

TOPOLOGY AND ITS APPLICATIONS

Topology and its Applications 111 (2001) 191-193

www.elsevier.com/locate/topol

On Dow's solution of Bell's problem

Jan van Mill

Faculteit der Exacte Wetenschappen, Divisie Wiskunde en Informatica, Vrije Universiteit, De Boelelaan 1081a, 1081 HV Amsterdam, Netherlands

Received 15 December 1998; received in revised form 31 May 1999

Abstract

We prove under CH that if *B* is a Boolean algebra of size at most \mathfrak{c} then there is a subalgebra *C* of $\mathcal{P}(\omega)$ containing fin such that *C*/fin is isomorphic to *B* and *C* contains no infinite completely separated set. This is a generalization of a result of Dow. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: $\beta \omega$; Complete separated set

AMS classification: 54D35

1. Introduction

Murray Bell has raised the following problem: if a compact zero-dimensional space has a zero-set which maps onto $\beta\omega$, must the space map onto $\beta\omega$? It will be convenient to translate this problem into Boolean algebraic language. Let *B* be a Boolean algebra. A subset $A \subseteq B$ is *completely separated* if for each $C \subseteq A$ there exists $d \in B$ such that $c \leq d$ for all $c \in C$ and $d \wedge a = 0$ for all $a \in A \setminus C$. If $\mathcal{P}(\omega)$ can be embedded in *B* then obviously *B* contains an infinite completely separated subset. Simple examples show that the converse need not be true. Observe that Bell's question in Boolean algebraic language is the following one: if *I* is a countably generated ideal of a Boolean algebra *B*, and if B/I contains $\mathcal{P}(\omega)$, must *B* itself contain $\mathcal{P}(\omega)$? Dow [1] proved that the answer to this question is in the negative under CH. His example is quite complicated and the aim of this note is to present a stronger theorem with a much simpler proof.

Dow [1] also considered the following natural generalization of Bell's question: if I is a countably generated ideal of a Boolean algebra B, and if B/I contains $\mathcal{P}(\omega)$, must B itself contain an infinite completely separated subset? He answered this question in

E-mail address: vanmill@cs.vu.nl (J. van Mill).

^{0166-8641/01/}\$ – see front matter © 2001 Elsevier Science B.V. All rights reserved. PII: S0166-8641(99)00194-7

the affirmative under OCA, and raised the question whether in this result it suffices to just assume that B/I has an infinite completely separated subset. We leave this question unanswered.

2. The main result

192

All spaces under discussion are Tychonoff. If *X* is a space then X^* denotes $\beta X \setminus X$. If *X* is normal and *Y* is closed then we identify βY and the closure of *Y* in βX .

Theorem 2.1. (CH) There is a continuous surjection $f : \omega^* \to \omega^*$ such that for every nonempty clopen subset $C \subseteq \omega^*$, $f \upharpoonright C$ is not one-to-one.

Proof. Let *X* denote $\omega \times 2^{\omega}$ and let $\pi : X \to \omega$ be the projection. Since π is perfect, its Čech–Stone extension $\beta\pi$ maps X^* onto ω^* . Now let *C* be an arbitrary non-empty clopen subset of X^* . There is a clopen subset $C' \subseteq \beta X$ such that $C' \cap X^* = C$. There is an infinite subset $E \subseteq \omega$ such that $C' \cap (\{n\} \times 2^{\omega}) \neq \emptyset$ for every $n \in E$. Since 2^{ω} has no isolated points, we may pick for every $n \in E$ distinct points $x_n, y_n \in C' \cap (\{n\} \times 2^{\omega})$. Put $A = \{x_n : n \in E\}$ and $B = \{y_n : n \in E\}$, respectively.

Now pick an arbitrary point $p \in E^* \subseteq \omega^*$. Since $\pi[A] = E$ and $\pi[B] = E$ and $\beta\pi$ is closed, there exist points $u \in A^*$ and $v \in B^*$ with $\beta\pi(u) = \beta\pi(v) = p$. Since A and B have disjoint closures in βX and clearly $u, v \in C$ this shows that $\beta\pi \upharpoonright C$ is not one-to-one.

Now since by Parovičenko's Theorem [3] X^* and ω^* are homeomorphic under CH, we are done. \Box

We now show that this result easily implies our main result.

Theorem 2.2. (CH) If X is a compact space of weight at most c then there is a compactification $\gamma \omega$ of ω such that

- (1) $\gamma \omega \setminus \omega$ is homeomorphic to X.
- (2) For every $E \in [\omega]^{\omega}$ there exist disjoint $E', E'' \in [E]^{\omega}$ such that $\overline{E'} \cap \overline{E''} \neq \emptyset$.

Proof. It is well known that there exists a continuous surjection $\xi : \omega^* \to X$ under CH (Parovičenko [3]). Let $\eta : \omega^* \to X$ be the composition $\xi \circ f$, where f is the map in Theorem 2.1. The map η defines a compactification $\gamma \omega$ of ω for which the natural map $g : \beta \omega \to \gamma \omega$ has the property that $g \upharpoonright \omega^* = \eta$. (Formally, $\gamma \omega$ is the adjunction space $\beta \omega \cup_{\eta} X$, see Dugundji [2, 6.6.1].) We will prove that $\gamma \omega$ is as required. To this end, pick an arbitrary $E \in [\omega]^{\omega}$. Since $f \upharpoonright E^*$ is not one-to-one, there exist distinct points $x, y \in E^*$ such that f(x) = f(y). Pick disjoint sets $E', E'' \subseteq E$ with $x \in \overline{E'}$ and $y \in \overline{E''}$. Then in $\gamma \omega$, the point $\eta(x) = \eta(y)$ is in the closure of both E' and E''.

Now let X be a zero-dimensional compact space of weight c. Then the compactification $\gamma \omega$ we get from Theorem 2.2 is obviously zero-dimensional and its clopen algebra has no infinite completely separated subset. For from such a subset one would get an infinite

subset $E \subseteq \omega$ whose closure is βE and that is impossible by Theorem 2.2(2). So if we let X be $\beta \omega$ or $\beta \omega \setminus \omega$, or any compact zero-dimensional F-space of weight c, then the clopen algebra of $\gamma \omega \setminus \omega$ has an infinite completely separated subset but the clopen algebra of $\gamma \omega$ does not have such a subset.

Let $X = \omega^*$. The compactification $\gamma \omega$ from Theorem 2.2 with X as input has the amusing property that $\gamma \omega \setminus \omega$ is homeomorphic to ω^* yet for every $E \in [\omega]^{\omega}$ there exist disjoint $E', E'' \in [E]^{\omega}$ such that $\overline{E'} \cap \overline{E''} \neq \emptyset$.

References

- [1] A. Dow, Is $\mathcal{P}(\omega)$ a subalgebra?, Preprint, 1997.
- [2] J. Dugundji, Topology, Allyn and Bacon, Boston, MA, 1966.
- [3] I.I. Parovičenko, A universal bicompact of weight &, Soviet Math. Dokl. 4 (1963) 592-592.