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Note on function spaces with the topology of pointwise convergence

By

Jan van Mill, Jan Pelant and Roman Pol

Abstract. The note contains two examples of function spaces Cp(X) endowed with the
pointwise topology. The first example is Cp(M), M being a planar continuum, such that Cp(M)m

is uniformly homeomorphic to Cp(M)n if and only if m = n. This strengthens earlier results con-
cerning linear homeomorphisms. The second example is a non-Lindelöf function space Cp(X),
where X is a monolithic perfectly normal compact space all linearly orderable closed subspaces of
which are metrizable. This example is obtained under the additional set-theoretical axiom ♦. This
solves a problem of Arhangel′skiı̆.

1. Introduction. For a space X we let Cp(X) denote the space of continuous real-
valued functions on X endowed with the topology of pointwise convergence. The natural
uniform structure on Cp(X) is the one determined by the pseudonorms

‖f − g‖K = sup{|f (x) − g(x)| : x ∈ K},(1)

where K is an arbitrary finite subset of X. A bijection �: Cp(X) −→ Cp(Y ) is a uniform
homeomorphism if both � and �−1 are uniformly continuous with respect to their natural
uniform structures. A spaceX is monolithic if for every subsetAofX we have nw(A) � |A|.
Here nw stands for network weight. We refer the reader to the book [3] and the articles [2]
and [1, §3] by Arhangel′skiı̆, and to the article [11] by Marciszewski for a comprehensive
treatment of these topics.

The aim of this note is to prove the following theorems.

Theorem 1.1. There exists an infinite compact metrizable space M such that Cp(M)n

is uniformly homeomorphic to Cp(M)m if and only if n = m.
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This strengthens considerably earlier results in [14] dealing with linear homeomorphisms.
The next result provides a negative answer to Problem 45 in Arhangel′skiı̆ [2].

Theorem 1.2 (♦). There exists a monolithic perfectly normal compact space X every
linearly orderable compact subspace of which is metrizable while Cp(X) is not Lindelöf.

The space Cp(M)k can be identified with the function space Cp(M ⊕ . . . ⊕ M), where
M ⊕ . . . ⊕ M stands for the union of k disjoint copies of M .

Notice that for an infinite compact metrizable space K , the Banach space C(K) of
continuous functions on K is isomorphic to the Banach space C(K⊕K); hence the function
space C(K) endowed with the norm topology or the weak topology is linearly, hence
uniformly, homeomorphic to its own square. To see that this is true, first observe that by the
Milutin Theorem all the Banach spaces of the form C(K) are linearly homeomorphic, where
K is any uncountable compact metrizable space. If K is a countably infinite compact space
then it is homeomorphic to an ordered space of ordinals. So for countable K the Bessaga-
Pełczyński Theorem describing the isomorphism classes of spaces of continuous functions
on countable ordinals applies.

Actually, we shall show that the assertion of Theorem 1.1 is satisfied by any Cook contin-
uum M . A Cook continuum is a non-trivial metrizable continuum M having the property
that for every subcontinuum H , every continuous function f : H −→ M is either the iden-
tity or is constant. The first Cook continuum was constructed by Cook [4, Theorem 8].
Maćkowiak [10, Corollary 6.2] constructed a planar (in fact, chainable) Cook continuum.
It was demonstrated in [14, §4] that for any Cook continuum M , Cp(M) is not linearly
homeomorphic to its square. To obtain the stronger result concerning uniform homeomor-
phisms we shall combine the construction in [14] and a theorem of Gul’ko (explained in §2)
with the Borsuk-Ulam Antipodal Theorem. We do not know if Cp(M) and Cp(M)×Cp(M)

are homeomorphic.
The question which spaces X have the property that Cp(X) is Lindelöf is still not quite

solved, although some interesting partial results are known. The most general positive result
is that the function space of every Corson compact space is Lindelöf (see [3, IV.2.22]). The
most general negative result that we are aware of is the theorem of Nachmanson [13] (see
also [3, IV.10]) that Cp(X) is not Lindelöf if X is any nonmetrizable linearly orderable
compactum. The referee of the paper kindly pointed out that this result was obtained
independently by Sipacheva [15].

Every Corson compact space is monolithic and has the property that every linearly order-
able closed subspace of it is metrizable. In view of Nachmanson’s result, an Aronszajn
continuum is an example of a first countable monolithic compact space whose function
space is not Lindelöf. But this example trivially has a nonmetrizable linearly orderable
closed subspace. There is an example of a compact monolithic space of countable tightness
whose function space is Lindelöf and which is not Corson compact (see [3, §IV.7.1] and
[2, 6.13] for details). This space has the property that every linearly orderable closed
subspace of it is metrizable. These (known) remarks prompted Arhangel′skiı̆ to ask in
[2, Problem 45] whether Cp(X) is Lindelöf provided that X is a monolithic compact space
of countable tightness which has the additional property that every linearly orderable sub-
space of it is metrizable. Theorem 1.2 provides a strong negative answer to this question
under the existence of a Souslin continuum.
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2. Gul’ko’s support maps. We shall denote by F(X) the space of finite nonempty
subsets of X endowed with the Vietoris topology, cf. [9, §17].

Theorem 2.1 (Gul’ko). Let �: Cp(X) −→ Cp(Y ) be a uniform homeomorphism, X and
Y being compact metrizable spaces. Then there exists a function K: Y −→ F(X) such
that, for any y ∈ Y ,

sup{|�(f )(y) − �(g)(y)| : ‖f − g‖K(y) � 1} < ∞.(2)

In addition, each nonempty subset F of Y contains a relatively open nonempty subset V

such that the restriction of K to V is continuous.

This is a special case of the results 1.10, 1.11, 1.13, 1.19 established by Gul’ko in [7].
For more information on this topic we refer the reader to [12].

R e m a r k 2.2. Let �: Cp(X) −→ Cp(Y ) be a homeomorphism such that �(0) = 0.
Here 0 denotes the constant function with value 0 on a given space. We claim that the
continuity of �−1 at 0 in Cp(Y ) guarantees that for any x ∈ X there is a finite set E(x) � Y

such that |�−1(u)(x) − �−1(0)(x)| < 1/2, whenever u ∈ Cp(Y ) vanishes on E(x). This
follows from the following simple reasoning. The function ψ : Cp(Y ) → R defined by
ψ(f ) = �−1(f )(x) is clearly continuous. Observe that ψ(0) = 0. There consequently is
a neighborhood U of 0 in Cp(Y ) such that |ψ(u)| < 1/2 for every u ∈ U . Since Cp(Y ) is
endowed with the topology of pointwise convergence, there is a finite subset F � Y such
that if u ∈ Cp(Y ) and 0 agree on F then u ∈ U . It is clear that E(x) = F is as required.

3. Proof of Theorem 1.1. Let us fix an arbitrary Cook continuum M , cf. Sec. 1. Let
n < m be natural numbers, X = M × {1, . . . , n}, Y = M × {1, . . . , m}, i.e., X and Y are
respectively the unions of n or m disjoint copies of M . For A � M , x ∈ M and i � m, we
shall write

A(i) = A × {i}, x(i) = (x, i).

Similarly for A � M , x ∈ M and j � n.
Striving for a contradiction, assume that �: Cp(X) −→ Cp(Y ) is a uniform homeomor-

phism, and let K: Y −→ F(X) be the Gul’ko support map described in Theorem 2.1. We
may assume without loss of generality that �(0) = 0.

We shall check that for any non-trivial continuum C in M and any pair (i, j), i � m,
j � n, there is a non-trivial continuum C′ � C and a finite set D � X such that

K(x(i)) ∩ M(j) � {x(j)} ∪ D for x ∈ C′.(3)

To begin with, we shall consider the continuum C(i) and use the properties of K to get
a non-empty relatively open subset W of C such that K is continuous on W(i), and let H

be a non-trivial continuum in W . The set H ′ = {x ∈ H : K(x(i)) ∩ M(j) 
= ∅} is open-
and-closed in H , hence either H ′ = ∅ or H ′ = H . In the first case we just let C′ = C and
D = ∅. In the second case we consider the continuous map S: H −→ F(M(j)) defined by
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S(x) = K(x(i)) ∩ M(j). As in [14, §4], basic properties of Cook continua allow one to get
a continuum C′ and a finite set D satisfying (3). For the reader’s convenience, we provide
more details to that effect in Remark 3.1, following the proof.

Now, let σ be an enumeration of the pairs (i, j), i � m, j � n, and let us choose sub-
sequently non-trivial continua C1 � C2 � . . . � Cm·n, such that, whenever σ(k) = (i, j),
condition (3) is satisfied with C′ = Ck and D = Dk . Then T = Cm·n and J = ⋃{Dk :
k ≤ m·n} are a non-trivial continuum in M and a finite set in X such that

K(x(i)) � {x(1), . . . , x(n)} ∪ J for x ∈ T , i � m.(4)

By Remark 2.2, there is a finite set E � Y such that for any u ∈ Cp(Y ),

u � E = 0 implies ‖�−1(u) − �−1(0)‖J < 1/2.(5)

Let us pick

c ∈ T with c(i) 
∈ E for i � m,(6)

and let ui ∈ Cp(Y ) satisfy the conditions

ui(c(i)) = 1, ui�E = 0, ui�M(j) = 0 for i 
= j.(7)

To reach a contradiction, we shall consider the continuous function

φ: R
m −→ R

n

which is the composition of the map (t1, . . . , tm) →
m∑

i=1
tiui from R

m to Cp(Y ), the map

�−1: Cp(Y ) −→ Cp(X), and the evaluation u → (u(c(1)), . . . , u(c(n))) from Cp(X) to
R

n, i.e.,

φ(t1, . . . , tm) =
(

�−1

(
m∑

i=1

tiui

)
(c(j))

)n

j=1

(8)

Let for i � m,

αi = sup{|�(f )(c(i)) − �(g)(c(i))| : ‖f − g‖K(c(i)) � 1}.
Observe that by (2), αi < ∞ for every i � m. Striving for a contradiction, assume that for
some i � m we have αi = 0. Define ξ : Cp(X) → R by ξ(f ) = �(f )(c(i)). We claim
that ξ is constant. This will give us the desired contradiction since � is surjective and the
evaluation at ci maps Cp(Y ) onto R. Pick arbitrary elements f, g ∈ Cp(X); we will prove
that ξ(f ) = ξ(g). To this end, let F be the finite set K(c(i)). Observe that our assumption
αi = 0 implies that if v, w ∈ Cp(X) are such that ‖v − w‖F � 1 then ξ(v) = ξ(w). The
functions f �F and g�F both belong to the Euclidean space R

F . There clearly are for some
k elements v1, . . . , vk ∈ R

F such that

f �F = v1, g�F = vk,
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while moreover

‖vj − vj+1‖ � 1

for every j � k − 1. Here ‖ · ‖ stands for the sup-norm on R
F . Put ṽ1 = f, ṽk = g, and

for every 2 � j � k − 1 let ṽj : X → R be an arbitrary continuous function extending vj .
Observe that ‖ṽj − ṽj+1‖F � 1 for every j � k. As a consequence,

ξ(f ) = ξ(ṽ1) = · · · = ξ(ṽk) = ξ(g),

which is as required.
Put

α = max {αi : i � m}, r = α
√

m.(9)

By the above considerations, r ∈ (0, ∞). Let S
m−1 = {(t1, . . . , tm) :

m∑
i=1

t2
i = r2} be the

r-sphere centered at zero in the Euclidean space R
m. The mapping φ takes S

m−1 into R
n

and therefore, by the Borsuk-Ulam Theorem [5, XVI 6.2], φ identifies a pair of antipodal
points, i.e., there exists (t1, . . . , tm) ∈ S

m−1 such that

φ(t1, . . . , tm) = φ(−t1, . . . ,−tm).(10)

Since
m∑

i=1
t2
i = r2, we infer from (9) that

|tl | � α for some l � m.(11)

Let us consider

u =
m∑

i=1

tiui, f = �−1(u), g = �−1(−u).(12)

By (8) and (10), we have

f (c(j)) = g(c(j)) for j � n.(13)

Moreover, (7) and (12) show that u�E = 0, and hence by (5),

‖f − g‖J < 1.(14)

Putting together (4), (13) and (14) we infer that ‖f − g‖K(c(l)) < 1 and hence, by (9),

|�(f )(c(l)) − �(g)(c(l))| ≤ α.(15)

However, by (12), �(f ) = u, �(g) = −u, and by (7), u(c(l)) = tl . But, by (11), this is
impossible, and the contradiction ends the proof of Theorem 1.1.
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R e m a r k 3.1. We shall give some more details concerning condition (3) in the proof.
Let S: H −→ F(M(j)) be a continuous map, where H is a non-trivial continuum in the Cook
continuum M. As was noticed in [14], Lemma 3.2, the continuity of S yields a nonempty
relatively open set G in H , pairwise disjoint open sets V1, . . . , Vk in M(j) and continuous
mappings sp : G −→ Vp such that S(t) = {(s1(t))(j), . . . , (sk(t))(j)} for t ∈ G. Let C′ be
a non-trivial continuum in G. Then, sp : C′ −→ M(j) being continuous, the properties of
the Cook continuum M imply that for each p, either sp(x) = x(j) for all x ∈ C′, or there
is dp with sp(x) = dp for all x ∈ C′. Then the continuum C′ and the set D consisting of
all points dp satisfies property (3) in the proof.

4. Resolutions. In the proof of Theorem 1.2 we will replace each element of a subspace
of a certain space by a copy of the unit interval I so that certain ‘essential’ properties are
preserved. This can be done by a transfinite inverse limit construction. But it is easier to
use the resolution method of Fedorchuk [6] (see also Watson [17]).

Suppose that X is a topological space and that {Yx : x ∈ X} are topological spaces and,
for each x ∈ X, fx : X \ {x} → Yx is a continuous function. We topologize

Z =
⋃

{{x} × Yx : x ∈ X}
as follows. If x ∈ X, U � X is open such that x ∈ U , and W � Yx is open then

U ⊗ W = ({x} × W) ∪
⋃

{{x′} × Yx′ : x′ ∈ U ∩ f −1
x [W ]}.

The collection of all sets of the form U ⊗ W is an open basis for Z. Topologized in this
way, Z is called the resolution of X at each point x ∈ X into Yx by the mapping fx . Let
π0: Z → X be the ‘projection’. Then π0 is continuous by Watson [17, 3.1.35].

Suppose that for certain x ∈ X we have that Yx is a singleton. Then the topology of Yx

is irrelevant and so for convenience we may assume that Yx = {x}. Then (x, x) ∈ Z and a
basic neighborhood of (x, x) has the form

π−1
0 [U ] = {(x, x)} ∪

⋃
{{x′} × Yx′ : x′ ∈ U},

where U is an arbitrary open neighborhood of x in X.

Lemma 4.1. Suppose that Z is the resolution of X at each point x ∈ X into Yx by the
function fx . Assume that D � X is second countable and for all but countably many d ∈ D

we have that Yd is a singleton. In addition, assume that Yd is second countable for every
d ∈ D. Then π−1

0 [D] is second countable.

P r o o f. Let U be a countable open base for D, and let E be the countable set of all
points d ∈ D for which Yd is not a singleton. By the above, the countable collection

{π−1
0 [U ] : U ∈ U}

is a local base (in π−1
0 [D]) at every point of the form (x, x), where x ∈ D \ E. Let Ve be a

countable base for Ye for every e ∈ E. For a fixed e0 ∈ E, the countable collection of sets
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of the form U ⊗ W , where U ∈ U and e ∈ E and W ∈ Ve, contains a local base at every
point of π−1

0 (e0). So we are done. �

Let X and Y be spaces, and for certain x ∈ X, let f : X \ {x} → Y be a continuous
function. The boundary ∂f Y of Y is the set of all elements y ∈ Y having the following
property: for every neighborhood U of x in X and for every neighborhood V of y in Y we
have

U ∩ f −1[V ] 
= ∅.

Assume that in our resolution the space Yx is a singleton and x is not an isolated point of
X. Then clearly ∂fx Yx = Yx .

Lemma 4.2. Let X be a dense in itself space containing a point x such that X \ {x} is
normal and X is first countable at x. Then there is a continuous function f : X \ {x} → I

such that ∂f I = I.

P r o o f. (Standard.) Let D be a discrete sequence in X \ {x} converging to x. In
addition, let g: D → I be such that g[D] is dense and every fiber of g is infinite. Extend g

to a continuous function f : X \ {x} → I. Then f is clearly as required. �

We now summarize some basic properties of resolutions that are important to us.
It is known that if X and every Yx for x ∈ X is compact then so is Z. As noted above,

π0: Z → X is continuous. Finally, if ∂fx Yx = Yx for every x ∈ X then π0 is ireducible
(Watson [17, 3.1.33 and 3.1.35]).

A space in which every nowhere dense set is second countable is called almost Luzin.
This concept is due to Kunen [8] who showed that every almost Luzin space without isolated
points is hereditarily Lindelöf (abbreviated: HL).

Corollary 4.3. Suppose that Z is the resolution of X at each point x ∈ X into Yx by the
function fx . Assume that

(16) X is compact, has no isolated points and is almost Luzin,
(17) Yx is second countable for every x ∈ X.
(18) ∂fx Yx = Yx for every x ∈ X,
(19) if D � X is nowhere dense then for all but countably many x ∈ D we have that Yx

is a singleton.

Then Z is compact, has no isolated points and is almost Luzin (hence is HL).

P r o o f. We only need to prove that Z has no isolated points, and is almost Luzin.
To prove that Z has no isolated points, assume that

U ⊗ W = ({x} × W) ∪
⋃

{{x′} × Yx′ : x′ ∈ U ∩ f −1
x [W ]}.

is a nonempty basic open subset of Z, where U � X is open, x ∈ U and W � Yx is open.
By (18) we have that U ∩ f −1

x [W ] is nonempty, hence contains at least two distinct points,
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say x′ and x′′. So U ⊗ W contains the disjoint nonempty sets {x′} × Yx′ and {x′′} × Yx′′ ,
hence is not a singleton.

Next, assume that D is a nowhere dense closed subset of Z. Then E = π0[D] is a
nowhere dense closed subset of X since π0 is irreducible. As a consequence, E is second
countable since X is almost Luzin. So we are done by (19) and Lemma 4.1. �

5. Proof of Theorem 1.2. Our construction is based on the existence of a Souslin
continuum, i.e., an ordered continuum which satisfies the countable chain condition (abbre-
viated: ccc) but is not separable. It is well-known that such a continuum exists under ♦.
For more information, see Todorčević [16].

Let S be a Souslin continuum. We assume that S has no separable nontrivial intervals.
This implies that S has weight ω1 and a subset of S is nowhere dense if and only if it is
second countable. Hence S is almost Luzin.

There are second countable closed subsets Tα of S for α < ω1 such that

(20) α < β < ω1 → Tα � Tβ ,
(21)

⋃
α<ω1

Tα = S.

Observe that if D � S is nowhere dense then D is separable and hence D � Tα for certain
α < ω1.

Pick a dense subset D in S of size ω1 such that D ∩ Tα is countable for every α < ω1.
We plan to replace each element of D by the unit interval I without losing the ‘essential’

properties of S. It is easy to do this. By Lemma 4.2 there is for every d ∈ D a continuous
function fd : S \ {d} → I such that ∂fd

I = I. For every x ∈ S \ D let Yx = {x} (this also
specifies the function fx). Now let Z be the resolution of S at each point x ∈ S into Yx

by the function fx . We claim that Z is the space we are after. As usual, π0: Z → S is the
‘projection’.

The space Z is compact and dense in itself and almost Luzin by Corollary 4.3. Hence Z

is HL by Kunen’s result cited in the previous section. By the same reasoning, the closure
of any countable set in Z is second countable. Since Z has clearly weight at most ω1, this
implies that Z is monolithic.

Since π0: Z → S is a continuous surjection between compact spaces, the map adjoint to
π0 is a closed embedding of Cp(S) into Cp(Z). Hence Cp(Z) is not Lindelöf since Cp(S)

is not Lindelöf by Nachmanson’s result quoted in the introduction.
So it suffices to prove that if L is a linearly orderable closed subspace of Z then L is

metrizable. To this end, let L be any linearly orderable closed subspace of Z. We may
assume without loss of generality that L is not nowhere dense. So π0[L] is not nowhere
dense since π0 is irreducible. As a consequence, L contains the preimage of a nonempty
open subset of S. Since D is dense, this means that L contains uncountably many pairwise
disjoint copies of I. Since L is orderable, all of those have nonempty interior in L. But this
contradicts Z being HL.
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