
ISRAEL J O U R N A L  OF MATHEMATICS 1 3 3  (2003), 321-338 

ON THE CHARACTER AND r-WEIGHT OF 
HOMOGENEOUS COMPACTA 

BY 

JAN VAN MILL 

Faculty of Sciences, Division o? Mathematics and Computer Science 
Vrije Universiteit, De Boelelaan 1081 a, 1081 HV Amsterdam, The Netherlands 

e-mail: vanmill@cs.vu.nl 

A B S T R A C T  

Under GCH, k(X) _< ~(X) for every homogeneous compactum X. CH 
implies that a homogeneous compactum of countable ~r-weight is first 
countable. There is a compact space of countable 7r-weight and uncount- 
able character which is homogeneous under MA+-~CH, but not under 
CH. 

1. Introduction 

For all undefined notions, see Engelking [11], Kunen [19] and Juh~sz [16]. Recall 

that  x (X)  and ~r(X) denote the c h a r a c t e r  and r - w e i g h t  of X .  All spaces under 

discussion are Tychonoff. 

A space X is h o m o g e n e o u s  if for all x, y E X there is a homeomorphism 

f :  X --~ X such that  f ( x )  = y. Every topological group is clearly homogeneous. 

In this paper we are interested in the class of all homogeneous compacta. There 

are many known examples of second countable homogeneous compacta  (compact 

groups, Hilbert cube, Cantor set, Menger compacta,  spheres, etc.). The list of 

known homogeneous compacta  that  are not second countable is rather limited, 

however. See w for details. 

Our first contribution is to point out that  known results easily imply the 

following curious inequality: 
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THEOREM 1.1: Let X be a homogeneous compactum. Then 2 x(X) _< 2 "(x). 

(Observe that homogeneity is essential. If X =/3w, then ~(X) = r and 7r(X) = 

w.) 
There are two ingredients in the proof. The first one is the result of van 

Douwen [7] (see also [16, 2.38]) that IX] _< 2 "(X) for every homogeneous space X. 

The second ingredient is the classical Cech-Pospigil Theorem, see [16, 3.16], that  

if X is compact and if for some ~, X(x, X) ~ ~ for every x C X, then IX] >_ 2 ~. 

So to complete the proof, all one needs to observe is that the homogeneity of X 

clearly implies that all points in X have the same character, hence I X] _~ 2 x(X). 

(A similar result was proved by Hart and Kunen in [14, 2.5.1(2)]. They applied 

the Cech Pospi~il Theorem and Arhangel'ski~'s Theorem from [2] to conclude 

that if X is an infinite homogeneous compactum then IX] = 2<(x).) 

Theorem 1.1 has some interesting consequences. 

COROLLARY 1.2: Let X be a homogeneous compactum. Then x(X) < 2 ~(x). 

Simply apply Cantor's Theorem that 2 ~ > n for every cardinal ~. 

COROLLARY 1.3 (GCH): If X is a homogeneous compactum then x (X)  << 7r(X). 

This inequality is much more appealing than the one in Theorem 1.1. 

COROLLARY 1.4 (r < 2~1): Every homogeneous compactum of countable 7r- 

weight is first countable. 

The question naturally arises whether Corollaries 1.3 and 1.4 can be proved in 

ZFC alone. In the light of Corollary 1.4, our first result on this question is not 

very surprising. 

THEOREM 1.5 (MA): Let X be a homogeneous compactmn of countable 7r- 

weight. If X has weight less than r then X is first countable. 

This again follows easily from known results. Juhgsz [17, Theorem 5] proved 

that under MA+-~CH, if X is a countably compact space of weight less than r 

having a dense set of points of countable 7r-character, then X is somewhere first 

countable. So if X is moreover homogeneous then it must be first countable. 

In the light of this result, the following question is quite natural. Let X be a 

compact homogeneous space of countable 7r-weight. Assmne that  X has weight 

less than c. Does X have countable weight under MA? The answer to this 

question is in the negative. Let G be a dense subgroup of R of cardinality wl 

such that  1 C G. In the unit interval I, split every point g E G M (0, 1) in two 

distinct points g -  and g+. Order the set obtained in this way in the natural way, 
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where g -  precedes g+ if g is split. The ordered compact space that  we obtain 

by this procedure has weight wl, has countable ~r-weight, and is homogeneous by 

the method of van Douwen [8]. (This example is also in Hart  and Kunen [14] 

(next-to-last paragraph of w 

Theorem 1.5 raises the question what can be said about spaces of weight c. 

This is answered in our next result, which is our principle contribution. 

THEOREM 1.6: There is in 7FC a compact space with countable 7r-weight and 

character ~1 which is homogeneous under MA+~CH, but not under CH. 

So we conclude that  the existence of a non-first countable homogeneous com- 

pactum of countable 7r-weight is independent of ZFC. 

In the proof of Theorem 1.6 we make good use of recent results of Matveev [24]. 

I am indebted to Michael H r u ~ k  for bringing Matveev's  paper to my attention. 

2. Pre l iminar ies  

If X is a space then vX denotes its topology. 

Let X be a space. If x C X then ~(x, X) ,  t h e  c h a r a c t e r  o f  x in X,  is the 

minimum cardinality of a neighborhood base at x; the c h a r a c t e r  o f  X is 

x (X)  = s u p { x ( x , X ) :  x E X}. 

A 7r-basis of X is a collection H C TX \ {0}  such that  for every nonempty open 

set V C X there is a [; E H with U C_ V. The minimum cardinality of a ~r-basis 

of X is called the 7~-weight, 7r(X), of X. 

A continuous closed surjection f :  X -+ Y is i r r e d u c i b l e  if f[A] ~ Y for every 

proper closed subset of Y. Observe that  f has the following property: for every 

nonempty open subset U of X there is a nonempty open subset V of }" such that  

: - l[v]  c_ g. 
Let X and Y be spaces, and for certain x E X,  let f :  X \ { x }  -+ Y be a 

continuous function. The f - b o u n d a r y  OIY of Y is the set of all elements y E Y 

having the following property: for every neighborhood U of x in X and for every 

neighborhood V of y in Y we have U N f -  1 [V] ~ 0. 

If  A and B are sets then A c_* B means that  IA \ B[ < w. We say that  A is 

a p s e u d o - i n t e r s e c t i o n  for a family of sets J~ if A C_* F for every F E ~-. We 

also say that  a family of sets 5 ~ has the sfip (strong finite intersection property) 

if every nonempty finite subfamily has infinite intersection. As usual, we let p 

denote the minimum cardinality of a subfamily of infinite subsets of w with tile 

sfip which has no infinite pseudo-intersection. 
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If f ,  g �9 w ~ then f _<* g abbreviates the following statement: 

3 N  < wVn >_ N [ f ( n )  < g(n)]. 

The cardinal b is the minumum cardinality of an unbounded (with respect to _<*) 

subset of w ~. It is known that wl _< P < b < r It is also known by Bell [5] that  

MAa-centered(a) holds if and only if g < p. See van Douwen [9] and Vaughan [29] 

for proofs and more information on these and various other 'small' uncountable 

cardinals. 

We let C denote the Cantor set 2% We think of a point of C as a countably 

infinite sequence consisting of O's and l's. If t = i o i2 . . ,  iN is a finite sequence 

consisting of O's and l 's  and s = SoS1 . . .  �9 C, then t ^ s  denotes the sequence 

ioil " "  i~sosl  " .  

in C. A Cantor set is a space homeomorphic to C. For example, C ~ is a Cantor 

set. We use the standard Boolean group structure '+ '  on C. The neutral element 

of C will be denoted by e. 

For every i �9 I let X~ be a space. Consider the product X = YLex  x i .  It is 

convenient to introduce the following notation. If E C_ I then 

I l x i - +  I l x i  
iEl lEE 

denotes the projection. 

3. P r o o f  o f  T h e o r e m  1.6: p a r t  1 

In this section we will construct in ZFC a certain compact space X of countable 

~r-weight and character wl. Observe that by Corollary 1.4, X is not homogeneous 

under CH. But X is homogeneous under MA+-~CH, as will be shown in w 

For the description of the example, it is convenient to use the resolution method 

of Fedorchuk [12] (see also Watson [30]). This method allows for a more or less 

'concrete' description of the example, which turns out to be helpful in verifying 

the continuity of certain maps. 

Suppose that  X is a topological space and that  {Yx : x E X} are topological 

spaces and, for each x E X, fx: X \ { x }  -4 Yz is a continuous function. We 

topologize 

z = U{(x} x Yx:x �9 x }  
as follows. I f x  �9 X, Ux is an open neighborhood of x in X, and W C_ Y~ is open, 

then 

V~ O W = ({x} x W) U U{{x '}  x y~,:  x'  �9 v~ n y / l [ w ] } .  
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The collection 

(u~ | w :  (vx e rx ,  x ~ u~) a (w E ~Y.)} 

is an open basis for Z. Topologized in this way, Z is called the r e s o l u t i o n  of 

X at each point x E X into Yx by the mapping f , .  Let 7r0: Z - - +  X be the 

'projection'.  Then 7r0 is continuous by Watson [30, 3.1.35]. Observe that  for 

every basic open subset Ux | W of X we have 7r0[U~ | W] c_ U~. Also observe 

that  for every x E X the set {x} x Yx is a closed topological copy of Yx in Z. 

I t  is known and easy to prove that  if X is compact,  and all Y, are compact,  

then so is the resolution. In addition, if OsY,  = Y~ for every x E X then 

7r0: Z --~ X is irreducible. See Fedochuk [12] and Watson [30] for details. 

I t  is convenient to describe the topology of a resolution in terms of neighbor- 

hood bases. 

LEMMA 3.1: Suppose that Z is the resolution of X at each point x E X into Yr 

by the mapping f~. Suppose that (x, y> E Z, that Lt is an open neighborhood 

base at x in X and W is an open neighborhood base at y in Yx with Yx E W. 

Then for every neighborhood 0 of <x, y> in Z there are elements U~ E 3/ and 

W E W such that (x,y> E Ux Q W C_ O. 

Proo~ Suppose that  a E X,  Ea is an open neighborhood of a in X,  and V C_ Ya 

is open such that  

(x,y) E Ea | V C_ O. 

If x = a then there is nothing to prove. Simply observe that  if Ux E 3/ is such 

that  U x C E a a n d W E W i s s u c h t h a t y E W _ C V ,  then (x,y)  E U x |  

So assume that  x 5~ a. Then x E Ea M f~I[V]. By continuity of fa, the set 

Fx = E~ fq f a  I[V] is an open neighborhood of x. Let Ux E L/ be such that  

Ux c_ F~. We claim that  (x,y} E U x G Y x  C_ E ~ Q V .  To this end, take an 

arbitrary element (p,q} E Ux Q ]Ix. Since p E Ux C Fx = Ea N f~l[V] it follows 

that  p ~ a, and hence (p, q) E Ea | V, as required. I 

Let K denote the 'uncountable'  torus T ~1. Here T denotes the circle group. 

Since T is Abelian, we use additive notation. This group is monothetic by Hewitt  

and Ross [15, Corollary 25.15], i.e., there is an element d E K such that  the 

subgroup generated by {d} is dense in K.  Put  dn = (n + 1) �9 d for n < w. I t  is 

easy to see that  

D = {dn : n < w} 

is dense in K.  
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Our example X is C with each point replaced by a copy of K.  To ensure 

homogeneity under additional axioms, this has to be done in a uniform way. 

For every n < w let 

Cn = {x e C:  (xi = 0 if i < n) & (x n = 1)}. 

Hence Co = {x E C : x0 = 1}. It  is clear that  every Cn is clopen, that  CnMCm = 0 

if n r m and that  U,~<~ Cn = C \{e} .  Define f :  C \ {e}  -+ K as follows: 

f ( x ) = d n  ~ x E C ~ .  

It  is clear that  f is continuous, and that  OIK = K .  To see this, simply observe 

that  every neighborhood of e contains all but finitely many C~'s, and every 

nonempty open subset of K contains infinitely many d's. Now for every x E C, 

let Kx = K,  and define fx: C \ { x }  --+ h'x by 

S (y) = f ( x + y ) .  

Let X be the resolution of C at each point x G C into Kx by the mapping f~. 

By the above, X is a compact space and the standard mapping rr: X -+ C is 

a continuous, irreducible surjection. Hence 7r(X) = w. Since T ~1 embeds into 

X,  Lemma 3.1 implies that  )~(X) = wl. It  therefore suffices to prove that  X is 

homogeneous under MA+-~CH. 

It  will be convenient to identify X and C • K as sets. One should be a 

little careful with this identification since the resolution topology on X does not 

coincide with the product topology on C • K.  Observe that  ~r0 is nothing but 

the projection C • K --+ C. So in the resolution topology, the projection onto 

the first coordinate is continuous. The projection onto the second coordinate is 

definitely not continuous. 

To prove homogeneity, we consider two types of actions on X.  The first type 

will be described here. We will postpone the description of the second type 

to w Our aim here is to construct for every translation x ~ a+x of C a 

homeomorphism Ta: X --+ X such that  the diagram 

T, 
X - X  

C x~.a+~x C 

commutes. To this end, for every a E C define Ta: X -+ X in the obvious way 

by: 
Ta(<x, y ) )  = <a+x, y>. 



Vol. 133, 2003 CHARACTER AND 7r-WEIGHT OF HOMOGENEOUS COMPACTA 327 

It is clear that Ta is a well-defined bijection, and that it makes our diagram 

commutative. Observe that T~ is nothing but the product of the translation 

x ~-+ a+x and the identity on the second factor of X. 

Since all our groups are Abelian, we use additive notation. This is slightly 

confusing in the proof of the next result, since the group operation on C is 

Boolean and so for a given x the notation does not tell us whether we think 

of x or its inverse - x .  The proof definitely looks more natural, when written 

down in multiplicative notation. Since the proof is simple anyway, we will not 

bother doing that. 

LEMMA 3.2: The function To is a homeomorphism for every a E C. 

Proo~ Since Ta o Ta is the identity on X, it suffices to verify continuity. To this 

end, let p E C, Up an open neighborhood of p in C, and W an open subset of K. 

We claim that, T~-I[up ~.~ W] is open in X. Put  q = a+p and Eq = a+Up. Then 

Eq is an open neighborhood of q. We claim that T~-I[Up G W] = Eq | W, which 

clearly suffices. 

To prove this, take an arbitrary element (u, v) E T~ -1 [UpGW]. Then (a+u, v) E 

Up | W and so a+u E Up, i.e., u E a+Up = Eq. This means that Eq is also a 

neighborhood of u. First assume that a+u = p. Then u -- q and (p,v) = 

(a+u,v)  E U p • W  gives us that v E W. Hence indeed (u,v) E E q |  So 

assume that a+u ~ p. Then (a+u, v) E Up | W implies a+u E Up n fpl[W]. 

Notice that 

W ~ fp(a+u) = ](p + a+u) = f(q+u) = fq(U). 

Since u E Eq and u r q this yields (u, v) E Eq Q W, as required. 

So we proved that Tg-~[Up 0 W] C_ Eq Q W. Since there was nothing specific 

about a and p, we also implicitly proved that Td-l[Eq | W] C_ Up | W, i.e., 

Eq 0 W C Ta[V p G W] --~ z~l[Up Q W]. 

So we are done. I 

Let 0: K --+ K be the translation 0(x) = d+x. 

For the second type of action on X, which will be described in w we need 

that 'many'  clopen subsets of X are homeomorphic. All we need is formulated 

and proved in the next result. 

LEMMA 3.3: For every n < w, 7rol[Cn] ~ X. 
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Proof: Define a homeomorphism ~: C - )  C~ by 

~(x) = 000 . . -0  l ^x .  

nX 

We claim that  the function ~o: X --+ 7rol[Cn] defined by 

~((x, y)) = (~(x),.n+~(y)) 

is a homeomorphism. I t  is clearly a bijection, so by compactness it suffices to 

verify continuity. To this end, let (a, b) �9 7ro1[C~] be an arbitrarily chosen point. 

Consider an open neighborhood Ua of a in Cn, and a nonempty open set W in 

K.  By Lemma 3.1, it suffices to prove that  ~p-a[U,~| is open. Let x = ~-~(a) 

and V~: = ~-l[Ua]. Then a = 0 0 . . . 0 1 ^ x  and Vx is an open neighborhood of x. 

We claim that  

Y x | ~-(n+l) [w]  : r | W], 

which clearly suffices. 

To prove this, pick an arbi trary element (u, v) �9 X.  Suppose first tha t  u = x. 

Then ~(u) = a, hence on the one hand 

(u.v) �9 y~ |  ,~ v �9 o-(=+~)[w] , ,  o"+~(v) �9 w. 

while on the other hand 

(U,V) �9 ~P-I[ua| r (a,~n+l(v)) E U a e W  r f]n+l(v) E W. 

So if u = x then there is nothing to prove. We may therefore assume without loss 

of generality that  u ~ x, hence u+x ~ e. Let m < w be such that  u+x ECm.  

Now observe that  

(u, v) e v= | . -(=+l)[w] ,~ ,, �9 v~ n y;-~[,1-<=+~)[w]] 

U E gx ~ fx(U) �9 ~-(n+l)[w] 

r U E Yx ~5 f(x3c-u) E ~]-(n+l)[IV] 

r u E V~ & dm E ~/-(n+l)[W] 

r u E V~ & dm+~+l E W. 
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Notice that  since u r x we have {(u) r a. So 

(~,v) �9 ~-l[v~ |  ,~ (~(~),~n+l(~)) �9 u~| 

r ~(u) �9 Ua M f a l [ W ]  

u �9 v~ & f ~ ( o o . . . o 1 % )  �9 W 

r u �9 V~ & f ( 0 0 . . . 0 1 ~ x  + 0 0 . . . 0 1 ~ u )  �9 W 

r u �9 Vx & f ( ~ ~ ( x - t - u ) )  �9 W. 

(n+ l ) •  

Since 

x+u E Cm 

we conclude that  

( n + l ) x  

(U,V) E ~-I[UaQ W] ~ uE Vx ~5 dm+n+l C W, 

which means that  we are done. I 

Consider two 'blown-up points '  {y} • K and {z} • K of X. If x = z+y then 

clearly 

Tx[{y} • K] = {z} • A. 

So since Tx is a homeomorphism, for proving homogeneity it suffices to prove that  

elements of X with the same first coordinates can be homeomorphed onto each 

other. This would be simple if the product of a homeomorphism on the second 

factor of X and the identity on the first factor of X would be a homeomorphism 

of X. But it is easy to see that  this need not be the case. So we have to think of 

something else and set theory enters the picture. 

4. M a t v e e v ' s  T h e o r e m  e x t e n d e d  a b i t  

The following interesting result was recently proved by Matveev [24]: 

THEOREM 4.1: Let ~ < p. Then alI compactifications of w with remainder 

homeomorphic to 2" are homeomorphic. 

We need the permutat ions on w that  are guaranteed by this result for the 

second type of action on X.  But in order to do that,  we first have to generalize 

the theorem a bit. This will be done in our next result. The proof is based on 

the main idea of Matveev in [24]. 
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THEOREM 4.2: Le t  aw and bw be compact i f ica t ions  o f T .  A s s u m e  tha t  

(1) there is a re tract ion  r: aw -~ aw \ co, 

(2) there is a re tract ion  s: bco -+ bw \ co, 

(3) f :  aw \ w --+ bco \ ~ is a h o m e o m o r p h i s m .  

I f  the  weight  o f  aw \ w is less than  p, then  f can be ex t ended  to a h o m e o m o r -  

p h i s m  f :  aw --+ bco. 

So the theorem simply says tha t  there is a permuta t ion  7r: w --+ w such tha t  

f -- f U 7r is a homeomorphism,  

Proo~  Let n < p be the weight of aw \ co. The sets A = r[co] and B = s[w] are 

countable. So we may pick an open base b / =  {Ua,o : a < n} for aw \ w such 

tha t  for every a < n, 

(Ua,o \ Ua,o) n ( A u / - I [ B ] )  - -  q}. 

For a < ~, put  Ua,1 

Observe tha t  

( r- l [Ua,o]  nw) u (r- l[Ua,1]  n ~ )  = ~, 

and 

(s-~[Va,o] nw) u (s - l [Va4]  n~) = w, 

For n < co, let fn:  g --+ 2 be defined by: 

m 

= (aT \ w ) \  Us,o, Va,o = f[Ua,o] and Va,1 = f[U~,l].  

(r-~[U~.o] n ~) n ( r - l [ u a 4 ]  n ~) : 0, 

(8-1[ya,o] n co)n (s-l[Ya,1] n co) = 0. 

In(a)  = 0 ~ - ~  r(n) ~ Ua,o. 

Observe tha t  if fn(O~) = 1 then r (n )  E Ua,1. Consider the collection 

{Va,:o(a) : a < ~}. 

This is a collection of open subsets of bco \ co, each element of which contains 

f ( r ( n ) ) .  As a consequence, 

{S-I[Va,s.(a)] n co : ~ < ~} 

has the sfip, and hence has an infinite pseudo-intersection Hn by ~ < p. For each 

c~ < ~, define ha:  w --+ co, as follows: 

h a ( n )  = 1 + max(Ha  \ s-l[Va,/~(a)]).  
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So each element  m G Hn with m >_ h~,(n) belongs to s-i[Va,i~(~)] M co. Since 

< p _< b, there is a function go: w -+ w such tha t  ha _<* go for every a < n. 

Since each H~ is infinite, there is a str ict ly increasing function ~ro: w ~ co such 

tha t  go _< ~ro and fro(n) 6 Hn for every n. 

CLAIM 1: For every a < ~ and i < 2, 7ro[r-:[Ua,i] Mco] C_* 8-1[Va,i] Aal. 

Let a < n and i < 2 be arbi t rary.  Let N < w be such tha t  ha(n)  <_ go(n) for 

every n > N.  Take an a rb i t r a ry  n _> N with n C r-t[Ua,i]Mco. Then  ~r0(n) E H ,  

and rr0(n) _> ha(n) .  Hence, by construct ion,  fro(n) e s - l [ v a # ]  N co. 

By a complete ly  analogous reasoning, one obtains  an injection 7r:: co --+ w such 

that:  

CLAIM 2: For every a < n and i < 2, rrl[S-:[Va,i] nco] C_* r - l [ u a # ]  rico. 

By the proof  of the Can to r -Berns t e in  Theorem,  there are par t i t ions  of co into 

the sets M:  and M2, and into the sets N1 and N2, such t ha t  7to[M1] = N1 and 

rrt[N2] = M2. Define the pe rmuta t ion  7r: co --+ w by 

= {  o(n) (n �9 M1), 
rr{-:(n) (n �9 M2). 

By combining Cla ims 1 and 2, we get: 

CLAIM 3: For every o~ < ~ and i < 2, 7r[r-:[Ua,i] Aw] --* s-:[l/a,i] Mco. 

I t  now suffices to prove the following: 

CLAIM 4: f = f U rr: aco --+ bco is a homeomorphism.  

By compactness  it suffices to prove tha t  f is continuous. To this end, let V be 

a nonempty  open subset  of bw. We :nay assume wi thout  loss of generali ty t ha t  

V C/(bw \ co) r 0. Consider f - l [ V ] .  We need to prove t ha t  it is a neighborhood 

of an arbi t rar i ly  chosen point  x �9 f - l [ V ]  \ co. Since f is a homeomorph i sm,  

W -- f - : [ V  N ( b w \ w ) ]  is a neighborhood of x in a w \ w .  Pick c~ < ~ such 

tha t  x �9 U~,o C_ U~,o C_ W, and consider the set V~,o = f[U~,o]. Observe 

tha t  f ( x )  �9 f[U~,o] C_ f[U~,o] C V. We claim tha t  E = s-l[V~,o] \ V is finite. 

Str iving for a contradict ion,  assume otherwise,  and let p �9 bw \ co be a limit 

point  of E .  Since s- l [V~,l]  is open and misses s-l[V~,o], it follows tha t  p r  

V~,I, hence p �9 V~,o _C V. Hence V is a ne ighborhood of p, and consequently 

intersects E .  This  is a contradict ion.  By Cla im 3, we therefore conclude tha t  

r-I[U~,o] \ f - I [ V ]  is a finite subset  of co, and so is a clopen subset  of aco. Hence 

f-I[v] is indeed a neighborhood of x. I 
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Remark  4.3: The existence of the retractions r and s is essential in Theo- 

rem 4.2. From a Hausdorff gap, it is possible to construct a compactification 

~/w of w containing a point p E ~/w \ w such that  ~/w \ { p }  is not normal, while 

~/w \ ( w  U {p}) is the union of two disjoint copies of Wl with the order topology. 

See van Douwen [6] for details. I t  is not difficult to prove that  there is a com- 

pactification aw of w such that  aw \ w contains a point q such that  aw \ (w U {q}) 

is a copy of wl with the order topology. I t  is easy to see that  aw \ {q}  is normal. 

Hence, if we consider the topological sum of two copies of aw with the points cor- 

responding to q identified to a single point, then one obtains a compactification 

bw of w such that  ~w \ w ~ bw \ w, while "yw and bw are not homeomorphic. 

There are quite a few nontrivial compactifications of w to which Theorem 4.2 

can be applied. We are particularly interested in the case of compactifica- 

tions whose remainders are products of second countable compacta.  A result of 

Arhangel'skiY, Chandler, Faulkner and Vipera [4, Theorem 3.3] implies that  all 

such compactifications are 'good'  for us. For completeness sake, we will present 

a short and elementary proof of a special case of their result (all of Theorem 3.2 

in [4] can be proved by a slightly more complicated argument).  

PROPOSITION 4.4: Let  7w be a compactif ication o f  w. I l K  is a second countable 

compac tum,  and f :  ~/w \ w -~ K is continuous, then f can be ex tended  to a 

continuous function ]: q,w -+ K .  

Proof'. We may assume that  K is a subspace of the Hilbert cube Q. Let Q be 

an admissible metric for Q. The function ] can be extended to a continuous 

function g: ~/w --~ Q. For each n < w, let ~(n) E K be such that  

K )  = 

We claim that  ] = f U ~ :  7w --~ K is continuous. To this end, let U C_ K 

be open. We have to prove that  ] - I [ U ]  is open in 7w. To this end, pick an 

arbitrary element x E (~/w \ w) M ] - I [ u ] ,  and pick 6 > 0 such that  the open ball 

B with center f ( x )  and radius 26 in Q has the property that  B M K c_ U. Let 

B '  be the open ball with center f ( x )  and radius 6 in Q. Then V = g - l [B ' ]  is 

an open neighborhood of x in ~w. We claim that  V C_ ] - I [U] .  To prove this, 

take an arbi trary element n E V M w. Then g(n) E B ' ,  hence Q(g(n ) ,K)  <_ 

Q(g(n), f ( x ) )  < 6. As a consequence, Q(g(n),~(n)) < 6, so ~( f ( x ) ,  ~(n)) < 26, 

i.e., ~(n) E B M K C_ U. 1 

So we clearly have: 
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COROLLARY 4.5: Let 7w be a compacti~cation of w such that "yw \ w is a product 

of second co~mtable compacta. Then 7w \ w is a retract of Tw. 

5. P r o o f  o f  T h e o r e m  1.6: p a r t  2 

Let U be the collection of all clopen neighborhoods Ue of e E C having the 

property that  for every n < w, either Cn C_ Ue or Cn M Ue = O. It  is clear that  U 

is a neighborhood base at e. 

Now take any two elements x, y E K and consider the points (e, x) and (e, y) 

of X.  As observed in w all we need to do is to prove that  these points can be 

homeomorphed onto each other. We aim at applying Theorem 4.2. From now 

on, assume that  Wl < p. This is true, for example, under MA+~CH. 

For every n < w, pick an arbi trary element Xn E Ca, and consider the point 

Pn : (Xn, f(Xn)) = (Xn, dn} e X .  

Clearly, p~ E rol[Cn].  Put  E = {Pn : n < w} and notice that  E is a discrete 

subset of X. 

LEMMA 5.1: E---- E U ( { e }  • K) .  

Proof." If  {u, v) E E \ E then clearly u = e. Conversely, consider a point of 

the form {e,v), where v E K.  We aim at proving that  every neighborhood of 

{e, v) meets E.  By Lemma 3.1, it suffices to consider a neighborhood of the form 

Ue | W,  where U~ E H and W is an open neighborhood of v in K.  Since D 

is dense in K ,  there are infinitely many m with dm E W M D. Since (X•)n<w 

converges to e, we may pick one of those m's  with Xm E Ur Since f (Xm) = d,~, 

we have xm E f - l [ W ] ,  i.e., 

p m =  (xm, S(Xm)) = (Xm, din) E Ue | W. 

So U~ | W indeed meets E. 1 

Let f :  {e} • /x" --+ {e} • K be a homeomorphism with f ((e,  x)) = {e, y). 

Since K is a product of second countable compaeta,  {e} x K is a retract  of 

E by Corollary 4.5. By Theorem 4.2 there consequently is a homeomorphism 

f :  E ~ E which extends f .  So there is a permutat ion T: E ~ E such that  

f = f U r .  If m, m '  < w, let ~m,m': 7rol[Cm] -+ 7fol[Cm '] be any homeomorphism 

(Lemma 3.3). Define F: X -+ X by the following formula: 

ICe ,  v)) = e), 
F ( ( u , v ) ) =  ~m.m,((u,v)) ( u E C m . r ( p m ) = p . ~ , ) .  
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It is clear that F is a bijection. We claim that F is a homeomorphism. For this, 

it suffices to check the continuity of F at the points of {e} • K. 

LEMMA 5.2: Let Ue E bt, W C K open, and m < w. 
(1) Xr~o~[Cm] n (Ue | W) # 0 then ~o1[C~] C U~ | W. 
(2) XfTro~[Cm] n F-~[U~ | W] # 0 then 7rol[Cm] C F-I[Ue @ W]. 

Proof For (1), take an arbitrary element (u,v} E 7rol[Cm] n (ue | W). Then 

u e Cm n u~ n / / - l [ w ]  = c ~  nue n/-l[w]. 

So Cm C_ Ur and f(u) E W. Since f is constant on Cm, we even have S[Cm] c_ W. 
Hence if (u', v') is an arbitrary element in 7rol[Cm] then u' E U~ N f-l[W], i.e., 

(u', v') ~ U~ | w .  
For (2), let r(pm) = Pro', and pick an arbitrary element 

(u, v) E 7rol[Cm] n F-'[U~ | W]. 

Then F((u,v)) E 7rol[Cm ,] N (U~ | W). Hence by (1), 

F [ ~ [ C ~ ] ]  = ~1[C~,]  c U~ | W. . 

Take an arbitrary element (e, v) E {e} • K,  let U~ E L/be  arbitrary, and let 

W C_ K be an open neighborhood ofv  in K.  We claim that F-I[Ue| is open. 

To prove this, pick an arbitrary element (a, b) E F-I[U~ | W]. Assume first 

that a r e, say a E Cm for some m < w. Then by Lemma 5.2(2), rCol[Cm] is 

a neighborhood of (a, b) which is contained in F-x[U~ | W]. So we are done in 

this case. Assume next that a = e. Hence (e, b) E F- l [Ue  | W]. Since F and ] 

both extend f ,  we have 

]((e, b>) e u e  | w. 

Since f is a homeomorphism, by Lemma 3.1 we may pick Ve E / t  and a nonempty 

open set H in K such that  

(.) (e,b) E (Ve | H)  N E  C_ f - l [ u  e | W]. 

We claim that 

Ve | H C F-I[Ue | W], 

which clearly suffices. To this end, take an arbitrary element (u, v) EVe | H. We 

may assume that u r e, say u ECm for m < w. By Lemma 5.2(1), ~rol[Cm] C_ 
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Ve Q H. This implies that Prn C Vr | H. Let r(pm) = Pro'. Observe that 

Pro, E U~ | W by (*); hence 

F[Troi[Cm]] 71 (ie @ W) - ~  7rol[Cm ,] ['1 (U e C) W) r ~. 

So (u,v) e rrol[Cm] C F-I[U~ Q W] by Lemma 5.2(2). 

6. E x a m p l e s  o f  h o m o g e n e o u s  compacta 

There is a variety of homogeneous compacta. They seem to fall into two sub- 

classes. The first subclass is the class of homogeneous compacta which admit 

an algebraic structure of some sort. The second subclass consists of products 

of first countable compacta which are homogeneous. An important example is 

the Alexandroff double arrow line, [1, Ex. A7], and its generalizations by van 

Douwen [8]. These spaces do not admit the structure of a topological group, 

have countable 7r-weight, are first countable but not second countable. Other ex- 

amples include the ordered compacta of Mauriee [25, 26]. Some of his spaces have 

cellularity c. Yet another example is the non-metrizable homogeneous Eberlein 

compact space constructed in [27]. 

Jensen pointed out that  it is easy to construct homogeneous compact Souslin 

lines from ~. The square of such a space is an example of a compact homogeneous 

space with uncountable cellularity. A related result is Kunen's recent construc- 

tion under CH of a compact L-space which is even a right topological group, [21] 

(he asks whether there can be a homogeneous Souslin line which admits the struc- 

ture of a right topological group). The square of his space satisfies the countable 

chain condition. Another result which generates homogeneous eompacta is due 

to Dow and Pearl [10]: they proved, extending a result of Lawrence [23], that the 

infinite power of any zero-dimensional first countable space is homogeneous. 

There are many unsolved questions on homogeneous eompacta. To illustrate 

our ignorance, let us point out that it is not known whether every compact 

homogeneous space has cellularity at most c (this is van Douwen's Problem), 

and whether every homogeneous compactum contains a nontrivial convergent 

sequence (this is W. Rudin's Problem). Observe that a counterexample to one of 

these questions is not first countable and is not a topological group. To see this, 

simply notice that an infinite compact group satisfies the countable chain condi- 

tion and contains a nontrivial convergent sequence. Both statements follow easily 

from Kuz'minov's Theorem in [22] that every compact group is dyadic. Also, 

every first countable compactum has cardinality at most c by Arhangel'ski~ [2] 

and hence has cellularity at most c. It is easy to see that an arbitrary product of 
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compact topological groups and first countable compacta does not yield a coun- 

terexample for basically the same reasons, cf., [16, p. 107]. So a counterexample, 

if it exists, must be something completely different. 

For more information and questions on homogeneous compacta, see, e.g., 

Arhangel'ski~ [3] and Kunen [20]. 

The proof that  our space X is not homogeneous under CH (or even under 

c < 2 ~1) is based on a very simple cardinality argument (see w There are 

many other nonhomogeneity results in the literature which in essence boil down to 

cardinality considerations. Frol~'s Theorem in [13] that N* is not homogeneous 

is such an example. The proofs of these results were sometimes replaced by better 

proofs, presenting explicit topological properties shared by some but not all points 

of the spaces under consideration. In the case of Frol~'s Theorem this was done 

by Kunen in [18]: he showed that some but not all points in N* are weak P- 

points. Van Douwen called such arguments 'honest' nonhomogeneity proofs. For 

the space X constructed in this paper, it seems impossible to present an 'honest' 

proof of its nonhomogeneity in some model of set theory. Simply observe that  

it is homogeneous under MA+-~CH. This is a rather curious phenomenon which 

deserves further study. 
In private conversation, Kunen remarked that it is not clear whether compact 

right topological group implies anything interesting which does not follow from 
just compact homogeneous. As he observed, not every compact homogeneous 

space is a right topological group. The Hilbert cube is homogeneous by Keller's 

Theorem but is not a right topological group since it has the fixed point property 

(see [28] for details). In addition, there is an example of a compact right topolog- 
ical group under <> which is first countable and fails to have the countable chain 

condition (the square of the space in Kunen [21, Theorem 6.2]). So compact 

right topological groups need not be dyadic and first countable compact right 

topological groups need not be metrizable. 
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