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Abstract

We introduce splintered and strongly splintered spaces. They are generalizations of both
zero-dimensional spaces and weakly 1-dimensional spaces. We prove that there aren-dimensional
strongly splintered spaces for everyn, and that there is a 1-dimensional splintered spaceX such
that dimXn = n for everyn. This solves a problem in the literature. Finally, we correct a flaw
an argument of Tomaszewski in his product formula for the dimension of the product of a w
n-dimensional and a weaklym-dimensional space.
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1. Introduction

All spaces under discussion are separable and metrizable.
A subsetX of a compactumK is L-embeddedin K if for every open coverU of K

there is a neighborhoodV of X in K such that every subcontinuum ofK which is a subse
of V is contained in an element ofU. This notion is due to Levin and Pol [4], who prov
that anL-embedded subspace of a compact space is at most 1-dimensional.

A spaceX is calledalmost zero-dimensionalif it has an open baseB such that every
B ∈ B has the property thatX \ B is the union of clopen subsets ofX. This notion was
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introduced by Oversteegen and Tymchatyn [11]. They proved that almost zero-dimensional
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spaces are at most 1-dimensional, and used this result to conclude that the homeomorphi
groups of various important spaces such as Sierpiński’s Carpet and Menger’s Univers
Curve, are 1-dimensional. The standard example of an almost zero-dimensiona
which is not zero-dimensional, is Erdős space [8, Exercise 3.2.7].

If X is ann-dimensional space then itsdimensional kernelΛ(X) is the set of all points
in X at which the dimension ofX is n. It is known thatΛ(X) is anFσ -subset ofX which
is at least of dimensionn − 1. This is due to Menger [6], see also [8, Lemma 3.11.1], w
called a spaceX weaklyn-dimensionalif it is n-dimensional, but its dimensional kernel
of dimensionn − 1. The first examples of weaklyn-dimensional spaces were construc
by Sierpínski [14] (n = 1) and Mazurkiewicz [5] (for arbitraryn). Simpler construction
can be found in Tomaszewski [15] and van Mill and Pol [9]. We are particularly intere
here in the class of all weakly 1-dimensional spaces.

A spaceX is splintered if every open coverU of X has countablerefinement by
pairwise disjoint closed sets. Observe that the Sierpiński theorem that no continuum ca
be partitioned into countably manypairwise disjoint closed and nonempty sets implies
every compact subspace of a splintered space is zero-dimensional. For a spaceX, we let
X(0) denote the subspace of all points ofX at which the dimension is 0. That is,x ∈ X(0) if
and only ifx has arbitrarily small clopen neighborhoods inX. Observe thatX(0) is aGδ-
subset ofX. We call a spaceX strongly splinteredif there are closed setsFi in X for i ∈ N

such thatX = ⋃∞
i=1(Fi)(0). It is clear that every strongly splintered space is count

dimensional (but not conversely).
In the following diagram we display the basic relations between the above notion

almost zero-dimensional
(1)

(2) L-embedded
?

weakly 1-dimensional

(3)

(5)

(4) splintered

strongly splintered

(6)

(1) is due to Levin and Pol [4], (2) is [8, Exercise 3.2.8], (3) was proved by the autho
the present paper in [8, Theorem 3.11.11], (5) is trivial and (6) is Corollary 3.2 below (
is a simple direct proof that every weakly 1-dimensional space is splintered). We d
know whether everyL-embedded subspace of a compact space is splintered. In Sec
we will demonstrate that for the above notions there are no other implications than th
shown in the diagram.

It is well known that the statement ‘X is at mostn-dimensional’ has many equivale
formulations. See, e.g., [8, Theorem 3.2.5]. For example, a spaceX is at mostn-
dimensional if and only if every open coverU of X has a locally finite closed refineme
V of order at mostn. Since every open cover ofX can be refined by the closed cov
{{x}: x ∈ X} of X, it is natural to ask whether the following property characterizes th
class of alln-dimensional spaces:
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(∗)n for every open coverU of X there exists acountableclosed refinementV of U with
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So a spaceX has(∗)0 if and only if it is splintered. It is not true that(∗)n characterizes al
at mostn-dimensional spaces since Erdős space is almost zero-dimensional and henc
both splintered and 1-dimensional. It was asked in [8, p. 160] whether spaces that sati
condition(∗)n are at most(n + 1)-dimensional. This motivated us to define and study
class of all splintered spaces.

It is clear that an arbitrary product of almost zero-dimensional spaces is alm
zero-dimensional, hence at most 1-dimensional by the Oversteegen–Tymchatyn th
A similar result was proved by Tomaszewski [15]. He showed that the product o
weakly 1-dimensional spaces is1-dimensional which gave a negative answer to a questio
of Menger [7]. These results suggest the question whether similar results can be pro
the (strongly) splintered spaces and theL-embedded subspaces of compact spaces. I
trivial observation that ‘L-embeddedness’ is a productive property. Indeed, we will s
that if Xi is L-embedded in the compact spaceKi for everyi then

∏
i Xi is L-embedded

in
∏

i Ki . Hence by the result of Levin and Pol [4], the product of an arbitrary family oL-
embedded subspaces of compact spaces is at most 1-dimensional. Hence by (3) it
that the product of an arbitrary family of weakly 1-dimensional spaces is 1-dimension
which improves the Tomaszewski theorem. The situation for the (strongly) splin
spaces is quite different. We shall construct a 1-dimensional splintered spaceX such that
dimXn = n for everyn andX∞ is not countable-dimensional. Since products of splinte
spaces are splintered (Corollary 3.2), this answers, in particular, the question whether eve
splintered space is at most 1-dimensional. A much stronger negative answer to this q
follows from our result that for eachα < ω1, there is a strongly splintered space of sm
transfinite dimensionα. We shall also show that the product of two 1-dimensional stro
splintered spaces can be 2-dimensional (even ifone of the factors is weakly 1-dimensiona

We mentioned above the result of Tomaszewski [15] that the product of two w
1-dimensional spaces is at most 1-dimensional. Tomaszewski claimed that from th
result by an inductive argument one obtains the following more general and inter
inequality: ifX is weaklyn-dimensional, andY is weaklym-dimensional, then

dim(X × Y ) � dimX + dimY − 1. (T )

So the weaklyn- andm-dimensional spaces demonstrate that the product formula
not hold in general (for all possible values). The interesting thing about(T ) is that it
holds for spaces with natural point-set topological properties. We will correct a flaw
Tomaszewski’s arguments.

2. Preliminaries

If A andB are collections of sets then we say thatA refinesB if for everyA ∈ A there
is an elementB ∈ B such thatA ⊆ B.

Let X be a topological space with subsetA. ThenA and Fr(A) denote itsclosureand
boundary, respectively.
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For all undefined notions in dimension theory, we refer the reader to Engelking [1] and

n [8,

.

space
heo-

di-
cf.,
van Mill [8].
The following result generalizes the result obtained earlier by the authors i

Exercise 3.5.6].

Lemma 2.1. If Xi is L-embedded in the compact spaceKi for everyi ∈ N then
∏∞

i=1 Xi

is L-embedded in
∏∞

i=1 Ki .

Proof. For everyi ∈ N let �i be an admissible metric forKi which is bounded by 1. We
endowK = ∏∞

i=1 Ki with the admissible metric

�(x, y) =
∞∑
i=1

2−i�i (xi, yi).

Let U be an open cover ofK. By compactness, there isε > 0 such that each set of�-
diameter less thanε is contained in some element ofU. PickN ∈ N so large that 2−N < 1

2ε.
For everyi � N let Ui be a neighborhood ofXi in Ki such that every continuum inUi has
�i -diameter less than12ε. PutU = ∏N

i=1 Ui × ∏∞
i=N+1 Ki, and letA ⊆ U be a continuum

Thenπi(A) has�i -diameter less than12ε for everyi � N , whereπi is the projection onto
theith coordinate. So ifa, b ∈ A are arbitrary then

�(a, b) �
N∑

i=1

2−i�i (ai, bi) +
∞∑

i=N+1

2−i <
1

2
ε + 1

2
ε = ε,

as desired. �
So by the result of Levin and Pol [4] cited in the introduction, we obtain:

Corollary 2.2. LetXi beL-embedded in the compactumKi for everyi ∈ N. Then
∏∞

i=1 Xi

is at most1-dimensional.

Let us note that Levin and Pol [4] proved that every almost zero-dimensional
is L-embedded in some compactification. It was shown by the authors in [8, T
rem 3.11.11] that the same result can be proved for weakly 1-dimensional spaces.

So we obtain:

Corollary 2.3. Let Xi be weakly1-dimensional for everyi ∈ N. Then
∏∞

i=1 Xi is at most
1-dimensional.

We already noticed that almost zero-dimensional spaces are splintered. Weakly 1-
mensional spaces are obviously strongly splintered, and hence are splintered as well,
Proposition 3.3. This fact can also easily be established directly.

Question 2.4. Let X beL-embedded in some compact spaceK. Is X splintered?
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3. Splintered and strongly splintered spaces
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In this section we will make some preliminary observations on splintered and str
splintered spaces.

As observed in Section 1, Erdős spaceE is splintered. Instead of Erdős space, on
can also consider the so-calledcomplete Erd˝os spaceF , i.e., the subspace of Hilbe
space consisting of those points all of whose coordinates are irrational. It is almos
dimensional for the same reasonsE is, and it is topologically complete being aGδ-subset
of Hilbert space. It is well known, and easy to prove, that one can topologizeG = F ∪{p},
wherep /∈ F , in such a way thatG is connected (and, clearly, topologically complet
Also, G is splintered becauseF is. HenceG is an example of a topologically complet
connected and splintered space. Observe that a splintered space which is topologica
complete, connected and locally connected, must be a singleton. For otherwise it wo
contain an arc by the Mazurkiewicz theorem, and hence it would violate the Sierpński
theorem (cf., Section 1).

Lemma 3.1. LetX be a subspace of a spaceY . The following statements are equivalen:

(1) For everyε > 0 there is a countable closed collectionF of Y such that
(a) X ⊆ ⋃

F,
(b) mesh(F) < ε,
(c) if F,F ′ ∈ F are distinct thenF ∩ F ′ ∩ X = ∅.

(2) X is splintered.

Proof. We only need to prove that (1) implies (2). To this end, for everyn let Fn be a
countable collection closed subsets ofY which satisfies (a), (b) and (c) forε = 1/n.

Let G = {F ∩ F ′: F ∈ Fn, F ′ ∈ Fn+1}. Pick arbitrary distinct elementsG1,G2 ∈ G.
There are elementsF1,F2 ∈ Fn andF ′

1,F
′
2 ∈ Fn+1 such that

G1 = F1 ∩ F ′
1, G2 = F2 ∩ F ′

2.

We may assume without loss of generality thatF1 	= F2. So

G1 ∩ G2 ∩ X ⊆ F1 ∩ F2 ∩ X = ∅.

These considerations show that we may assume thatFn+1 refinesFn for everyn. For every
x ∈ X andn ∈ N there is by (a) and (c) a unique element inFn which containsx, sayFx

n .
LetU be an open cover ofX. Fix x ∈ X for a moment. There is an elementU ∈ U which

containsx. Let U ′ ⊆ Y be open such thatU ′ ∩ X = U . There isε > 0 such that the ope
ball aroundx with radiusε is contained inU ′. Since mesh(Fn) ↘ 0, this implies that there
is an elementn ∈ N such thatFx

n ⊆ U ′. These considerations show that the integer

n(x) = min
{
n ∈ N: (∃U ∈ U)

(
Fx

n ∩ X ⊆ U
)}

is well-defined.
Put

E = {
Fx

n(x) ∩ X: x ∈ X
}
.
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We first claim thatE is pairwise disjoint. Assume that(F x ∩ X) ∩ (F
y ∩ X) 	= ∅ for

g.,
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itely
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n(x) n(y)

certainx, y ∈ X. If n(x) = n(y) thenFx
n(x) = F

y

n(y) by (c). Suppose therefore that, e.

n(x) < n(y). Observe thatFy

n(y) ∩ X ⊆ Fx
n(x) ∩ X sinceFn(y) refinesFn(x) andFn(x) � X

is pairwise disjoint. By minimality ofn(y) we therefore getn(y) � n(x), contradiction.
SinceE is countable because everyFn is countable, this means that we are done.�
Corollary 3.2. Subspaces and countable products of splintered spaces are splintere

It is clear that the property of being strongly splintered is hereditary and fin
productive. It seems, however, to be a delicate question whether the infinite prod
strongly splintered spaces must be strongly splintered.

Proposition 3.3. Every strongly splintered space is splintered.

Proof. Let us say that a disjoint collection of closed subsetsF of X has property(∗)

provided that everyF ∈ F is clopen in the subspace
⋃

F of X. Observe that each famil
with property(∗) is countable. In addition,a disjoint collectionF of closed subsets ofX
is said to have property(w∗) if F can be written as the union of finitely many subfamili
each having property(∗).

Let U be an arbitrary open cover ofX.

Claim 1. If A andB are closed inX then there is a closed collectionF of X such that

(1) B(0) \ A ⊆ ⋃
F ⊆ B \ A,

(2) F refinesU,
(3) F has property(∗).

For everyx ∈ B(0)\A we may pick a relatively clopen subsetCx ⊆ B which is contained
in an element ofU such thatx ∈ Cx ⊆ B \ A. Countably manyCx ’s coverB(0) \ A, say
C1,C2, . . . . So the collection

F =
{

C1,C2 \ C1, . . . ,Cn \
n−1⋃
i=1

Ci, . . .

}

is as required.

Claim 2. Let F be a collection of closed subsets ofX with property(w∗). Assume thatF
refinesU. Then for every closed subsetM of X there is a disjoint closed collectionG of X
having the following properties:

(4) F ⊆ G andG refinesU,
(5) M(0) ⊆ ⋃

G,
(6) G has property(w∗).
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Write F asF1 ∪ · · ·∪Fn, whereFi has property(∗) for everyi � n, and putCi = ⋃
Fi .

to
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For each (possibly empty)A ⊆ {1,2, . . . , n}, put

X(A) =
( ⋂

i∈A

Ci

)
\

⋃
i /∈A

Ci.

Observe that the setsX(A) are pairwise disjoint and coverX. In addition, eachX(A) is
the difference of two closed subsets ofX. ForA ⊆ {1,2, . . . , n}, let

Y (A) = X(A) \
⋃
i∈A

⋃
Fi .

Observe that theY (A)’s are a disjoint cover ofX \ ⋃
F. Now fix A ⊆ {1,2, . . . , n} for a

moment. IfW ∈ Fi for certaini ∈ A thenW is clopen inCi , henceW ∩ X(A) is clopen
in X(A). This shows thatY (A) is a closed subspace ofX(A) and so we can writeY (A) as
P \ Q, where bothP andQ are closed inX. ThenM ∩ Y (A) = (M ∩ P) \ Q. Since

M(0) ∩ P ⊆ (M ∩ P)(0),

there exists by Claim 1 a closed collectionF(A) of X such that

(7) M(0) ∩ Y (A) = (M(0) ∩ P) \ Q ⊆ ⋃
F(A) ⊆ (M ∩ P) \ Q,

(8) F(A) refinesU,
(9) F(A) has property(∗).

Now let G be the union ofF and all the collectionsF(A) for A ⊆ {1,2, . . . , n}. ThenG is
clearly as required.

This completes the proof of the Proposition since Claim 2 can be used recursively
deal with the zero-dimensional parts of countably many closed sets, and hence with
X sinceX is strongly splintered. �

As observed at the beginning of this section, there are connected and topolo
complete spaces which are splintered. Such a space is not strongly splintered, as the n
observation shows.

Lemma 3.4. Suppose thatX is Baire and strongly splintered. ThenX(0) is dense inX
(hence,X is not connected).

Proof. Let the sequence of closed setsFi , i ∈ N, witness thatX is strongly splintered. We
may assume without loss of generality that(Fi)(0) is dense inFi for everyi. Let U be a
nonempty open subset ofX. The closed collection{Fi ∩ U : i ∈ N} coversU . SinceX is
Baire, for somei the interior ofFi ∩ U is nonempty. So there is a nonempty open su
V of U such thatV ⊆ Fi . Since(Fi)(0) is dense inFi , there is a pointx ∈ V at whichFi

is zero-dimensional. SinceV is open inX andFi is closed inX, this easily implies thatX
is zero-dimensional atx, i.e.,x ∈ U ∩ X(0). �

We shall close this section with one more observation, which will be useful in the
section.
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Lemma 3.5. Let ϕ :T → E be a Baire class1 function from a closed subsetT of the

ets
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irrationals to a spaceE. Then the graphG = {(t, ϕ(t)): t ∈ T } ⊆ T × E is splintered.

Proof. We shall show that

(†) if F ⊆ G is closed and nonempty thenF(0) 	= ∅.

To that end, let us consider the projectionA of F onto the first coordinate, and letB be
the closure ofA in T .

Sinceϕ is of the first Baire class, the restriction ofϕ to B has a continuity pointa.
Let an ∈ A, an → a. Then(an,ϕ(an)) → (a,ϕ(a)) and (an,ϕ(an)) ∈ F . SinceF is

closed,c = (a,ϕ(a)) ∈ F . Let us check thatc ∈ F(0). Given an open neighborhoodU × V

of c in T × E, one can find a clopen neighborhoodW of a in T such thatϕ(W ∩ B) ⊆ V .
ThenW × E is a clopen set containingc and(W × E) ∩ F ⊆ U × V .

Having checked(†), let us show that this property implies the splinteredness ofG.
Indeed, letU be an open cover ofG. Define by transfinite induction disjoint closed s

Hα such thatHα is contained in some element ofU, and each union
⋃

α<β Hα is open
in G. If Hα , α < β , are already defined, let us considerF = G \ ⋃

α<β Hα . If F = ∅, we
stop. Otherwise, we pickx ∈ F(0) and we choose a clopen inF neighborhoodHβ of x

contained in an element ofU containingx. SinceG is separable, the process terminate
someλ < ω1. In effect we get a disjoint countable closed refinement{Hα: α < λ} of U. �
Remark 3.6. Let f :E → T be a perfect map from a complete space onto a closed s
of the irrationals. By the selection theorem of Kuratowski and Ryll-Nardzewski [3], t
is a Baire class 1 functionϕ :T → E with f (ϕ(t)) = t for t ∈ T . Let S = ϕ(T ). The map
ϕ(t) → (f (ϕ(t)), ϕ(t)) is a homeomorphism ofS onto the graphG = {(t, ϕ(t)): t ∈ T }
of ϕ. Therefore, by Lemma 3.5,S is a splinteredGδ-selector for the decomposition ofE

into the fibers off .

4. Examples of products of splintered and strongly splintered spaces

Let us recall that products of splintered spacesare splintered (Corollary 3.2). We sha
use a construction of Rubin et al. [13], combined with an idea of Kulesza [2], to ge
following

Theorem 4.1. There is a complete1-dimensional splintered spaceX such thatdimXn = n

for everyn andX∞ is not countable-dimensional.

Proof. Let J = [−1,1], let ∆ ⊆ J be a Cantor set,

(1) Z = ∆ × ∏∞
n=1 Jn,

and let
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(2) pn :Z → ∆ × Jn, πn :Z → ∆ × J1 × · · · × Jn

.

f

.1, on
denote the projections

pn(t, t1, t2, . . .) = (t, tn), πn(t, t1, t2, . . .) = (t, t1, . . . , tn).

For anyx in ∆ × ∏
n∈Γ Jn, Γ ⊂ N, let π(x) be the first coordinate ofx. By [13] (see also

the proof of Theorem 3.9.3 in [8]), there is a compact set

K ⊆ Z, π(K) = ∆

such that

(3) if A ⊆ K andπ(A) = ∆ thenA is not countable-dimensional,
(4) if A ⊆ πn(K) andπ(A) = ∆ then dimA = n.

Let ϕ :∆ → K be a Baire class 1 map such thatπ(ϕ(t)) = t , for t ∈ ∆, cf., Remark 3.6
Thenϕn = pn ◦ ϕ :∆ → pn(K) is of the first Baire class andπ(ϕn(t)) = t , for t ∈ ∆. By
Remark 3.6, each space

Sn = ϕn(∆) ⊂ pn(K)

is complete and splintered. For everyn, consider

An = πn ◦ ϕ(∆) ⊆ πn(K).

By (4), dimAn = n. The map(t, t1, . . . , tn) → ((t, t1), . . . , (t, tn)) embedsAn in the
productS1 × · · · × Sn, hence dim(S1 × · · · × Sn) � n. Since dimSi � 1, we conclude
that dimSi = 1, and that taking asX the topological sum of the spacesSi we get a 1-di-
mensional, complete, splintered space with dimXn = n for n = 1,2, . . . . To see thatX∞
is not countable-dimensional, let us consider

A∞ = ϕ(∆)

which, by (3), is not countable-dimensional. Again, the map

(t, t1, t2, . . .) �→ (
(t, t1), (t, t2), . . .

)
embedsA∞ into X∞, which completes the proof.�

Before passing to the next example, let us notice that ifE \ E(0) is a countable union o
closed strongly splintered subspaces, then the spaceE is strongly splintered.

The example is based on constructions from [9] and [10], and as in Theorem 4
[13] and an idea from [2].

Theorem 4.2. There are subspacesX,Y of [−1,1] × [−1,1] such thatX is weakly
1-dimensional,Y \ Y(0) is a countable union of closed weakly1-dimensional spaces(in
particular, dimX = dimY = 1), anddim(X × Y ) = 2.

Proof. Let Jn = [−1,1], n = 1,2, let∆ ⊆ [−1,1] be a Cantor set, and let

π :∆ × J1 × J2 → ∆



40 J. van Mill, R. Pol / Topology and its Applications 142 (2004) 31–48

be the projection onto the first coordinate. There is a compact setK ⊆ ∆ × J1 × J2 such

,

e

t

thatπ(K) = ∆ and

(1) if A ⊆ K andπ(A) = ∆ then dimA = 2,

cf. [13] and the proof of Theorem 3.9.3 in [8]. Let

pn :K → ∆ × Jn, n = 1,2,

be the projectionspn(t, t1, t2) = (t, tn), L = p1(K) and πL :L → ∆ be the projection
πL(t, t1) = t . Let ∆0 = {t ∈ ∆: dimπ−1

L (t) = 0}, N ⊆ L a zero-dimensionalGδ-set with
dim(L \ N) = 0, and let us define

(2) X = π−1
L (∆0) ∪ (L \ N).

Then repeating a reasoning from [9], one checks thatX is weakly 1-dimensional and
moreover,

(3) πL(X) = ∆ andX \ π−1
L (∆0) is σ -compact.

We shall now start the construction of the spaceY . To that end, let

(4) M = p2(p
−1
1 (X)) andπM :M → ∆,

be the projectionπM(t, t2) = t . By (3) and (4),M \ π−1
M (∆0) is σ -compact, and therefor

there are compact sets

(5) Ti ⊆ M \ π−1
M (∆0),

⋃∞
i=1 πM(Ti) = ∆ \ ∆0,

such that

(6) πM(Ti) ∩ πM(Tj ) = ∅ for i 	= j

(notice that any countable collection of compact sets in∆ can be refined by a disjoin
countable collection of compact sets with the same union).

Let

∆1 = {
t ∈ ∆0: dimπ−1

M (t) = 0
}
.

Then, cf. [9, Lemma 2.2], (2) and (3),

(7) π−1
M (∆1) ⊆ (p2(K))(0).

Let Q be the rational numbers fromJ. For eachq ∈ Q, we set

Mq = M ∩ (
∆ × {q}),

and let
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(8) Y = π−1(∆1) ∪ ⋃∞
i=1(Ti)(0) ∪ ⋃

q∈Q Mq .

her
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nd,

r

to
,

ace

d
d

M

Then, by (7),π−1
M (∆1) ⊆ Y(0), Mq are zero-dimensional closed subsets ofM, and

(Y ∩ Ti) \ (Ti)(0) ⊆
⋃
q∈Q

Mq,

cf. (5), (6). It follows thatY \ Y(0) is a countable union of closed sets which are eit
zero-dimensional or weakly 1-dimensional. Therefore, it remains to check the inequ

(9) dim(X × Y ) � 2

(notice that (9) implies that dim(Y \ Y(0)) = 1, by the Tomaszewski theorem). To that e
let us notice that

(10) πM(Y ) = ∆.

Indeed, ift ∈ ∆0 \ ∆1, then by (2) and (4),π−1
M (t) contains a non-trivial interval, and fo

q ∈ Q in this interval,π−1
M (t) ∩ Mq 	= ∅. It follows that ∆0 ⊆ πM(Y ). Let t ∈ ∆ \ ∆0,

and lett ∈ πM(Ti), cf., (5). If dim(π−1
M (t) ∩ Ti) = 0, π−1

M (t) ⊆ (Ti)(0) ⊆ Y . Otherwise,
π−1

M (t) ∩ Ti contains a non-trivial interval, hence someq ∈ Q, andπ−1
M (t) intersectsMq .

Having checked (10), let us pick for eacht ∈ ∆ pointsu(t), v(t) ∈ J with (t, v(t)) ∈ Y

and (t, u(t)) ∈ X, cf., (3). Then the productX × Y contains a set homeomorphic
A = {(t, u(t), v(t)): t ∈ ∆} ⊆ K which projects onto∆. By (5), dimA = 2, and we get (9)
which completes the proof.�

5. Higher-dimensional strongly splintered spaces

The aim of this section is to prove that for everyα < ω1 there is a topologically
complete strongly splintered space of small transfinite dimensionα. The proof is based
on constructions in van Mill and Pol [10] and Pol [12].

Theorem 5.1. For eachα < ω1 there is a strongly splintered topologically complete sp
E such thatindE = α.

The main tool in the proof is the following result:

Proposition 5.2. Let f :X → P be a perfect map, whereX is topologically complete an
countable-dimensional. There exists aGδ-subsetY of X which is strongly splintered an
satisfiesf (Y ) = f (X).

We shall derive this proposition from the following:
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Lemma 5.3. Let f :Z → H be a perfect map from a spaceZ with 0 < indZ < ∞ onto

e

ly

rivial

ir
a zero-dimensional spaceH , and let

Z0 = Z \ f −1(f (Z \ Z(0))
) ⊆ Z(0). (1)

There exists fori � 1 a closed setZi in Z such that:

(2) the collection{f (Zi): i � 0} is pairwise disjoint,
(3) indZi < indZ for everyi,
(4) f (

⋃∞
i=0 Zi) = f (Z).

Moreover,
⋃∞

i=0 Zi is aGδ-subset ofZ.

Proof. We shall follow the reasoning in the proof of Theorem 1.3 in [10].
First observe thatZ0 is aGδ-subset ofZ becauseZ(0) is and the mapf is closed. Let

Z \ Z0 =
∞⋃
i=1

Ai,

where eachAi is closed inZ. In addition, let{Ui : i ∈ N} be an open base forZ such that

indFrUi < indZ

for everyi; putBi = FrUi . For i, j ∈ N put

Tij = Ai ∩ Bj .

The setsf (Tij ) are closed in the zero-dimensional spaceH . There consequently ar
pairwise disjoint closed setsHij in H with Hij ⊆ f (Tij ), while moreover

∞⋃
i=1

∞⋃
j=1

Hij =
∞⋃
i=1

∞⋃
j=1

f (Tij ).

For i, j ∈ N, put

Zij = f −1(Hij ) ∩ Tij ,

and arrange theZij ’s into the sequenceZ1,Z2, . . . . The conditions (2) and (3) are clear
satisfied.

For (4), pick t from f (Z), and consider the fiberf −1(t). If dim f −1(t) = 0 then
f −1(t) ⊆ Z(0) by Lemma 2.1 from [9], hencet ∈ f (Z0). So assume that dimf −1(t) > 0.
Thenf −1(t) is a compactum with positive dimension and hence contains a non-t
continuum, sayC [8, Exercise 3.2.4]. HenceC must meet some boundaryBi , and since
C ⊆ Z \ Z(0) ⊆ Z \ Z0, the intersectionBi ∩ C must meet someAj . Hencef −1(t) must
intersect someTij , i.e.,t is in someHkl and so inf (Zm), wherem corresponds to the pa
(k, l).

To finish the proof, observe that
∞⋃
i=0

Zi = Z \
( ∞⋃

i=1

f −1(f (Zi)
) \ Zi

)
.

This shows that
⋃∞

i=0 Zi is indeed aGδ-subset ofZ. �
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Proof of Proposition 5.2. SinceX is complete and countable-dimensional we have that

aces

king

12,

s

t

a

,

the transfinite small inductive dimension indX of X is smaller thanω1. We shall proceed
by transfinite induction on indX. Let us suppose that the assertion is true for all sp
with ind < α, and letf :X → P be as in Proposition 5.2. LetZi , i = 0,1, . . . , be as in
Lemma 5.3 (withZ = X). By the inductive assumption, cf. (3), eachZi contains aGδ-
subsetYi of Zi which is strongly splintered andf (Yi) = f (Zi). Let

Y = Z0 ∪
∞⋃
i=1

Yi .

ThenZ0 ⊆ Y(0) andYi are strongly splintered closed subsets ofY , henceY is strongly
splintered. Moreover,X \ Y = ⋃∞

i=1(Zi \ Yi) is anFσ -set, cf. (2), andf (Y ) = f (X). �
Proof of Theorem 5.1. It is enough to check the assertion for non-limitα since the
theorem for limit ordinals can be proved from the theorem for non-limit ordinals by ta
topological sums.

Let π :P × I∞ → P denote the projection. We shall use the following result from [
Comment 6.2, p. 266]: there is anFσ -subsetF ⊆ P × I∞ such thatπ(F) = P while
moreover for everyD ⊆ F with π(D) = P we have indD = α.

SinceF is anFσ -set, there are for everyi disjoint closed setsXi in F such that the
setsπ(Xi) are pairwise disjoint and coverP. Now apply Proposition 5.2 to the map
π � Xi :Xi → π(Xi), getting strongly splinteredGδ-subsetsEi of Xi with π(Ei) = π(Xi).
Then

E =
∞⋃
i=1

Ei

is aGδ set inP × I∞, which is strongly splintered. Moreover, indE = α, asE is a subse
of F projecting ontoP. �

6. Tomaszewski’s theorem

Tomaszewski’s approach to(T ) in Section 1 is to use induction onn+m. The inequality
(T ) is true if n = m = 1. Then he proceeds on [15, p. 5], as follows. Assume that(T ) is
true for alln andm with n + m � k − 1 � 2. Consider a weaklyn-dimensional spaceX,
and a weaklym-dimensional spaceY with n + m = k. Consider two points of the form
(x1, y) and(x2, y) in X × Y such thatx1 	= x2. Tomaszewski then claims that there is
partitionL in X betweenx1 andx2 such that either

(a) dimL � n − 2, or
(b) L is weakly(n − 1)-dimensional.

If so, thenL′ = L × Y is a partition between(x1, y) and (x2, y) such that dimL′ �
(n − 2) + m = n + m − 2 if (a) is true, and dimL′ � (n − 1) + m − 1 = n + m − 2
if (b) is true (by the inductive hypothesis). However, ifn = 1 then (b) is not defined
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and (a) need not always hold becauseX is 1-dimensional. In fact, if dimL = 0 then

he
ntary.

n

a

dim(L × Y ) = m > 1 + m − 2. So this proof breaks down ifn = 1; it is correct if both
n andm are greater than 1. We will prove that(T ) holds forn = 1 and arbitrarym by
refining Tomaszewski’s proof for the product of two weakly 1-dimensional spaces. T
basic idea of our proof follows [15], although our approach is more direct and eleme

Lemma 6.1. Let X be weaklyn-dimensional,n � 2. There exists a zero-dimensionalFσ -
subsetN ⊆ X such thatX \ N is weakly(n − 1)-dimensional.

Proof. Let B0 be a countable open collection ofX which is a base at all points ofΛ(X)

while moreover dimFrB � n−1 for everyB ∈ B0. In addition, letB1 be a countable ope
collection ofX which is a base at all points ofX \Λ(X) while moreover dimFrB � n− 2
for everyB ∈ B1.

Now for everyB ∈ B with dimFrB � 0 let F(B) ⊆ FrB be a zero-dimensionalFσ -
subset such that

dim
(
FrB \ F(B)

)
� dimFrB − 1.

In addition, since dimΛ(X) = n − 1, by the same reason there is a zero-dimensionalFσ -
subsetF ⊆ Λ(X) such that dimΛ(X) \ F � n − 2. SinceΛ(X) is anFσ -subset ofX, the
setF is anFσ -subset ofX as well. Put

N =
⋃

B∈B

F(B) ∪ F.

Then dimN � 0 by the Countable Closed Sum theorem and it is easy to see thatN is as
required. �
Lemma 6.2. LetX be weaklyn-dimensional. IfY ⊆ X is n-dimensional thenY is weakly
n-dimensional.

Proof. It is clear thatΛ(Y ) ⊆ Λ(X). So we are done sinceΛ(X) is (n − 1)-dimen-
sional. �
Corollary 6.3. LetX be weaklyn-dimensional,n � 2. Then for every pairA,B of disjoint
closed subsets ofX there is a partitionD betweenA andB such that eitherdimD � n−2
or D is weakly(n − 1)-dimensional.

Proof. Let N be the zero-dimensionalFσ -subset ofX we get from Lemma 6.1. There is
partitionD betweenA andB which missesN . So dimD � n − 1. If dimD = n − 1 then
D is weakly(n − 1)-dimensional by Lemma 6.2.�
Theorem 6.4. If X is weakly1-dimensional andY is weaklym-dimensional, then

dim(X × Y ) � m.

We will prove this by induction onm. It is true form = 1, so assume thatm > 1.
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Let U andV be arbitrary open subsets ofX andY , respectively, such thatx ∈ U and

en
t

f

of

t

at
y ∈ V . Our aim is to construct an open subsetE ⊆ X × Y such that(x, y) ∈ E ⊆ U × V

while moreover dimFrE � m − 1. We will do this in two steps. We first construct an op
neighborhoodL of (x, y) such thatL ⊆ X × V and dimFrL � m − 1. Then we construc
an open neighborhoodK of (x, y) such thatK ⊆ U × Y and dimFrK � m − 1. Then
E = K ∩ L is a neighborhood of(x, y) such thatE ⊆ U × V , and

FrE ⊆ FrK ∪ FrL

and hence is at most(m − 1)-dimensional by the Countable Closed Sum theorem.
First observe that the construction ofL is simple. Indeed, LetP be a neighborhood o

y in Y such thatP ⊆ V while moreover dimFrP � m − 2 or FrP is weakly (m − 1)-
dimensional (Corollary 6.3). PutL = X × P . Then

FrL = X × FrP,

hence

dimFrL � m − 2+ 1 = m − 1

in the first case, and

dimFrL � m − 1

in the second case by our inductive hypothesis.
The construction ofK is more complicated. LetU ′ be an open neighborhood

x such thatU ′ ⊆ U and FrU ′ ⊆ X \ Λ(X). It is possible to pickU ′ since Λ(X)

is zero-dimensional. PutA = FrU ′ and let U ′′ be an open subset ofX such that
A ⊆ U ′′ ⊆ U ′′ ⊆ U .

We claim that for everyn ∈ N there exist pairwise disjoint clopen subsetsU1n,U2n, . . .

of X such that

(1) Uin ∩ A 	= ∅ for everyi,
(2) diamUin < 1/n for everyi,
(3) A ⊆ ⋃∞

i=1 Uin ⊆ ⋃∞
i=1 Uin ⊆ U ′′,

(4) Fr(
⋃∞

i=1 Uin) ⊆ Λ(X).

Indeed, for everyx ∈ X \ Λ(X) pick an clopen neighborhoodCx of diameter at mos
1/n such that eitherCx ∩ A = ∅ or Cx ⊆ U ′′. A countable subcollection of theCx cover
X \Λ(X), sayC. Since theCx are clopen we may assume without loss of generality thC

is pairwise disjoint. At most countably many elements ofC intersectA, say{Cxi : i ∈ N}.
An easy check shows that the setsUin = Cxi , i ∈ N, are as required.

SinceΛ(Y ) is anFσ -subset ofY , there are closed subsetsBn of Y for everyn such that

Λ(Y ) =
∞⋃

n=1

Bn.

Now for everyn ∈ N let En denote the collection of all open subsetsE of Y having the
following properties:
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– E ∩ Bn = ∅,

,

t

– dimFrE � m − 2.

Observe thatEn coversY \Λ(Y ) since the dimension at every point ofY \Λ(Y ) is at most
m − 1 andBn is closed inY . Pick a countable subcollectionFn ⊆ En with

⋃
Fn = ⋃

En.
Enumerate it as{Fin: i ∈ N} and put

Vin = Y \
i⋃

j=1

Fjn

for everyi ∈ N. Observe thatVin is open for everyi, that the sequence(Vin)i is decreasing
and that

Bn ⊆ B̂n =
∞⋂
i=1

Vin ⊆ Λ(Y ).

Moreover, if i ∈ N then FrVin ⊆ ⋃i
j=1 FrFjn is at most(m − 2)-dimensional by the

Countable Closed Sum theorem.
Now put

W =
∞⋃

n=1

∞⋃
i=1

Uin × Vin. (6)

We will first show that

A × Λ(Y ) ⊆ W. (7)

Indeed, pick an arbitrary point(a, b) ∈ A × Λ(Y ). There existsn ∈ N such thatb ∈ Bn ⊆
B̂n. Sincea ∈ A ⊆ ⋃∞

i=1 Uin there also existsi ∈ N such thata ∈ Uin. We conclude tha
(a, b) ∈ Uin × B̂n ⊆ Uin × Vin ⊆ W .

Observe that ifi, n ∈ N are arbitrary then sinceUin is clopen, we have

Fr(Uin × Vin) = Uin × FrVin,

and hence that

dimFr(Uin × Vin) � 1+ m − 2 = m − 1.

In addition, clearly,

dim
(
Λ(X) × FrVin

)
� 0+ m − 2= m − 2.

We will show that

FrW ⊆ (
Λ(X) × Λ(Y )

) ∪ (A × Y ) ∪
∞⋃
i=1

∞⋃
n=1

Fr(Uin × Vin)

∪
∞⋃
i=1

∞⋃
n=1

Λ(X) × FrVin. (8)
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To this end, let(a, b) ∈ FrW and let(ak, bk) ∈ W , k ∈ N, be a sequence converging to

t

ary,

single

ce

e

(a, b). For everyk ∈ N pick ik, nk ∈ N such that

(ak, bk) ∈ Uiknk × Viknk .

Let us first assume that the set{nk: k ∈ N} is infinite. Then by (1) and (2) it follows tha
for infinitely manyk ∈ N we have�(ak,A) < 1/k, whence(a, b) ∈ A × Y .

Assume next that the set{nk: k ∈ N} is finite. By passing to a subsequence if necess
we may even assume that it consists of a single element, sayn. If the setZ = {ik: k ∈ N}
is finite as well, then we may assume by the same argument that it consists of a
element, sayi. But then

(ak, bk) ∈ Uin × Vin

for everyk, and since clearly(a, b) /∈ Uin × Vin sinceUin × Vin is an open subset ofW ,
we obtain

(a, b) ∈ Fr(Uin × Vin),

as required. So we may assume without loss of generality thatZ is infinite. But this means
that we may assume without loss of generality that the functionk �→ ik is one-to-one.

So by (4) we geta ∈ Fr(
⋃∞

i=1 Uin) ⊆ Λ(X).
If b ∈ B̂n ⊆ Λ(Y ) then we are obviously done since then(a, b) ∈ Λ(X) × Λ(Y ). So

assume thatb /∈ B̂n, and picki ∈ N such thatb /∈ Vin. Since the setZ is infinite and the
sequence(Vin)i is decreasing, it follows that all butfinitely many element of the sequen
(bk)k belong toVin. Sinceb /∈ Vin this implies thatb ∈ FrVin and hence that

(a, b) ∈ Λ(X) × FrVin,

as required.
Now put

K = W ∪ (
U ′ × Y

)
. (9)

ThenK is an open neighborhood of(x, y) and by (3) we find thatK ⊆ U × Y . We claim
that FrK is at most(m − 1)-dimensional. First observe that

FrK ⊆ FrW ∪ Fr
(
U ′ × Y

) = FrW ∪ (A × Y ). (10)

PutT0 = FrK ∩ (A × Y ) andT1 = FrK \ T0, respectively. Since by (7),A × Λ(Y ) ⊆ W

and FrK ∩ W = ∅, it follows that

T0 ⊆ A × (
Y \ Λ(Y )

)
,

which is at most(m − 1)-dimensional. We conclude thatT0 is a closed subspace of FrE

with dimT0 � m − 1. In addition, (10) implies that

T1 ⊆ FrW \ (A × Y ).

Hence by (8),T1 is contained in an at most(m − 1)-dimensionalFσ -subset ofX × Y . We
conclude thatT1 is at most(m − 1)-dimensional as well. SinceT0 is closed, the Countabl
Sum theorem now easily gives us that dimFrK � m − 1, as desired.
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7. The diagram

l
zero-

ndary.
y two
zero-
ected,
re are
kly

igher-
t (2),
tered

eversed

ins is

7–

)

7–

91)

. Amer.
Let us return to the diagram in Section 1. Erdős spaceE is almost zero-dimensiona
but neither weakly 1-dimensional nor strongly splintered (since it is nowhere
dimensional).

A space is rimcompact if it has base every element of which has compact bou
In addition, a space is totally disconnected if the empty set is a partition between an
distinct points. It is not difficult to see that a rimcompact totally disconnected space is
dimensional. Since every almost zero-dimensional space is evidently totally disconn
it follows that no 1-dimensional almost zero-dimensional space is rimcompact. The
weakly 1-dimensional rimcompact spaces by[9]. These spaces are consequently wea
1-dimensional and hence strongly splintered, but not almost zero-dimensional.

These examples also show that neither (1) nor (3) can be reversed. The h
dimensional (strongly) splintered spaces constructed in this paper demonstrate tha
(4) and (5) cannot be reversed. They also show by [4] that not every (strongly) splin
space isL-embedded. Since there are connected splintered spaces, (6) cannot be r
as well.

So with respect to the diagram in Section 1, the only open question that rema
whether everyL-embedded subspace of a compact space is splintered.

References

[1] R. Engelking, Theory of Dimensions Finite and Infinite, Heldermann, Lemgo, 1995.
[2] J. Kulesza, The dimension ofXn whereX is a separable metric space, Fund. Math. 150 (1996) 43–54.
[3] K. Kuratowski, C. Ryll-Nardzewski, A general theorem on selectors, Bull. Pol. Acad. Sci. 13 (1965) 39

403.
[4] M. Levin, R. Pol, A metric condition which implies dimension�1, Proc. Amer. Math. Soc. 125 (1997

269–273.
[5] S. Mazurkiewicz, Sur les ensembles de dimension faible, Fund. Math. 13 (1929) 210–217.
[6] K. Menger, Allgemeine Raüme und Cartesische Raüme, Zweite Mitteilung: “Über umfassendsten-dimen-

sionalen Mengen”, Proc. Akad. Amsterdam 29 (1926) 1125–1128.
[7] K. Menger, Bemerkungen über dimensionelle Feinstruktur und Produktsatz, Prace Mat.-Fiz. 38 (1930) 7

90.
[8] J. van Mill, The Infinite-Dimensional Topology ofFunction Spaces, North-Holland, Amsterdam, 2001.
[9] J. van Mill, R. Pol, On the existence of weaklyn-dimensional spaces, Proc. Amer. Math. Soc. 113 (19

581–585.
[10] J. van Mill, R. Pol, Note on weaklyn-dimensional spaces, Monatsh. Math. 132 (2001) 25–33.
[11] L.G. Oversteegen, E.D. Tymchatyn, On the dimension of certain totally disconnected spaces, Proc

Math. Soc. 122 (1994) 885–891.
[12] R. Pol, Countable dimensional universal sets, Trans. Amer. Math. Soc. 297 (1986) 255–268.
[13] L. Rubin, R.M. Schori, J.J. Walsh, New dimension-theory techniques for constructing infinite-dimensional

examples, Gen. Topology Appl. 10 (1979) 93–102.
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