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Abstract

We answer a question of Juhasz by constructing umieran example of a locally connected
continuum without nontrivial convergent sequences.
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1. Introduction

During the ninth Prague Topological Symposium, Juhasz asked whether there is a
locally connected continuum without nontrivial convergent sequences. This question
arose naturally in his investigation in [7] with Gerlits, Soukup, and Szentmikl6ssy on
characterizing continuity in terms of the preservation of compactness and connectedness.
The aim of this note is to answer this question in the affirmative under the Continuum
Hypothesis (abbreviatedH).

The standard example of a continuum not containing nontrivial convergent sequences is
BH\ H, theCech-Stone remainder BHf = [0, co). But this space is not locally connected.

Fedorchuk [6] constructed a consistent example of a compact space of cardinality
containing no nontrivial convergent sequences. See also van Douwen and Fleissner [4] for
a somewhat simpler construction under the Definable Forcing Axiom. These constructions
yield zero-dimensional spaces. As a consequence, our construction has to be somewhat
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different. As in [6,4], we ‘kill’ all possible nontrivial convergent sequences in a transfinite
process of lengtlv1. However, our ‘killing’ is done in the Hilbert cub@ = ]_[ff:l[—l, 1],
instead of the Cantor set. Specifically, we will construct ungder an inversews-
sequence of Hilbert cubes the inverse limit of which is the desired example. This
yields an infinite-dimensional locally connected continuum without nontrivial convergent
sequences. The construction works since the Hilbert cube is ‘sufficiently’ homogeneous.
Similar constructions can be performed in other ‘sufficiently’ homogeneous continua as
well.

For all undefined notions, see [5,10].

2. Theconstruction

There basically seem to be two ways to obtain compact spaces without nontrivial
convergent sequences. The first way is to prove that a certain known space does not have
nontrivial convergent sequences. An example of such a space is the one mentioned in the
introduction: gH \ H. This space surfaces at many places in the literature, and one can
prove that it has no convergent sequences for example by observing that it is an F-space.
The second way is to build in that the space one gets at the end of a certain process
has no nontrivial convergent sequences. This is usually done by a transfinite inverse limit
construction. An advantage of this procedure is that along the way one can try to build in
additional desirable properties. However, it often turns out that for these benefits one has
to pay a price. These constructions quite often demand complex bookkeeping and require
additional set theoretic assumptions.

Since there is no natural locally connected continuum for which one can hope to be

able to prove that it has no nontrivial convergent sequences, we are forced to try to use the
second method. Let us start with the Hilbert cybeThere are many convergent sequences
to be killed, so let us first think of the question how to kill a single sequence. To this end,
let S be convergent sequencedhand letx be its limit. We assume that¢ S. Consider
a spaceM which admits a continuous surjectight M — Q. We think of O as a step in
our inverse limit procedure, and as its successor step. We walitto ‘kill' the sequence
S U {x} in such a way that it cannot be resurrected in the steps to come. It is clear what
is needed for that. Let us split into two disjoint infinite subset§y and S1. If we can
constructM and f in such a way that the sefs 1[So] and f ~1[S1] have disjoint closures
in M, then we clearly achieved our goal. This can be done by ‘blowing up’ the pain®
to an interval, say/, and to letSp and.S1 converge to two different points of this interval.
The mapf : M — Q simply shrinks the interval to a single point (the point). Since
we want a locally connected continuum at the end of our prodésshould be a locally
connected continuum as well. If we can choddeto be homeomorphic t@ then the
construction can be continued by dealing within the same way.

That this can indeed be done rather easily, follows from the following considerations.
Write § = (x,), and consider, in the produ¢t x I, the sequence

) x4,0) (neven,
=1 e, 1) (n odd).



J. van Mill / Topology and its Applications 126 (2002) 273-280 275

In O x I shrink the interval/ = {x} x I to a single point. Bing’s Shrinking Criterion
yields that(Q x I)/J is homeomorphic taQ. Since Q is homogeneous with respect to
convergent sequences, there is a homeomorphisg — (Q x I)/J sending{x} onto
{J} and for everyn, x, to y,. This means that the spac@sx I and(Q x I)/J and the
natural decomposition ma@ x I — (Q x I)/J demonstrate that what we want can be
done.

This is unfortunately not the whole story since we want todiliconvergent sequences
in 0, and also all sequences that surface in the spaces that we will create in later steps of
the construction. We could try to kill all sequences at the same time, but then the resulting
space is out of control. So it is inevitable to aim for killing the sequences one by one. So
we have to ensure that at the end of our inductive process all sequences will be dealt with.
At stepa of the construction many sequences from stépsa will still be ‘alive’. So it
is unavoidable that sequences from the previous steps have to be pulled back. However, a
pulled back sequence from stgp< « does not need to be a sequence anymore since in
the intermediate steps betwegrand« it could have been changed considerably. So this
tells us that we should try to understand what the pulled back sets look like for otherwise
control is impossible. We will have to dig a little deeper for achieving that. Details can be
found in Section 3.

We will construct below for every < w1 a spaceM,, and for every8 < « a continuous
function f§ : M, — Mg such that, among other thing#, ~ Q and eactfg is a so-called
cell-like Z*-map. (Cell-like maps are monotone maps with certain additional properties.)
The inverse sequence will mentinuouswhich means that i is a limit ordinal thend,,
will be the inverse limit of the previou&s’s. The fact that the functions a&&*-maps will
ensure that at successor stages we are able to do our splitting in such a way that the new
space that we are creating is homeomaorphic to the Hilbert cube.

We will now perform the construction undeH. It is modulo the results in Section 3
very similar to known constructions in the literature (see, e.g., Kunen [9]).

We work in the cub&®?; for everya < w1, we identify 9% with

{x€0”: B>a—x3=0}.

Forevery 1< o < w1 let {Sg: & < w1} list all nontrivial convergent sequences@y that
do not contain their limits. For all, ¢ < w1 pick disjoint complementary infinite subsets
Ag‘ anng of Sg‘.

We shall construct for ¥ o < w1 a closed subspaadd, C Q0%. The space we are after
will be M, .

Lett:w1 — w1 x w1 be a surjection such thatB) = («, &) impliesa < 8.

Fora < B8 < wi let nff be the natural projection fron®? onto Q%. The following
conditions will be satisfied:

(A) M, ~ Q forevery 1< o < w1, and ifa < B thennaﬂ[Mﬁ] = M,. We put,of = nff i
Mg Mg — M,.

B) Ifag<p then,of *Mg — M, is a cell-likeZ*-map.

(©) If B <w1, T(B) = (@.§), andSg < M, then(pf ™) ~H[Ag] and (ol ™)~ B¢] have
disjoint closures in#+1,
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Observe that the construction is determined at all limit ordipaBy compactness and (A)
we must have

My, ={xeQ": Va<y)(nl(x)e M)}

Also, if (y,), is any strictly increasing sequence of ordinals wjith,” y then M, is
canonically homeomorphic to

VYn+1

I(im (MVn ’ an )n .

By Theorem 3.2 below this implies thaf, ~ Q and also thap;, is a cell-like Z*-map
for everyn. Sincey; can beanyordinal smaller thary, the same argument yields thalt

is a cell-like Z*-map foreverya < y. So in our construction we need only worry about
successor steps.

PutM; = Q'%, and let 1< B < w1 be arbitrary. We shall construsts 1 assuming that
Mg has been constructed. To this endzle®) = (o, £). We make the obvious identification
of 0f+1 with 0f x Q. If S¢ & M, then there is nothing to do. We then fix any element
q € Q, and put

Mpy1=Mp x {q}.

So assume thaﬁfg‘ C M,. By Theorem 3.3 there exists a cell-lik&-map f: 0 — Mg
such that

S TTALDL ) D]
have disjoint closures i®. Put

Mpi1={(f(x).x)e 0f x 0: x € 0}.

So Mgy1 is nothing but the graph of . Itis clear thatMg, 1 is as required.

Now putM = M,,,. Observe thaM is alocally connected continuum, being the inverse
limit of an inverse system of locally continua with monotone surjective bonding maps (see,
e.g., [5, 6.3.16 and 6.1.28]). Assume tlfais a nontrivial convergent sequence with its
limit x in M. SinceT U {x} is countable, there exists < w1 such tha’r,o/‘;’1 I (T U {x})
is one-to-one and hence a homeomorphism for ey&eey «. Pick & < w; such that
S¢ = P [T], and B > « such thatt (8) = (@, &). Then pgil[T U {x}] is a nontrivial

convergent sequence with its limit #g41 which is mapped by>5+1 onto S¢ with its
limit. But this is clearly in conflict with (C).

3. TheHilbert cube

A Hilbert cubeis a space homeomorphic . Let M< denote an arbitrary Hilbert
cube. A closed subset of M€ is a Z-setif for everye > 0 there is a continuous function
f: M2 — M2\ A which moves the points less thanlt is clear that a closed subset of a
Z-set is aZ-set. We list some other important propertiesZefets.
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(1) Every singleton subset af € is a Z-set.

(2) A countable union of-sets is aZ-set provided it is closed.

(3) A homeomorphism betweefrsets can be extended to a homeomorphisir &f.

(4) If X is compactand : X — M€ is continuous therf can be approximated arbitrarily
closely by an imbedding whose range ig set.

See [10, Chapter 6] for details.

Observe that by (1) and (2), every nontrivial convergent sequence with its limit is a
Z-setinM?.

A near homeomorphistretween compactd andY is a continuous surjectiofi: X —
Y which can be approximated arbitrarily closely by homeomorphisms. This means that for
everye > 0 there is a homeomorphisgn X — Y such that for every € X the distance
betweenf (x) andg(x) is less tharz.

A closed subsetA € M2 has trivial shape if it is contractible in any of its
neighborhoods. A continuous surjectighbetween Hilbert cubes/¢ and N¢ is cell-
like provided thatf ~1(g) has trivial shape for every € N2. The following fundamental
result is due to Chapman [3] (see also [10, Theorem 7.5.7]).

(5) Let f: M2 — N2 be cell-like, whereM 2 and N¢ are Hilbert cubes. Therf is a
near homeomorphism.

It is easy to see that iff : M¢ — N¢ is a near homeomorphism between Hilbert
cubes thenf is cell-like. So within the framework of Hilbert cubes the notions ‘near
homeomorphism’ and ‘cell-like’ are equivalent.

A continuous surjectiory between Hilbert cube3/¢ and N€ is called aZ*-map
provided that for every-setA € N2 the preimagef ~1[A]is aZ-setinM €.

Lemma 3.1. Let M€ and N2 be Hilbert cubes, and lef : M2 — N< be a continuous
surjection for which there is &-setA € M€ which contains all nondegenerate fibers of
f.Thenf is aZ*-map.

Proof. Let B € N be an arbitraryZ-set, and puBo = B \ f[A]. Write By as\Un2q En,
where eachk,, is compact. It follows from [10, Theorem 7.2.5] that for evaryhe set
fYE,]isaZ-setinM€. As a consequence,

fiBIC AU FUE]

n=1
is a countable union af-sets and hence&-set by (2). O

Theorem 3.2. Let (Q,,, f.)» be an inverse sequences of Hilbert cubes such that egery
is cell-like as well as &*-map. Then

(A) lim(Qy, fu)n is a Hilbert cube.
(B) The projectionf,>°:lim(Qy. fu)n — Qn is a cell-likeZ*-map for every:.
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Proof. It will be convenient to lefD, denote liM(Q,,, fi)n.
<«

By (5), every f, is a near homeomorphism. Hence we get (A) from Brown’s
Approximation Theorem for inverse limits in [2]. It follows from [10, Theorem 6.7.4] that
every projectionf,>° : Qo — Q, is a near homeomorphism, hence is cell-like.

For everyn let o, be an admissible metric fap,, which is bounded by 1. The formula

)
o(x,y)= Z 2_nQn(xm Yn)
n=1

defines an admissible metric f@. With respect to this metrig™ is a 2-*~Y-mapping
[10, Lemma 6.7.3].

For (B) it suffices to prove thaf™ is a Z*-map. To this end, led C Q; be aZ-set,
and lete > 0. Pickn € N so large that 2"~ < ¢. It follows that for everyx € Q, the
diameter of the fibe¢ £>°)~1(x) is less thar. An easy compactness argument gives us an
open covel/ of Q, such that for every/ € U we have that

diar‘r‘(fnoo)_l[U] <e. (%)

Let y > O be a Lebesgue number for this cover [10, Lemma 1.1.1]. Sfifeds a near
homeomorphism, there is a homeomorphisnQ. — Q, such that for every € O
we have

on (£, () < 3.

Observe that4,, = (fl")—l[A] is a Z-set in Q,. There consequently is a continuous
functioné: 9, — 0, \ A, which moves the points less thér;v. Now definen: Qs —
O by

n=g¢ to&o £

It is clear thatn[ Q] misses(ffo)—l[A]. In order to check that is a ‘small’ move,
pick an arbitrary element € Q. By constructiong, (x,, £(x;)) < %y. Sincen(x) =
0 L(E(xn)), clearlyo, (n(x),, &(xn)) < %y. We conclude thap, (n(x),, x,) < y. Pick an
elementU € U which contains bothy(x), andx,. By (%) it consequently follows that
o(n(x), x) < e, which is as required. O

Theorem 3.3. If (A,), is a relatively discrete sequence of closed subset® afuch

that (o2, A, is a Z-set then there are a Hilbert cub® and a continuous surjection
f:M — Q such that

(A) fisacell-likez*-map.
(B) The closures of the setg?®; £ ~1[A2,] and U2y f L[ A2,+1] are disjoint.
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Proof. Consider the subspace= ;- ; A, of 0, and the ‘remainderR = A\ |2 ; A,
Observe thaiR is compact since the sequengg,), is relatively discrete. LeT" denote
the productA x I; put

S=RxDU (UAZ,, x {0})u<UA2n+l x {1}).

n=1 n=0

ThensS is evidently a closed subspace®flLetz : R x I — R denote the projection. Itis
clear that the adjunction spas&J),; R is homeomorphicta (cf.,[11, p. 507]). By (4), any
constant functior§ — Q can be approximated by an imbedding whose rangedssat.

So we may assume without loss of generality thias a Z-subset of some Hilbert cube
M2 Now consider the spadeé = M < U,, R with natural decomposition mag. It is clear
that f is cell-like, each nondegenerate fiber fbeing an arc [10, Corollary 7.1.2]. We
will prove below thatN ~ Q. Once we know that, we also get by Lemma 3.1 tfias

a Z*-map. Observe that the projectian R x I — R is a hereditary shape equivalence.
So by a result of Kozlowski [8] (see also [1]), it follows thiltis anAR. SincesS is a Z-

set inM 2 it consequently follows from [10, Proposition 7.2.12] th&tS] ~ A is a Z-set

in N. But N \ f[S] is obviously a@-manifold, and consequently has the disjoint-cells
property. But this implies tha¥ has the disjoint-cells property, i.&V,~ Q by Toruhczyk’s
topological characterization @ in [12] (see also [10, Corollary 7.8.4]). So we conclude
that f[S] ~ A is a Z-set in the Hilbert cubev. By (3) there is a homeomorphism of
pairs(Q, A) = (N, f[S]). (There are several ways to arrive at the same conclusion.) This
homeomorphism may be chosen to be the ‘identity’ AT his shows that we are done by
Lemma 3.1 and the obvious fact that the sets

U4z x0)  [J Az x (1)

n=1 n=0

have disjoint closures iM2. 0O
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