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Abstract

We introduce splintered and strongly splintered spaces. They are generalizations of both almost
zero-dimensional spaces and weakly 1-disienal spaces. We prove that there a@imensional
strongly splintered spaces for every and that there is a 1-dimensional splintered spicguch
that dimX” = n for everyn. This solves a problem in the literature. Finally, we correct a flaw in
an argument of Tomaszewski in his product formula for the dimension of the product of a weakly
n-dimensional and a weakly-dimensional space.
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1. Introduction

All spaces under discussion are separable and metrizable.

A subsetX of a compactunX is L-embeddedn K if for every open covetl of K
there is a neighborhodd of X in K such that every subcontinuum &fwhich is a subset
of V is contained in an element df. This notion is due to Levin and Pol [4], who proved
that anL-embedded subspace of a compact space is at most 1-dimensional.

A spaceX is calledalmost zero-dimension#l it has an open bas® such that every
B € B has the property that \ B is the union of clopen subsets &f. This notion was
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introduced by Oversteegen and Tymchatyn [11]. They proved that almost zero-dimensional
spaces are at most 1-dimensional, and usad#siult to conclude that the homeomorphism
groups of various important spaces such as Siskis Carpet and Menger’s Universal
Curve, are 1l-dimensional. The standard example of an almost zero-dimensional space
which is not zero-dimensional, is E¥d space [8, Exercise 3.2.7].

If X is ann-dimensional space then ismensional kernel (X) is the set of all points
in X at which the dimension X is n. It is known thatA(X) is an F,, -subset ofX which
is at least of dimension — 1. This is due to Menger [6], see also [8, Lemma 3.11.1], who
called a spac& weaklyn-dimensionalf it is n-dimensional, but its dimensional kernel is
of dimensiornm — 1. The first examples of weakh+dimensional spaces were constructed
by Sierphski [14] (n = 1) and Mazurkiewicz [5] (for arbitrary:). Simpler construction
can be found in Tomaszewski [15] and van Mill and Pol [9]. We are particularly interested
here in the class of all weakly 1-dimensional spaces.

A spaceX is splinteredif every open covefl of X hascountablerefinement by
pairwise disjoint closed sets. Observe that the Siestpitheorem that no continuum can
be partitioned into countably mamairwise disjoint closed and nonempty sets implies that
every compact subspace of a splintered space is zero-dimensional. For Xspeedet
X 0) denote the subspace of all pointsoft which the dimension is 0. That is,c X () if
and only ifx has arbitrarily small clopen neighborhoodsXn Observe thak () is a G-
subset ofX. We call a spacé& strongly splinteredf there are closed se#§ in X fori e N
such thatX = [ J72,(F;). It is clear that every strongly splintered space is countable
dimensional (but not conversely).

In the following diagram we display the basic relations between the above notions:

almost zero-dimensional
(D)
(3] L-embedded

/‘3)>< P

weakly 1-dimensionak4———- splintered
—
CR T(G) |
strongly splintered

(1) is due to Levin and Pol [4], (2) is [8, Exercise 3.2.8], (3) was proved by the authors of
the present paperin [8, Theorem 3.11.11], (5) is trivial and (6) is Corollary 3.2 below (there
is a simple direct proof that every weakly 1-dimensional space is splintered). We do not
know whether every.-embedded subspace of a compact space is splintered. In Section 7
we will demonstrate that for the above notions there are no other implications than the ones
shown in the diagram.

It is well known that the statemenk’is at mostz-dimensional’ has many equivalent
formulations. See, e.g., [8, Theorem 3.2.5]. For example, a spaése at mostn-
dimensional if and only if every open covHrof X has a locally finite closed refinement
V of order at most:. Since every open cover &f can be refined by the closed cover
{{x}: x € X} of X, it is natural to ask whether thelfowing property characterizes the
class of allz-dimensional spaces:
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(%), for every open covell of X there exists @ountableclosed refinemeri? of U with
ord(V) <n.

So a spac& has(x)o if and only if it is splintered. It is not true that), characterizes all

at mostn-dimensional spaces since Badspace is almost zero-dimensional and hence is
both splintered and 1-dimensional. It waskead in [8, p. 160] whether spaces that satisfy
condition(x), are at mostn + 1)-dimensional. This motivated us to define and study the
class of all splintered spaces.

It is clear that an arbitrary product of atrst zero-dimensional spaces is almost
zero-dimensional, hence at most 1-dimensional by the Oversteegen—-Tymchatyn theorem.
A similar result was proved by Tomaszewski [15]. He showed that the product of two
weakly 1-dimensional spaceslisdimensional which gave agative answer to a question
of Menger [7]. These results suggest the question whether similar results can be proved for
the (strongly) splintered spaces and thembedded subspaces of compact spaces. Itis a
trivial observation thatZ-embeddedness’ is a productive property. Indeed, we will show
that if X; is L-embedded in the compact spakgfor everyi then[[; X; is L-embedded
in []; K;. Hence by the result of Levin and Pol [4], the product of an arbitrary familly-of
embedded subspaces of compact spaces is at most 1-dimensional. Hence by (3) it follows
that the product of an arbitrary family of wegikl-dimensional spaces is 1-dimensional,
which improves the Tomaszewski theorem. The situation for the (strongly) splintered
spaces is quite different. We shall constra 1-dimensional splintered spakesuch that
dim X" = n for everyn andX° is not countable-dimensional. Since products of splintered
spaces are splintered (Corollary 3.2), this answia particular, the question whether every
splintered space is at most 1-dimensional. A much stronger negative answer to this question
follows from our result that for eaclh < w1, there is a strongly splintered space of small
transfinite dimension. We shall also show that the product of two 1-dimensional strongly
splintered spaces can be 2-dimensional (evenéfof the factors is weakly 1-dimensional).

We mentioned above the result of Tomaszewski [15] that the product of two weakly
1-dimensional spaces is at most 1-dimensi. Tomaszewski claimed that from this
result by an inductive argument one obtains the following more general and interesting
inequality: if X is weaklyn-dimensional, and’ is weaklym-dimensional, then

dim(X x Y) <dimX +dimy — 1. (T)

So the weaklyz- and m-dimensional spaces demonstrate that the product formula does
not hold in general (for all possible values). The interesting thing aliButis that it
holds for spaces with natural point-sepblogical properties. We will correct a flaw in
Tomaszewski’'s arguments.

2. Preliminaries

If A andB are collections of sets then we say thatefinesB if for every A € A there
is an elemenB € B such thatA C B.

Let X be a topological space with subset ThenA and FfA) denote itsclosureand
boundary respectively.
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For all undefined notions in dimension theory, we refer the reader to Engelking [1] and
van Mill [8].

The following result generalizes the result obtained earlier by the authors in [8,
Exercise 3.5.6].

Lemma 2.1. If X; is L-embedded in the compact spakefor everyi € N then[]2, X;
is L-embedded if |2, K;.

Proof. For everyi € N let g; be an admissible metric fat; which is bounded by 1. We
endowk = []:2; K; with the admissible metric

o
ot )= 27 0i(xi, yi).
i=1
Let U be an open cover oK. By compactness, there és> 0 such that each set of
diameter less thanis contained in some elementléf Pick N € N so large that 2V < %s.
For everyi < N let U; be a neighborhood of; in K; such that every continuum iti; has
o;-diameter less tha%e. Puty =1, Ui x [172y,1 Ki, and letA € U be a continuum.
Thens; (A) hasp;-diameter less thaés for everyi < N, wherer; is the projection onto
theith coordinate. So ifi, b € A are arbitrary then
N 00 1 1
o(a,b) < ZZ_’Q,-(ai,bi) + | Z 27 < ES + 58 —=¢,
i=1 i=N+1

as desired. O
So by the result of Levin and Pol [4] cited in the introduction, we obtain:

Corollary 2.2. Let X; be L-embedded in the compactui for everyi € N. Then]‘[;’i1 X;
is at mostl-dimensional.

Let us note that Levin and Pol [4] proved that every almost zero-dimensional space
is L-embedded in some compactification. It was shown by the authors in [8, Theo-
rem 3.11.11] that the same result can beved for weakly 1-dimensional spaces.

So we obtain:

Corollary 2.3. Let X; be weaklyl-dimensional for every € N. Then[ ]2, X; is at most
1-dimensional.

We already noticed that almost zero-dimengsl spaces are splintered. Weakly 1-di-
mensional spaces are obviously strongly gplied, and hence are splintered as well, cf.,
Proposition 3.3. This fact can also easily be established directly.

Question 2.4. Let X be L-embedded in some compact spa&cels X splintered?
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3. Splintered and strongly splintered spaces

In this section we will make some preliminary observations on splintered and strongly
splintered spaces.

As observed in Section 1, Eid spacek is splintered. Instead of Eéd space, one
can also consider the so-calledmplete Erd$ spaceF, i.e., the subspace of Hilbert
space consisting of those points all of whose coordinates are irrational. It is almost zero-
dimensional for the same reasafiss, and it is topologically complete being@s-subset
of Hilbert space. It is well known, and easy to prove, that one can topolégize” U { p},
wherep ¢ F, in such a way thaG is connected (and, clearly, topologically complete).
Also, G is splintered becausk is. HenceG is an example of a topologically complete,
connected and splintered space. Obsehat & splintered space which is topologically
complete, connected and ldiyaconnected, must be a singleton. For otherwise it would
contain an arc by the Mazurkiewicz theorem, and hence it would violate the fBk&ipi
theorem (cf., Section 1).

Lemma 3.1. Let X be a subspace of a spa&e The following statements are equivalent

(1) For everye > Othere is a countable closed collectiGhof Y such that
(@ xcU9J,
(b) meskF) < e,
(c) if F, F' e F aredistinctthenF N F' N X = .

(2) X is splintered.

Proof. We only need to prove that (1) implies (2). To this end, for everdgt F, be a
countable collection closed subsetgroivhich satisfies (a), (b) and (c) fer=1/n.

LetS={(FNF': Fec3, F c3,.1}. Pick arbitrary distinct element§, G» € G.
There are element&,, F> € F, and F, F; € F, 41 such that

Gi=F1NF], Ga=F2NF,.
We may assume without loss of generality that~ F>. So
Gi1NGoaNXCFNFkhNX=40.

These considerations show that we may assuméfthatrefines¥, for everyn. For every
x € X andn € N there is by (a) and (c) a unique elemenffipwhich containsc, say F; .

LetU be an open cover of. Fix x € X fora moment. There is an elemdite U which
containsy. Let U’ C Y be open such thdf’ N X = U. There ise > 0 such that the open
ball aroundr with radiuse is contained ir/’. Since mest#F,) N\, 0, this implies that there
is an element € N such thatF;' € U’. These considerations show that the integer

n(x) =min{n eN: @U EU)(F; NnXc U)}

is well-defined.
Put

&={F,NX: xeX}
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We first claim that€ is pairwise disjoint. Assume th&F*, . N X) N (F)._. N X) # ¢ for

n(x) n(y)
certainx, y € X. If n(x) =n(y) thenFy | = F,f(y) by (c). Suppose therefore that, e.g.,
n(x) < n(y). Observe thaFny( 5N X C F,f(x) N X sinced,y) refinesd;, ., andF, ) [ X
is pairwise disjoint. By minimality of:(y) we therefore get(y) < n(x), contradiction.

Since€ is countable because evefy is countable, this means that we are dong.
Corollary 3.2. Subspaces and countable products of splintered spaces are splintered.

It is clear that the property of being strongly splintered is hereditary and finitely
productive. It seems, however, to be a delicate question whether the infinite product of
strongly splintered spaces must be strongly splintered.

Proposition 3.3. Every strongly splintered space is splintered.

Proof. Let us say that a disjoint collection of closed subsEtef X has property(x)
provided that every € F is clopen in the subspa¢d F of X. Observe that each family
with property(x) is countable. In additiora disjoint collectiond of closed subsets of
is said to have propertyw=) if F can be written as the union of finitely many subfamilies,
each having propertg).

Let U be an arbitrary open cover &f.

Claim 1. If A and B are closed inX then there is a closed collectighof X such that

(1) Bo\ASUTF S B\ A4,
(2) F refinesl,
(3) F has property(x).

Foreveryx € B(g) \ A we may pick a relatively clopen subget € B which is contained
in an element oll such thatr € C, € B \ A. Countably manyC,’s coverB( \ A, say
C1, Co,.... So the collection

n—1
F= cl,cz\cl,...,cn\Uc,-,...}
i=1
is as required.

Claim 2. Let F be a collection of closed subsetsXfwith property(wsx). Assume thaf
refinesl. Then for every closed subgdt of X there is a disjoint closed collectigh of X
having the following properties

(4) ¥ < Gandg refinesl,

(®) Moy UGS,
(6) G has property(ws).
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Write F asF1 U - --UF,, whereF; has propertysx) for everyi < n, and putC; = J ;.
For each (possibly empty) € {1, 2, ..., n}, put

X(A) = (ﬂcl) (i
icA i¢A
Observe that the sef§(A) are pairwise disjoint and covef. In addition, eachX (A) is
the difference of two closed subsetsXfForA C {1,2,...,n}, let

Y4 =xA\|JJ%-
i€eA
Observe that th& (A)’s are a disjoint cover oK \ [ JF. Now fix A € {1,2,...,n} fora
moment. IfW e J; for certaini € A thenW is clopen inC;, henceW N X (A) is clopen
in X (A). This shows tha¥ (A) is a closed subspace &f(A) and so we can writ& (A) as
P\ O, where both? andQ are closed inX. ThenM NY(A)=(M N P)\ Q. Since

M@y NP S (MNP,

there exists by Claim 1 a closed collecti®inA) of X such that

(1) MoNY(A)=MoNP)\QSUFA) S (MNP)\Q,
(8) F(A) refinesu,
(9) F(A) has propertyx).

Now let G be the union off and all the collection§(A) for A C {1,2,...,n}. Then§G is
clearly as required.

This completes the proof of the Propositidnce Claim 2 can be used recursively to
deal with the zero-dimensional parts of countably many closed sets, and hence with all of
X sinceX is strongly splintered. O

As observed at the beginning of this section, there are connected and topologically
complete spaces which are splintered. Suchaxs is not strongly splintered, as the next
observation shows.

Lemma 3.4. Suppose thak is Baire and strongly splintered. TheXiq, is dense inX
(hence X is not connected

Proof. Letthe sequence of closed sé}si € N, withess thaiX is strongly splintered. We
may assume without loss of generality tli&t) o) is dense inF; for everyi. Let U be a
nonempty open subset a&f. The closed collectiofiF; N U: i € N} coversU. SinceX is
Baire, for some the interior of F; N U is nonempty. So there is a nonempty open subset
V of U such thatV C F;. Since(F;) o) is dense inF;, there is a poink € V at which F;

is zero-dimensional. Since is open inX andF; is closed inX, this easily implies thak

is zero-dimensional at, i.e.,.x e UN X(q. O

We shall close this section with one more observation, which will be useful in the next
section.
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Lemma 3.5. Let ¢ : T — E be a Baire classl function from a closed subsét of the
irrationals to a spaceE. Then the graptG = {(¢, ¢(¢)): t € T} C T x E is splintered.

Proof. We shall show that
() if F € G is closed and nonempty théfg, # 9.

To that end, let us consider the projectidrof F onto the first coordinate, and I8tbe
the closure ofd in T.

Sincey is of the first Baire class, the restriction@fto B has a continuity poin.

Leta, € A, a, — a. Then(a,, p(a,)) — (a,¢(a)) and (a,, ¢(a,)) € F. SinceF is
closedc = (a, ¢(a)) € F. Let us check that € F(g). Given an open neighborhodd x V
ofcin T x E, one can find a clopen neighborhoddof a in T such thay(W N B) C V.
ThenW x E is a clopen set containingand(W x EYNF CU x V.

Having checkedt), let us show that this property implies the splinteredness.of

Indeed, lefl be an open cover af. Define by transfinite induction disjoint closed sets
H, such thatH, is contained in some element tf and each uniorUKﬂ H, is open
in G. If Hy, a < B, are already defined, let us consider= G \ Ua<,3 Hy. If F=0,we
stop. Otherwise, we pick € Fg and we choose a clopen i neighborhooddy of x
contained in an element df containingx. SinceG is separable, the process terminates at
somek < w1. In effect we get a disjoint countable closed refinemjéht « <1} of U. O

Remark 3.6. Let f: E — T be a perfect map from a complete space onto a closed subset
of the irrationals. By the selection theorem of Kuratowski and Ryll-Nardzewski [3], there
is a Baire class 1 functiop: T — E with f(¢(t)) =t fort e T. LetS = ¢(T). The map

@) = (f(p()), ¢()) is a homeomorphism of onto the graphG = {(¢, ¢(¥)): t € T}

of ¢. Therefore, by Lemma 3.5, is a splintered5 s-selector for the decomposition &f

into the fibers off.

4. Examplesof productsof splintered and strongly splintered spaces
Let us recall that products of splintered spaaes splintered (Corollary 3.2). We shall
use a construction of Rubin et al. [13], combined with an idea of Kulesza [2], to get the

following

Theorem 4.1. There is a completé-dimensional splintered spacésuch thadimX” =n
for everyn and X*° is not countable-dimensional.

Proof. LetJ =[—1, 1], let A C J be a Cantor set,
(1) Z: A X Hs.;ljnl

and let
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(2) pn:Z—>AXTy, 0 Z—> AxJ1x - x I,

denote the projections

pn(ta tla t29 .. ') = (ta tn)a T[n(ty tla t27 .. ') = (ta tla ey tn)-

Foranyx in A x [[,.pJa, I' CN, letz(x) be the first coordinate of. By [13] (see also
the proof of Theorem 3.9.3 in [8]), there is a compact set

KCZ, n(K)=A

such that

(3) if AC K andw(A) = A thenA is not countable-dimensional,
(4) if ACm,(K)andr(A) = A thendimA =n.

Lety: A — K be a Baire class 1 map such thatp(¢)) =¢, for r € A, cf., Remark 3.6.
Theng, = p,o@: A — p,(K) is of the first Baire class and(¢, (¢)) =1, fort € A. By
Remark 3.6, each space

Sn =¢n(A) C pa(K)
is complete and splintered. For everyconsider
Ay =1, 09(A) Cmy(K).

By (4), dmA, = n. The map(t,t1,...,t,) — ((¢t,11),..., (¢, t,)) embedsA, in the
productS; x --- x S,, hence diniS1 x --- x §,) > n. Since dimS; < 1, we conclude
that dimS; = 1, and that taking aX the topological sum of the spacSswe get a 1-di-
mensional, complete, splintered space with ditn=n forn =1, 2,.... To see thai >
is not countable-dimensional, let us consider

Aco =9(A)
which, by (3), is not countable-dimensional. Again, the map
(t,11,12,..) > ((t, 1), (2, 12), ...)
embedsA , into X*°, which completes the proof.O
Before passing to the next example, let us notice thAt\fE ¢, is a countable union of
closed strongly splintered subspaces, then the spasestrongly splintered.

The example is based on constructions from [9] and [10], and as in Theorem 4.1, on
[13] and an idea from [2].

Theorem 4.2. There are subspaceX, Y of [—1,1] x [—1,1] such thatX is weakly
1-dimensional,Y \ Y(g) is a countable union of closed weaklydimensional spaceg§n
particular,dimX = dimY = 1), anddim(X x Y) = 2.
Proof. Let], =[-1,1],n=1,2, letA C [-1, 1] be a Cantor set, and let

T AXJ1xJ2o— A
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be the projection onto the first coordinate. There is a compad setA x J1 x J2 such
thatn(K) = A and

(1) if AC K andn(A) = A then dimA = 2,

cf. [13] and the proof of Theorem 3.9.3in [8]. Let

pnK—>AxJ,, n=12,
be the projectiong, (¢, t1,t2) = (¢,1,), L = p1(K) andn;:L — A be the projection
wp(t, 1) =t. LetAg={r € A: dian‘l(t) =0}, N C L a zero-dimensional s-set with
dim(L \ N) =0, and let us define
@) X=7;%A0) UL\ N).

Then repeating a reasoning from [9], one checks fhids weakly 1-dimensional and,
moreover,

(3) 7.(X) = A andX \ 7; }(Ao) is o-compact.
We shall now start the construction of the sp&cdo that end, let
(4) M = pa(p7 (X)) andmy i M — A,

be the projectiomry (¢, r2) =¢. By (3) and (4),M \ n;ll(Ao) is o -compact, and therefore
there are compact sets

(5) Ti € M\ 7y (A0), U2y mm (Ty) = A\ Ao,

such that

(6) mm(T)) Ny (Tj) =D fori # j

(notice that any countable collection of compact settican be refined by a disjoint

countable collection of compact sets with the same union).
Let

Ar={t € Ao: dimm, () = 0}.
Then, cf. [9, Lemma 2.2], (2) and (3),

(7) 73,M(A1) S (p2(K)) o).
Let Q be the rational numbers frof For eachy € Q, we set
My, =MnN (A x{q}),

and let
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(8) ¥ =7 (A) UUZ (T o) U Uyeq My-
Then, by (7),71;41(A1) C Y0, M, are zero-dimensional closed subsetdffand

Y NTH\ (T < | My,
q€Q

cf. (5), (6). It follows thatY \ Y(g) is a countable union of closed sets which are either
zero-dimensional or weakly 1-dimensional. Therefore, it remains to check the inequality

(9) dim(X x ¥) >2

(notice that (9) implies that di@¥ \ Y(q)) = 1, by the Tomaszewski theorem). To that end,
let us notice that

(10) T[M(Y) = A.

Indeed, ift € Ag\ A1, then by (2) and (4)71;410) contains a non-trivial interval, and for
¢ € Q in this interval,z,,* (1) N M, # @. It follows that Ag C 7y (Y). Lett € A\ Ao,
and letr € 7wy (Ty), cf., (B). If dim(z;,}(1) N T;) = 0, 7,1 (t) € (T:)(0) C Y. Otherwise,
7, (t) N T; contains a non-trivial interval, hence some Q, andx;,* (1) intersectsM,,.

Having checked (10), let us pick for eack A pointsu(t), v(¢) € J with (¢, v(t)) € Y
and (¢, u(t)) € X, cf., (3). Then the produck x Y contains a set homeomorphic to
A ={(t,u(t),v(t)): t € A} C K which projects ontai. By (5), dimA = 2, and we get (9),
which completes the proof.O

5. Higher-dimensional strongly splintered spaces

The aim of this section is to prove that for evasy< w1 there is a topologically
complete strongly splintered space of small transfinite dimensgiobhe proof is based
on constructions in van Mill and Pol [10] and Pol [12].

Theorem 5.1. For eacha < w1 there is a strongly splintered topologically complete space
E such thatnd E = «.

The main tool in the proof is the following result:

Proposition 5.2. Let f: X — P be a perfect map, whert¥ is topologically complete and
countable-dimensional. There existg;3-subset’ of X which is strongly splintered and
satisfiesf (Y) = f(X).

We shall derive this proposition from the following:
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Lemmab.3. Let f:Z — H be a perfect map from a spactwith 0 < indZ < oo onto
a zero-dimensional spadé, and let

Zo=2Z\ fHf(Z\Z@)) S Z©). @)
There exists for > 1 a closed se¥; in Z such that
(2) the collection{ f(Z;): i > 0} is pairwise disjoint,

(3) indZ; <indZ for everyi,
@) fUZeZd) = f(2).

Moreover,| Ji2, Z; is a Gs-subset ofZ.

Proof. We shall follow the reasoning in the proof of Theorem 1.3 in [10].
First observe thaky is a G s-subset ofZ because ) is and the magy is closed. Let

o
Z\Zo= U A;,
i=1
where eachy; is closed inZ. In addition, let{U;: i € N} be an open base faf such that
indFrU; <indz
for everyi; put B; = FrU;. Fori, j € N put
T;j = A; N Bj.

The setsf(T;;) are closed in the zero-dimensional spaée There consequently are
pairwise disjoint closed sefd;; in H with H;; € f(T;;), while moreover

oo o0 o o0

UUHij=UUf(Tij).

i=1j=1 i=1j=1
Fori, j e N, put

Zij=fTHH) N T,
and arrange th&;;’s into the sequencgs, Z», .... The conditions (2) and (3) are clearly
satisfied.

For (4), picks from f(Z), and consider the fibef—1(r). If dim f~1(r) = 0 then
f~() € Z(o) by Lemma 2.1 from [9], hencee f(Zo). So assume that digi—(¢) > 0.
Then f~1(r) is a compactum with positive dimension and hence contains a non-trivial
continuum, sayC [8, Exercise 3.2.4]. Henc€ must meet some boundasBy, and since
C CZ\ Zo S Z\ Zo, the intersectiorB; N C must meet somd ;. Hencef ~1() must
intersect somd;;, i.e.,z is in someH;; and so inf(Z,,), wherem corresponds to the pair
(k, D).

To finish the proof, observe that

Uz=2\ (U FHr@o)\ Z,-).
i=0 i=1

This shows that J7°, Z; is indeed aGs-subset ofZ. O
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Proof of Proposition 5.2. SinceX is complete and countable-dimensional we have that
the transfinite small inductive dimension ikdof X is smaller tharnw;. We shall proceed

by transfinite induction on in#. Let us suppose that the assertion is true for all spaces
with ind < «, and letf : X — P be as in Proposition 5.2. Lef;, i =0,1,..., be as in
Lemma 5.3 (withZ = X). By the inductive assumption, cf. (3), eaZh contains aGs-
subsety; of Z; which is strongly splintered anfl(Y;) = f(Z;). Let

o
Y =Zou| V.
i=1
ThenZg C Y9y andY; are strongly splintered closed subsetsrofhenceY is strongly
splintered. Moreoverx \ Y = J72,1(Z; \ Y;) is anF,-set, cf. (2), andf (Y) = f(X). O

Proof of Theorem 5.1. It is enough to check the assertion for non-limitsince the
theorem for limit ordinals can be proved from the theorem for non-limit ordinals by taking
topological sums.

Let 7 :P x I°®° — PP denote the projection. We shall use the following result from [12,
Comment 6.2, p. 266]: there is af,-subsetF C P x I*° such thatz(F) = P while
moreover for evenD C F with (D) =P we have ind = «.

SinceF is an F,-set, there are for evenydisjoint closed set¥; in F such that the
setsz(X;) are pairwise disjoint and covér. Now apply Proposition 5.2 to the maps
7w [ X;: X; — n(X;), getting strongly splintere@ s-subsets; of X; with 7w (E;) = 7 (X;).
Then

o0
E= UE,-
i=1

isaG; setinP x I°°, which is strongly splintered. Moreover, il)= «, asE is a subset
of F projecting ontdP. O

6. Tomaszewski’'stheorem

Tomaszewski’'s approach {@) in Section 1 is to use induction @t m. The inequality
(T) is true ifn =m = 1. Then he proceeds on [15, p. 5], as follows. Assume thatis
true for alln andm with n +m < k — 1 > 2. Consider a weakly-dimensional spac#,
and a weaklyn-dimensional spac& with n + m = k. Consider two points of the form
(x1,y) and(x2, y) in X x Y such thatx1 # x2. Tomaszewski then claims that there is a
partition L in X betweeny; andx; such that either

(d) dimL <n—2,0r
(b) L is weakly(n — 1)-dimensional.

If so, thenL’ = L x Y is a partition betweerix1, y) and (x2, y) such that dinl.’ <
m—2)+m=n+m-—21if (@) istrue,and dink’ <(n — D +m—-1=n+m — 2
if (b) is true (by the inductive hypothesis). Howevernif= 1 then (b) is not defined,
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and (a) need not always hold becauseis 1-dimensional. In fact, if dimh = 0 then
dim(L x Y) =m > 1+ m — 2. So this proof breaks down if = 1; it is correct if both

n andm are greater than 1. We will prove théf) holds forn = 1 and arbitraryn by
refining Tomaszewski's proof for the produaf two weakly 1-dimensional spaces. The
basic idea of our proof follows [15], although our approach is more direct and elementary.

Lemma 6.1. Let X be weaklyr-dimensionalp > 2. There exists a zero-dimensiong -
subsetV C X such thatX \ N is weakly(n — 1)-dimensional.

Proof. Let Bg be a countable open collection &fwhich is a base at all points of (X)
while moreover dimFB < n — 1 for everyB € Byp. In addition, letB; be a countable open
collection of X which is a base at all points &f \ A(X) while moreoverdimFB <n —2
for everyB € B1.

Now for everyB € B with dimFrB > 0 let F(B) C FrB be a zero-dimensiondl, -
subset such that

dim(FrB \ F(B)) <dimFrB — 1.

In addition, since dimi(X) =n — 1, by the same reason there is a zero-dimensigpal
subsetF C A(X) such that dimtt(X) \ F < n — 2. SinceA(X) is anF, -subset ofX, the
setF is an F,;-subset ofX as well. Put

N=|J F(B)UF.
BeB

Then dimN < 0 by the Countable Closed Sum theorem and it is easy to se&/tiaas
required. O

Lemma 6.2. Let X be weakly:-dimensional. IfY € X is n-dimensional therY is weakly
n-dimensional.

Proof. It is clear thatA(Y) € A(X). So we are done sincd(X) is (n — 1)-dimen-
sional. O

Corollary 6.3. Let X be weakly:-dimensionalr > 2. Then for every paid, B of disjoint
closed subsets df there is a partitionD betweem and B such that eithedimD <n —2
or D is weakly(n — 1)-dimensional.

Proof. Let N be the zero-dimensional, -subset ofX we get from Lemma 6.1. There is a
partition D betweenA and B which missesV. So dimD <n — 1. If dimD =n — 1 then
D is weakly(n — 1)-dimensional by Lemma 6.2.0

Theorem 6.4. If X is weaklyl-dimensional and’ is weaklym-dimensional, then

dim(X x Y) <m.

We will prove this by induction om. It is true form = 1, so assume that > 1.
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Let U andV be arbitrary open subsets &fandY, respectively, such thate U and
y € V. Our aim is to construct an open subget X x Y suchthatx,y) e ECU xV
while moreover dimFE < m — 1. We will do this in two steps. We first construct an open
neighborhood. of (x, y) such thatL € X x V and dimFiL < m — 1. Then we construct
an open neighborhoof of (x, y) such thatk C U x Y and dimFrK < m — 1. Then
E = K N L is aneighborhood ofx, y) such thatE C U x V, and

FrECFrK UFrL

and hence is at mosgiz — 1)-dimensional by the Countable Closed Sum theorem.

First observe that the construction bfis simple. Indeed, LeP be a neighborhood of
y in Y such thatP C V while moreover dimFP < m — 2 or FrP is weakly m — 1)-
dimensional (Corollary 6.3). Put = X x P. Then

FrL=X xFrpP,
hence
dmFrL<m-2+1=m-1
in the first case, and
dmFrL <m-1

in the second case by our inductive hypothesis.

The construction ofK is more complicated. Let/’ be an open neighborhood of
x such thatU’ € U and FiU’ € X \ A(X). It is possible to pickU’ since A(X)
is zero-dimensional. Pui = FrU’ and let U” be an open subset af such that
AgU//gU//gU_

We claim that for every: € N there exist pairwise disjoint clopen subséts, Uz, ...
of X such that

(1) Uin N A #£ 0 for everyi,

(2) diamU;, < 1/n for everyi,

(3) A - U?il Uin C U?il Uin c UU1
(4) FrU21 Uin) € A(X).

Indeed, for every € X \ A(X) pick an clopen neighborhoad, of diameter at most
1/n such that eithe€, N A =@ or C, € U”. A countable subcollection of th€, cover
X\ A(X), sayC. Since theC, are clopen we may assume without loss of generality@hat
is pairwise disjoint. At most countably many element€£ahtersect4, say{Cy,: i € N}.
An easy check shows that the sélg = C,,, i € N, are as required.

SinceA(Y) is anF, -subset ofY, there are closed subseig of Y for everyn such that

AY) =] Ba.
n=1

Now for everyn € N let &,, denote the collection of all open subsétsf Y having the
following properties:
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- ENB, =9,
— dmFrE <m — 2.

Observe tha€,, coversY \ A(Y) since the dimension at every pointbfy A(Y) is at most
m — 1 andB, is closed inY. Pick a countable subcollectidh, € &, with [ JF, = &,.
Enumerate it a§F;,: i € N} and put

i
VinZY\Ufjn
j=1

for everyi € N. Observe thav;, is open for every, that the sequenda@’;,,); is decreasing,
and that

e’}
BnEEnZHVinEA(Y)-
i=1

Moreover, ifi € N then FrV;, C Ui.:l FrF;, is at most(m — 2)-dimensional by the
Countable Closed Sum theorem.

Now put
00 00
W= U U Uin x Vin. (6)
n=1i=1

We will first show that
Ax AY)CW. 7

Indeed, pick an arbitrary poiritz, b)) € A x A(Y). There exists € N such that € B, C
B,. Sincea € A € |2, U, there also exists e N such thaw € U;,. We conclude that
(a,b) e Ui, x En CUnxVin CW.

Observe that if, n € N are arbitrary then sincg;, is clopen, we have

Fr(Uin X Vin) = Uin X Fr'Vip,
and hence that

dimFr(U;, x Vip)) <14+m—-2=m — 1.
In addition, clearly,

dim(A(X) x FrVi,) <0+m—2=m—2.
We will show that

FrW C (AX) x A() U(A x V) U|J | Fr(Uim x Vi)
i=1ln=1

ulJ U AX) x Frvi,. (8)

i=1n=1
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To this end, let(a, b) € FrW and let(ax, by) € W, k € N, be a sequence converging to
(a, b). For everyk € N pick ig, n; € N such that

(Clk, bk) € Uiknk X Viknk-

Let us first assume that the 4ef.: k € N} is infinite. Then by (1) and (2) it follows that
for infinitely manyk € N we havep(ax, A) < 1/k, whencea,b) € A x Y.

Assume next that the sgi;: k € N} is finite. By passing to a subsequence if necessary,
we may even assume that it consists of a single element;.déthe setZ = {iy: k € N}
is finite as well, then we may assume by the same argument that it consists of a single
element, say. But then

(ak, br) € Uip x Vi

for everyk, and since clearlya, b) ¢ U;,, x V;;, sinceU;,, x V;, is an open subset o7,
we obtain

(Cl,b) € Fr(Uin X Vin)7

as required. So we may assume without loss of generalitylimtnfinite. But this means
that we may assume without loss of generality that the fundtieni, is one-to-one.

So by (4) we get: € Fr({J:2, Uin) € A(X).

If be B, C A(Y) then we are obviously done since then b) € A(X) x A(Y). So
assume thab ¢ §n, and picki € N such that ¢ V;,. Since the sef is infinite and the
sequencéV;,); is decreasing, it follows that all béinitely many element of the sequence
(br)r belong toV;,,. Sinceb ¢ V;, this implies that € FrV;, and hence that

(a,b) € A(X) x FrVip,

as required.
Now put

K=Wu(U'xY). ©)

ThenK is an open neighborhood ¢f, y) and by (3) we find thak € U x Y. We claim
that FrK is at most(m — 1)-dimensional. First observe that

FrK CFIWUFI(U' x Y)=FrWw U (A x Y). (10)

PutTo=FrK N (A x Y) andT1 = FrK \ To, respectively. Since by (TA x A(Y) C W
and Frk N W =@, it follows that

ToC A x (Y\ A(Y)),

which is at mostm — 1)-dimensional. We conclude thd@y is a closed subspace of Er
with dim 7o < m — 1. In addition, (10) implies that

TICFrW\ (A xY).

Hence by (8) 11 is contained in an at most: — 1)-dimensionalF,, -subset ofX x Y. We
conclude thaffy is at most(m — 1)-dimensional as well. Sinch is closed, the Countable
Sum theorem now easily gives us that dinkF&£ m — 1, as desired.
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7. Thediagram

Let us return to the diagram in Section 1. BsdspaceE is almost zero-dimensional
but neither weakly 1-dimensional nor strongly splintered (since it is nowhere zero-
dimensional).

A space is rimcompact if it has base every element of which has compact boundary.
In addition, a space is totally disconnected if the empty set is a partition between any two
distinct points. It is not difficult to see that a rimcompact totally disconnected space is zero-
dimensional. Since every almost zero-dimensional space is evidently totally disconnected,
it follows that no 1-dimensional almost zero-dimensional space is rimcompact. There are
weakly 1-dimensional rimcompact spaces[B}; These spaces are consequently weakly
1-dimensional and hence strongly splietg, but not almost zero-dimensional.

These examples also show that neither (1) nor (3) can be reversed. The higher-
dimensional (strongly) splinted spaces constructed in this paper demonstrate that (2),
(4) and (5) cannot be reversed. They also show by [4] that not every (strongly) splintered
space isL-embedded. Since there are connected splintered spaces, (6) cannot be reversed
as well.

So with respect to the diagram in Section 1, the only open question that remains is
whether every.-embedded subspace of a compact space is splintered.
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