construction [5]. But we will concentrate instead on the
question of how a given splitter can be modified so as to get non-homeomorphic
spaces.

3. Shchepin’s Theorem

Supppose that we have two inverse systems (Xα, π
α
β , ω ≤ β ≤ α < ω1) and

(Yα, ραβ , ω ≤ β ≤ α < ω1) such as in the previous section.
By Shchepin’s Theorem [7] it follows that each homeomorphism f : Xω1 → Yω1

is induced in the following sense. There exists a closed and unbounded subset
C ⊆ [ω, ω1) and for each α ∈ C a homeomorphism fα : Xα → Yα such that the
diagram

Xω1

πω1
α

��

f
// Yω1

ρω1
α

��

Xα
fα

// Yα

commutes. But this implies that if β < α are in C, then the diagram

Xα

παβ
��

fα // Yα

ραβ
��

Xβ
fβ

// Yβ

(1)

commutes.
The problem of constructing non-homeomorphic Kunen compact L-spaces boils

down to the problem of how to destroy all possible commutative diagrams of the
form (1).
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4. The construction

In this section we will show how to get two non-homeomorphic Kunen spaces
under CH. In the next section we will show how this technique can yield more
non-homeomorphic Kunen spaces. Applying CH, fix an enumeration {fαξ : ξ < ω1}
of all homeomorphisms between closed subsets of 2α when ω ≤ α < ω1. Also, fix a
function g from ω1 onto ω1 × ω1 such that g(β) = 〈α, ξ〉 implies α ≤ β.

Suppose that we are creating two Kunen L-systems (Xα, π
α
β , µα, ω ≤ β ≤ α <

ω1) and (Yα, ραβ , µ̂α, ω ≤ β ≤ α < ω1).
At stage β of the construction, we perform the following test. Let g(β) = 〈α, ξ〉.

If fαξ [Xα] 6= Yα, then we proceed with the construction of Xβ+1 and Yβ+1 such as
in [5]. There is work to be done if fαξ [Xα] = Yα. We want to construct Xβ+1 and
Yβ+1 in such a way that for no γ ≥ β + 1 the diagram

Xγ

πγα
��

? //___ Yγ

ργα
��

Xα

fαξ
// Yα

can be completed. This is done in the following way. Let S ⊆ Xβ and T ⊆ Yβ be
splitters for Xβ and Yβ , respectively, satisfying the demands in [5].

Put S(α) = πβα[S]. Observe that by (K1) and (K3) it follows that µα(S(α)) > 0.
As a consequence, S(α) is uncountable and hence contains a Cantor set, say BX .
Since each Cantor set contains a family consisting of c pairwise disjoint Cantor
sets, it is clear that we may assume that µα(BX) = 0. Consider the Cantor set
BY = fαξ [BX ]. We may also assume that µ̂α(BY ) = 0. Consider the set CY =
(ρβα)−1[BY ]. This is a compact set with µ̂β-measure 0 by (K1). Observe that its
Cantor-Bendixson height is a countable ordinal number. (Recall that for a space
the Cantor-Bendixson weight is the first ordinal number α such that the usual
scattering process stops at stage α at a perfect set (possibly empty, but not in the
case at hand).)

We now demand that our splitter Tβ ⊆ T misses the µ̂β-nullset CY . It is clear
that this is possible. In later steps γ ≥ β we demand that the splitter Tγ misses the
µ̂γ-nullset (ργβ)−1[CY ]. This will cause no problems since at each stage we create
only one “bad” nullset whose preimage has to be avoided by the respective splitter
at each later step. This demand means that at each step of our construction the
splitter at that step has to avoid an at most countable collection of nullsets coming
from previous steps. So altogether this means that a nullset has to be avoided. But
this can be done without any problem. Observe that this implies that for every
γ ≥ β we have that (ργα)−1[BY ] is homeomorphic to CY , and hence is of “small”
Cantor-Bendixson height.

Put CX = (πβα)−1[BX ]. The compact nullset CX ∩ S is uncountable and hence
contains a Cantor set, say P . Since P is universal for compact zero-dimensional
spaces, it contains a countable compact subspace Z with larger Cantor-Bendixson
height than the Cantor-Bendixson height of CY (such sets are essentially countable
ordinals with the order topology, see e.g. [8, II.8.6] for details). Observe that CX∩S,
being a compact nullset, is a nowhere dense closed subset of S. It is therefore easy
to construct a sequence {Cn : n < ω} consisting of pairwise disjoint non-empty
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clopen subsets of S such that
1. Cn ∩ CX = ∅ for all n,
2.
⋃
n<ω Cn =

⋃
n<ω Cn ∪ Z.

Now put Sβ =
⋃
n<ω Cn ∪ Z (note that the measure is positive everywhere on this

set) and consider Xβ+1. Observe that

(Sβ × {1}) ∩ (πβ+1
α )−1[BX ] = Z × {1}.

Since Sβ × {1} is a clopen subset of Xβ+1, this implies that the Cantor-Bendixson
height of (πβ+1

α )−1[BX ] is at least as large as the Cantor-Bendixson height of Z
which is larger than the Cantor-Bendixson height of (ρβ+1

α )−1[BY ].
Since (πβ+1

α )−1[BX ] is a nullset, we can and shall demand that its preimage will
be avoided by the respective splitters at all later stages of the construction. That
this can indeed be achieved follows by a similar reasoning as the one above. This
means that for every γ ≥ β + 1 we obtain that (πγα)−1[BX ] is homeomorphic to
(πβ+1
α )−1[BX ], and hence is a set of “large” Cantor-Bendixson height.
Now if for some γ ≥ β+1, f : Xγ → Yγ is a homeomorphism making the diagram

Xγ

πγα
��

f
// Yγ

ργα
��

Xα

fαξ
// Yα

commute, then

f [(πγα)−1[BX ]] = (ργα)−1[BY ]

which is impossible since by construction the corresponding Cantor-Bendixson
heights do not match. This completes the construction.

Now assume that f : Xω1 → Yω1 is a homeomorphism, and let C ⊆ [ω, ω1) be
the closed and unbounded set promised by Shchepin’s Theorem (see §3). Let α be
the minumum of C, and let fα : Xα → Yα be the corresponding homeomorphism.
There exists ξ < ω1 such that fα = fαξ . Let β < ω1 be such that g(β) = 〈α, ξ〉. By
construction, for no γ ≥ β + 1 the diagram

Xγ

πγα

��

? //___ Yγ

ργα

��

Xα

fαξ
// Yα

can be completed. Since C is unbounded, Shchepin’s Theorem implies that it can
be completed beyond β + 1. So we arrive at the desired contradiction.

5. More non-homeomorphic Kunen spaces

Let us now sketch how to get 2ω1 many different Kunen spaces. In order to do
this we assume, besides CH, the existence of a Kurepa tree with 2ω1 many (cofinal)
paths. These exist, e.g., under the axiom ♦+, which holds in the constructible
universe ([4, Cor. II. 7.11]). A Kurepa tree is a tree of height ω1, with all levels
countable, but with at least ω2 many paths. These exist if and only if we have such
a tree T as a subtree of the binary tree of height ω1 (using Kurepa families as in
[4]), so assume we have such a Kurepa subtree T .
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Let Node(T ) denote the set of nodes of T , and for each β < ω1 let Tβ denote
level β of the tree. Fix a bijection g : ω1 → Node(T ) × Node(T ) × ω1 such that
g(β) = 〈s, t, ξ〉 implies s 6= t and ht(s) = ht(t) ≤ β. Also construct by CH an
enumeration { fs,tξ : Xs → Xt | ξ < ω1 } of all possible homeomorphisms between
spaces that are at the same level in T . We do this inductively: the induction starts
by taking all spaces at level ω to be 2ω, and choosing the enumerations. Each time
that we finished constructing another level of the tree we then choose enumerations
for those spaces, and so on.

The plan is to build inverse limits that follow the paths of T , such that the
limits over every path are non-homeomorphic. The basic idea will be the same as
before. We will show that by the above technique we can “kill” countably many
commutative diagrams at the same time: suppose that we are at level β in our tree,
and we want to construct level β+1 (as before there is no choice in the construction
at limit levels). Let g(β) = 〈s, t, ξ〉, and let f = fs,tξ . Define the sets A and B as
follows: A = { u ∈ Tβ : u extends s } and B = { u ∈ Tβ : u extends t }. We now
have to destroy all possible arrows from spaces with index in A to spaces with index
in B. Because T is a Kurepa tree, both sets are countable. If u ∈ Tβ \ (A ∪ B),
proceed with the construction of the next level (above u) as usual. For all pairs
with u ∈ A and v ∈ B we can find null sets Cu,v in Xv that the splitter there must
miss (these are the CY from before). Now we let the splitter in Xv miss the null set⋃
u∈A C

u,v. This can be done as before. For Xu (with u ∈ A) we find, exactly as
before, a splitter (inside the candidate splitter) that ensures that a certain inverse
image has a Cantor-Bendixson height that exceeds the Cantor-Bendixson height of
all the countably many sets Cu,v. In this way, if we keep on avoiding some null
sets later on, we have killed all possible commutative diagrams with f . The proof
of this is the same as before. This shows that all our 2ω1 many different paths all
yield non-homeomorphic inverse limits.

Note that essentially the same proof will give ω1 = 2ω many non-homeomorphic
Kunen L-spaces under CH: just use a subtree of the binary tree of length ω1 that
has countable levels, and ω1 many paths, e.g. take the tree that only has those
sequences with finitely many ones.

Also note that 2ω1 is the maximal number of non-homeomorphic Kunen spaces.
This a ZFC bound. This can be seen as follows: at every successor stage of the
construction we choose some compact subset of a compact metrisable space to split.
There are 2ω many choices possible for this, and the length of our inverse system
is ω1. This yields (2ω)ω1 = 2ω1 many possible limits. The following question is a
natural one:

Question. Does CH alone imply the existence of more than ω1 many non-homeo-
morphic Kunen spaces?
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[7] E. V. Ščepin, Functors and uncountable degrees of compacta, Uspekhi Mat. Nauk 36 (1981),
no. 3(219), 3–62, 255. MR 82k:54012

[8] Z. Semadeni, Banach spaces of continuous functions, volume I, Monografie Matematyczne,
vol. 55, PWN - Polish scientific publishers, Warsaw, 1971. 45:5730

Faculteit Wiskunde en Informatica, Vrije Universiteit, De Boelelaan 1081a, 1081 HV

Amsterdam, the Netherlands

E-mail address: hsbrand@cs.vu.nl

E-mail address: vanmill@cs.vu.nl

http://www.ams.org/mathscinet-getitem?mr=82h:54065
http://www.ams.org/mathscinet-getitem?mr=96c:54040
http://www.ams.org/mathscinet-getitem?mr=82k:54012

	1. Introduction
	2. Kunen's construction
	3. Shchepin's Theorem
	4. The construction
	5. More non-homeomorphic Kunen spaces
	References

